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Groups





1
Groups and Homomorphisms

1.1 Groups

Definition 1.1 (Semigroup, Monoid, and Group).

(a) A set G with a mapping · on G (that is, · : G × G → G) is named

• semigroup if ∀a, b, c ∈ G. (a · b) · c = a · (b · c); associativity

• monoid if it is a semigroup and ∃e ∈ G. ∀a ∈ G. e · a = a · e = a; e is called neutral element

• group if it is a monoid and ∀a ∈ G. ∃a′ ∈ G. a · a′ = a′ · a = e. a′ is the inverse element of a

(b) A group (G, ·) is named abelian or commutative if the group
operation · is commutative under elements of G,

∀a, b ∈ G. a · b = b · a. (1.1) We denote groups by (G, ·). If the
group operation · is clear from context,
we refer to the group simply as G.
Subsequently, we also write ab instead
of a · b.Remark 1.2. Let G be a group. Then,

(a) there is exactly one neutral element e ∈ G and for every a ∈ G
there is exactly one inverse element a′ ∈ G, which we call a−1;

(b) the mapping on G, which we refer to by ·, may be resembled by
any symbol;

(c) if G is abelian, often

• + is used instead of ·,
• 0 is used instead of e, and
• −a is used instead of a−1.

Example 1.3: Semigroups, monoids, and groups

(N,+) (N0,+) (Z,+) (Z, ·) (Q \ {0}, ·)

semigroup yes yes yes yes yes

monoid no yes yes yes yes

group yes no yes no yes
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Example 1.4: General linear and special linear group

The general linear group GLn(K) is the group of invertible1 1 Recall from linear algebra that a
matrix A is invertible iff det A ̸= 0.

n × n
linear maps over a field2

2 A field is a set of elements with
well-defined operations for addition,
subtraction, multiplication, and
division. We give a formal definition in
definition 15.1. Examples of fields are
the rational numbers Q, the real
numbers R, and the complex numbers
C.

K,

GLn(K)
.
= {A ∈ Kn×n | det A ̸= 0}. (1.2)

The special linear group SLn(K) is the group of normed linear
maps over the field K,

SLn(K)
.
= {A ∈ Kn×n | det A = 1}. (1.3)

The group operation of GLn(K) and SLn(K) is matrix multipli-
cation. Their neutral element is the identity matrix I, and the
inverse elements are the matrix inverses A−1.

Example 1.5: Abelian groups

• (Z,+)

• (Q,+)

• (R,+)

• (R \ {0}, ·)

Example 1.6: Symmetric group

The symmetric group Sn is the group of bijections on the set [n],

Sn
.
= {σ : [n] → [n] | σ is bijective}, (1.4)

with the function composition “◦” as mapping.

Elements of the symmetric group σ ∈ Sn are called permutations.
The neutral element of the symmetric group is the identity id,
which maps each input to itself.

There are multiple ways of representing permutations. Perhaps
the most natural representation of σ ∈ Sn is a mapping in two-
line notation,

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
, (1.5)

or in one-line notation by simply omitting the first line,

σ = (σ(1) σ(2) · · · σ(n)). (1.6)
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An alternative characterization of a permutation is as a product
of (disjoint) cycles. A cycle ρ ∈ Sn is a permutation that maps a
subset of numbers {i1, i2, . . . , ir} ⊆ [n] in a cyclic fashion. That is,

ρ(i1) = i2, ρ(i2) = i3, · · · ρ(ir−1) = ir, ρ(ir) = i1, (1.7)

leaving all other j ∈ [n] fixed. We denote such a cycle by

ρ = (i1 i2 · · · ir). (1.8)

A cycle of length r, is also called r-cycle. 2-cycles are called trans-
positions.

Every permutation σ ∈ Sn can be written as a “product” (i.e.,
composition),

σ = ρ1 · · · ρs, (1.9)

where ρi are cycles with pairwise disjunct elements. This is
also known as the cycle notation of σ. Note that the ordering of
ρ1, . . . ρs does not matter, as their elements are disjoint.

The cycle lengths r1, . . . , rs (in descending order) of ρ1, . . . , ρs are
the cycle type of σ.

Remark 1.7. The symmetric group is not abelian.
Proof. We have (1 2)(2 3) = (2 3 1) and (2 3)(1 2) = (1 3 2).

Lemma 1.8 (Notation and Rules). Let (G, ·) be a group.

(a) For a ∈ G, n ∈ N0, we write

• an .
= a · a · · · a︸ ︷︷ ︸

n many

,

• a0 .
= e, and

• a−n .
= a−1 · a−1 · · · a−1︸ ︷︷ ︸

n many

.

(b) ∀a, b ∈ G. ∀m, n ∈ Z.

(i) (a−1)−1 = a
(ii) am · an = am+n, (am)n = am·n

(iii) (a · b)−1 = b−1 · a−1

Proof of (b)(iii). (a · b) · b−1 · a−1 = a · (b · b−1)︸ ︷︷ ︸
=e

·a−1 = a · a−1 = e.

Definition 1.9 (Subgroup). A subset U ⊆ G is called a subgroup of a
group G (denoted U ≤ G) if U itself is a group with mapping ·. That
is, U is a subgroup iff

(a) e ∈ U; U contains the neutral element

(b) ∀a, b ∈ U. a · b ∈ U; and the mapping · is closed wrt. U
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(c) ∀a ∈ U. a−1 ∈ U. the mapping (. . . )−1 is closed wrt. U

Associativity follows from G being a group.

Example 1.10: Subgroups

• {e}, G ≤ G (trivial subgroups)
• SLn(K)≤GLn(K)
• Let 2Z

.
= {2m | m ∈ Z}, then (2Z,+)≤(Z,+)

Remark 1.11. If {Ui}i∈I are subgroups of G, then
⋂

i∈I Ui ≤ G.

Definition 1.12 (Generated Subgroup). For any M ⊆ G,

⟨M⟩ .
=

⋂
U ≤ G
M⊆U

U ≤ G, by remark 1.11(1.10)

is the subgroup generated by M. In particular, ⟨M⟩ is the “smallest”
subgroup that includes M.

Lemma 1.13. For M ̸= ∅, we have

⟨M⟩ = {a1 · a2 · · · an | n ∈ N, ai ∈ M or a−1
i ∈ M}. (1.11)

Proof (sketch). Let N .
= {a1 · a2 · · · an | n ∈ N, ai ∈ M or a−1

i ∈ M}.

• ⟨M⟩ ⊆ N: N ≤ G and M ⊆ N =⇒ ⟨M⟩ ⊆ N using that ⟨M⟩ is the smallest subgroup
including M• N ⊆ ⟨M⟩: if U ≤ G with M ⊆ U, then U includes all of these

products =⇒ N ⊆ U =⇒ N ⊆ ⟨M⟩

Example 1.14: Generated subgroup

S3 = {id, (1 2)︸ ︷︷ ︸
τ1

, (1 3)︸ ︷︷ ︸
τ2

, (2 3)︸ ︷︷ ︸
τ3

, (1 2 3)︸ ︷︷ ︸
σ1

, (1 3 2)︸ ︷︷ ︸
σ2

} = ⟨{(1 2)︸ ︷︷ ︸
τ1

, (1 2 3)︸ ︷︷ ︸
σ1

}⟩.

Definition 1.15 (Cyclic Group). A group G is cyclic if ∃a ∈ G with

G = ⟨a⟩ .
= ⟨{a}⟩ = {am | m ∈ Z}. (1.12)

Such an a ∈ G, is called a generator of G.

Figure 1.1: An illustration of the cyclic
subgroup ⟨i⟩ in the complex plane.

Example 1.16: Cyclic groups

• ⟨i⟩ = {im | m ∈ Z} is a cyclic subgroup of (C \ {0}, ·),

⟨i⟩ = {. . . , i−2︸︷︷︸
=−1

, i−1︸︷︷︸
=−i

, 1, i, i2︸︷︷︸
=−1

, i3︸︷︷︸
=−i

, i4︸︷︷︸
=1

, i5︸︷︷︸
=i

, . . . }

= {1, i,−1,−i}.

• (Z,+) = ⟨1⟩ = {. . . ,−2,−1, 0, 1, 2, . . . } is cyclic
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Definition 1.17 (Order). Let G be a group.

(a) The cardinality |G| ∈ N ∪ {∞} is called order of the group G.
(b) For any a ∈ G, o(a) .

= |⟨a⟩| is the order of the element a.

If |G| < ∞, G is called finite.

Lemma 1.18. If k .
= o(a) < ∞, we have

(a) o(a) = min{j ∈ N | aj = e};
(b) ⟨a⟩ = {e, a, a2, . . . , ak−1}; and
(c) For any j ∈ Z, aj = e ⇐⇒ o(a) | j.3 3 We use a | b to denote that a divides b.

Proof. We write m .
= min{j ∈ N | aj = e}.

• {e, a, a2, . . . , am−1} ⊆ ⟨a⟩: Let us fix an arbitrary j ∈ N. We have,

o(a) = |⟨a⟩| < ∞ =⇒ ∃j′ > j. aj = aj′ as the order of a is finite

=⇒ aj′−j = e by multiplying from the right with a−j

=⇒ m exists and {e, a, a2, . . . , am−1} ⊆ ⟨a⟩. as j′ − j ∈ N is again a natural number

• ⟨a⟩ ⊆ {e, a, a2, . . . , am−1}: We fix any n ∈ Z. Then, by long division,
there exist q, r ∈ Z and 0 ≤ r < m with n = q · m + r. This yields,

an = aq·m+r = (am)q︸ ︷︷ ︸
=e

·ar = ar ∈ {e, a, a2, . . . , am−1}.

This proves that m = o(a) and ⟨a⟩ = {e, a, a2, . . . , am−1}. It also
follows that

an = e ⇐⇒ r = 0 ⇐⇒ m | n.

Remark 1.19. For a finite cyclic group ⟨a⟩ = {e, a, a2, . . . , ak−1} of order
k, we have ak−j = a−j.

Example 1.20: Order

• Let us consider GL2(R). Then,

A =

[
2 0
0 2

]
=⇒ ∀n ∈ N. An =

[
2n 0
0 2n

]
̸= I

=⇒ o(A) = ∞,

B =

[
0 1
−1 0

]
=⇒ B2 =

[
−1 0
0 −1

]
,

B3 = −B =

[
0 −1
1 0

]
, B4 = (B2)2 = I

=⇒ o(B) = 4.

• |Sn| = |{σ : [n] → [n] | σ is bijective}| = n!
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Example 1.21: Subgroups of S3

Let us find the subgroups of

S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

We immediately obtain the trivial subgroups {id} and S3 or or-
der 1 and 6, respectively. It is a simple exercise to confirm the
following cyclic subgroups:

• ⟨(1 2)⟩ = {id, (1 2)}
• ⟨(1 3)⟩ = {id, (1 3)}
• ⟨(2 3)⟩ = {id, (2 3)}
• ⟨(1 2 3)⟩ = ⟨(1 3 2)⟩ = {id, (1 2 3), (1 3 2)}

The first three subgroups generated by 2-cycles are of order 2,
the last subgroup generated by the 3-cycles is of order 3.

Observe that the subgroup orders are divisors of the group or-
der. This is not coincidental, we will make this precise in the fol-
lowing. In doing so, we will also find that our list of subgroups
of S3 was indeed exhaustive.

Figure 1.2: Subgroup graph of the
symmetric group S3. The order of the
subgroups is shown in orange.

The subgroup structure of a group G can be graphically repre-
sented in a subgroup graph. Subgroups of G are represented as ver-
tices. Groups U and V are connected if U ≤V and there exists no
subgroup “between” U and V. An example is given in fig. 1.2.

Definition 1.22 (Cosets and Index). Let U ≤ G be a subgroup.

(a) For a ∈ G,

aU .
= {a · u | u ∈ U}, (1.13)

Ua .
= {u · a | u ∈ U}, (1.14)

are the left and right coset of U in G, respectively.
(b) The index [G : U]

.
= |{aU | a ∈ G}| of U in G is defined as the

number of cosets of U in G.4 4 The number of left cosets is identical
to the number of right cosets.

Lemma 1.23. For all a, b ∈ G, we have

(a) aU = U ⇐⇒ a ∈ U
(b) aU = bU ⇐⇒ a−1b ∈ U
(c) aU ∩ bU ̸= ∅ ⇐⇒ aU = bU
(d) G =

⋃
a∈G aU

(e) |aU| = |U|

Proof of (e). U → aU, u 7→ a · u is a bijective mapping. Hence, domain
and codomain are of the same size.
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Theorem 1.24 (Lagrange’s Theorem). If G is a finite group and U ≤ G is
some subgroup, then

|G| = |U| · [G : U]. (1.15)

In particular, |U| and [G : U] are divisors of |G|.

Proof. Let r .
= [G : U]. Then we can write G as a disjoint union of

cosets,

G = a1U ·∪ a2U ·∪ · · · ·∪ arU.

We have,

|G| =
r

∑
i=1

|aiU| = r · |U| = [G : U] · |U|. using that |aiU| = |U| by lemma 1.23.(e)

Corollary 1.25. Let G be a finite group. Then we have for any a ∈ G,

(a) o(a) | |G|
(b) a|G| = e (Fermat’s little theorem)

Proof.

(a) By Lagrange’s theorem, |⟨a⟩| | |G|.
(b) By lemma 1.18.(c), a|G| = e ⇐⇒ o(a) | |G|.

Corollary 1.26. Let G be a group such that |G| = p where p is prime.
Then, G is cyclic.

Proof.

|G| > 1 =⇒ ∃a ∈ G \ {e}
=⇒ 1 ̸= |⟨a⟩| | |G| using that o(a) ≥ 2 if a ̸= e and

Lagrange’s theorem
=⇒ |⟨a⟩| = p = |G|. using that |G| only has divisors 1 and p

Therefore, ⟨a⟩ = G.

Example 1.27: Subgroups of S3 (continued)

We will now see that S3 has exactly four non-trivial subgroups,
proving that we have found all subgroups of S3 in example 1.21.

Let U ≤ S3 be a non-trivial subgroup. By Lagrange’s theorem,
we have |U| | |S3| = 3! = 6. As we have excluded the trivial sub-
groups {id} and S3, we know that |U| ̸= 1, 6. This leaves us with
|U| ∈ {2, 3}.

Observe that 2 and 3 are prime, hence, by corollary 1.26 U must
be cyclic. Recall that we have already enumerated all (four) cyclic
subgroups of S3 in example 1.21.
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1.2 Homomorphisms

We will now consider two groups (G, ·) and (H, ·). To understand
the relationship between G and H, it is useful to look at mappings
between the two groups. A special mapping that (as we will see)
preserves the structure of a group, is the group homomorphism.

Definition 1.28 ((Group) Homomorphism).

(a) The mapping φ : G → H is called a (group) homomorphism if

∀a, b ∈ G. φ(a · b) = φ(a) · φ(b). (1.16)

The homomorphism ψ : G → G is called endomorphism of G.
(b) The set of elements that are mapped to the neutral element eH ,

ker φ
.
= {a ∈ G | φ(a) = eH} ⊆ G, (1.17)

is called the kernel of φ.
(c) The set of elements in the codomain H that φ maps to,

im φ
.
= {φ(a) | a ∈ G} ⊆ H, (1.18)

is called the image of φ.

Example 1.29: Homomorphisms

• φ : G → H, a 7→ eH is the trivial homomorphism
• For any field K, det : GLn(K) → K \ {0}, A 7→ det A is a homo-

morphism due to the multiplicativity of the determinant.5 5 Recall that det (A · B) = det A · det B.We
have for its kernel,

ker det = {A ∈ GLn(K) | det A = 1} = SLn(K). (1.19)

• Let us consider the sign of a permutation,

sgn : Sn → {−1, 1}, σ 7→ (−1)N(σ), (1.20)

where N(σ) is the number of inversions in σ. An inversion in σ

is a pair of elements that is out of order. More formally,

N(σ) = |{(i, j) | i < j and σ(i) > σ(j)}|. (1.21)

For an r-cycle the sign reduces to,

sgn (i1 · · · ir)︸ ︷︷ ︸
r-cycle

= (−1)r−1. (1.22)

It can be shown that sgn is a homomorphism, that is,

∀σ, τ ∈ Sn. sgn (σ ◦ τ) = sgn σ · sgn τ. (1.23)
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The kernel of sgn is the set of permutations with positive sign,

ker sgn = {σ ∈ Sn | sgn σ = 1} .
= An. (1.24)

This set forms again a group, which is known as the alternat-
ing group An.

• Within the group (Z,+), φ : Z → Z, m 7→ 2m is an endomor-
phism.

Lemma 1.30 (Properties of Homomorphisms). Let φ : G → H be a
homomorphism. Then,

(a) φ(eG) = eH

(b) ∀g ∈ G. φ(g−1) = φ(g)−1

(c) ker φ≤ G and im φ≤ H
(d) φ injective ⇐⇒ ker φ = {eG}
(e) if ψ : H → K is a homomorphism, then ψ ◦ φ : G → K is a

homomorphism

Figure 1.3: An illustration of injectivity
and surjectivity. When a function φ is
injective, φ(a) = φ(b) implies a = b.
We call a function bijective is it is both
injective and surjective, i.e., a one-to-
one mapping.

Proof.

(a) We have φ(eG) = φ(eG · eG) = φ(eG) · φ(eG), using the com-
patibility of a homomorphism with the group structure (1.16).
By multiplying with φ(eG)

−1 from one side, we obtain that this
statement is true if and only if φ(eG) = eH .

(b) Again, using the homomorphism property, we have,

eH = φ(eG) = φ(g · g−1) = φ(g) · φ(g−1).

By multiplying from the left with φ(g)−1, we obtain that this
statement is true if and only if φ(g)−1 = φ(g−1).

(c) Let us confirm the properties of subgroups for ker φ≤ G. The
proof is analogous for im φ≤ H. By definition 1.9, we need to
show,

(i) eG ∈ ker φ follows immediately from (a)
(ii) ∀a, b ∈ ker φ. φ(a · b) = φ(a) · φ(b) = eH · eH = eH . Therefore,

ker φ is closed under the group operation, a · b ∈ ker φ.
(iii) ∀a ∈ ker φ. φ(a−1) = φ(a)−1 = e−1

H = eH . Therefore, ker φ is
closed under inversion, a−1 ∈ ker φ.

=⇒ ker φ≤ G.
(d) • “⇒”: Let φ be injective. We want to show that ker φ = {eG}.

Note that (a) already implies {eG} ⊆ ker φ. To show ker φ ⊆
{eG}, let a ∈ ker φ. Then,

φ(a) = eH
(a)
= φ(eH).

As φ is injective, it follows that a = eH .
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• “⇐”: Let ker φ = {eG}. We want to show that φ is injective.
Let a, b ∈ G with φ(a) = φ(b). By multiplying from the right
with φ(b)−1, we obtain,

eH = φ(a) · φ(b)−1 = φ(a) · φ(b−1) = φ(a · b−1).

As the kernel of φ only contains eG, we follow,

eG = a · b−1 ·b
=⇒ a = b =⇒ φ injective.

(e) Let a, b ∈ G. Then,

(ψ ◦ φ)(a · b) = ψ(φ(a · b)) = ψ(φ(a) · φ(b)) using that φ is a homomorphism

= ψ(φ(a)) · ψ(φ(b)) = (ψ ◦ φ)(a) · (ψ ◦ φ)(b). using that ψ is a homomorphism

Definition 1.31 (Isomorphism).

(a) The mapping φ : G → H is called an isomorphism if φ is a
homomorphism and bijective. The isomorphism ψ : G → G is
called an automorphism of G.

(b) G and H are called isomorphic (denoted G ∼= H) if there exists an
isomorphism φ : G → H.

(c) Aut(G)
.
= {ψ : G → G | ψ automorphism} forms a group under

function composition “◦”. This group is called the automorphic
group of G.

Remark 1.32. If φ : G → H is an isomorphism, then φ−1 : H → G is an
isomorphism.

Example 1.33: Isomorphisms

• Given a group G and an arbitrary element g ∈ G,

ig : G → G, x 7→ g · x · g−1, (1.25)

is the inner automorphism of the so-called conjugating element
g. This isomorphism corresponds to the conjugation group
action (also called (left) conjugation by g), which we will en-
counter again in chapter 4.

• exp : (R,+) → (R>0, ·), x 7→ ex is an isomorphism.6 6 exp is a homomorphism due to
ex+y = exey. As exp is strictly
monotonically increasing, it is bijective.



2
Normal Subgroups and Quotient Groups

Let (G, ·) be a group. In this chapter we will see that the coset struc-
ture of a group can itself be represented as a group.

Definition 2.1 (Normal Subgroup). A subgroup N ≤ G is called
normal (denoted N ⊴G) if

∀a ∈ G. aNa−1 ⊆ N. (2.1)

Remark 2.2. The condition from eq. (2.1) is equivalent to,

∀a ∈ G. aNa−1 = N. (2.2)

Proof (sketch). This follows directly from using eq. (2.1) for a ∈ G and
a−1 ∈ G. This yields a−1Na ⊆ N. By multiplying from the left with a
and from the right with a−1, we obtain N ⊆ aNa−1.

Example 2.3: Normal subgroups

• the trivial subgroups {e} and G are also normal, {e}, G⊴G
• the center,

Z(G)
.
= {a ∈ G | ∀x ∈ G. ax = xa}⊴G, (2.3)

is a normal subgroup of G.

Lemma 2.4 (Sufficient Conditions for Normal Subgroups).

(a) If φ : G → H is a homomorphism, then ker φ⊴G.
(b) Every subgroup U ≤ G with index [G : U] = 2 is a normal subgroup

of G.
(c) If U is the only subgroup of order m < ∞ of G, then U ⊴G.
(d) If G is abelian, then all subgroups of G are normal.

Proof (sketches).

(a) We have already seen in lemma 1.30.(c) that ker φ≤ G. We have,

∀a ∈ G, x ∈ ker φ. φ(axa−1) = φ(a) · φ(x)︸︷︷︸
=eH

·φ(a)−1 = eH .
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Thus, a · ker φ · a−1 ⊆ ker φ and ker φ⊴G.
(c) For all a ∈ G, we have aUa−1 = ia(U) where ia is the inner au-

tomorphism. As automorphisms are bijective, they map a sub-
group to a subgroup of the same order. Therefore, ia(U) = U,
assuming that U is the only subgroup of order m < ∞. Using
remark 2.2 completes the proof.

(d) Follows immediately from the definition of normal subgroups
by applying commutativity.

Figure 2.1: Subgroup graph of the
symmetric group S3. The index of the
subgroups is shown in orange.

Example 2.5: Normal subgroups (continued)

• An ⊴ Sn as An = ker sgn, see eq. (1.24)
• SLn(R)⊴GLn(R) as SLn(R) = ker det, see eq. (1.19)
• Inn(G)

.
= {ig | g ∈ G} known as the inner automorphism

group is a normal subgroup of the automorphism group,
Inn(G)⊴Aut(G)

• For the symmetric group S3, we have the normal subgroups

– {e}, G⊴G
– A3 = ⟨(1 2 3)⟩⊴G

by lemma 2.4.(c). Simple calculations confirm that the sub-
groups of order 2 are not normal.

Theorem 2.6 (Quotient Group). Let N ⊴G. Then the set

G/N .
= {aN | a ∈ G} (2.4)

is a group under the operation,

aN · bN .
= (a · b)N ∀a, b ∈ G. (2.5)

G/N is called the quotient group G modulo N.

Thus, the quotient group is the group of (left) cosets of a normal
subgroup. In particular, if G is finite, we have,

|G/N| = [G : N] =
|G|
|N| , (2.6)

due to the definition of the index and Lagrange’s theorem.

Proof. In proving that G/N is a group, we will see why we need the
restriction of normal subgroups.

• First, we need to show that the group operation (2.5) is well-
defined.1 Let us fix a1, a2, b1, b2 ∈ G such that a1N = a2N and 1 By well-defined, we mean that a func-

tion maps the same input to the same
output.

b1N = b2N. We need to show a1b1N = a2b2N.
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As N contains the neutral element e, we know a1 ∈ a1N and
a2 ∈ a2N. Therefore, ∃n ∈ N. a1 = a2n and, analogously, ∃ñ ∈
N. b1 = b2ñ. We have,

a1b1 = a2nb2ñ = a2b2(b−1
2 nb2ñ).

Using that N is normal, b−1
2 nb2 ∈ N. Then, as N is a subgroup, we

also have b−1
2 nb2ñ ∈ N. This shows that a1b1N = a2b2N.

• eN = N is the neutral element.
• The group operation is closed under G/N by definition.
• (aN)−1 = a−1N clearly is the inverse of aN.

=⇒ G/N is a group.

Example 2.7: Residue classes

We will consider the quotient group Z/nZ of the group (Z,+)

for any fixed n ∈ N0. We write,

nZ
.
= ⟨n⟩ = {n · k | k ∈ Z}. (2.7)

Observe that the left cosets are of the form

a + nZ = {a + n · k | k ∈ Z}. (2.8)

They are also called residue classes modulo n.

To specify Z/nZ, we are interested in finding when
a + nZ = b + nZ holds. We have,

a + nZ = b + nZ
1.23.(b)⇐⇒ a − b ∈ nZ

1.13⇐⇒ n | a − b. (2.9)

Equivalently to n | a − b, we say that a is congruent b modulo n
(denoted a ≡ b mod n). For n > 0 this is equivalent to a and b
having the same residue r ∈ {0, 1, . . . , n − 1} when dividing by n.

From now on, we will assume n > 0. We denote elements by

a .
= a + nZ, (2.10)

where a is referred to as the representative of a. It follows that,

Z/nZ = {0, 1, . . . , n − 1}. (2.11)

By theorem 2.6, Z/nZ with the mapping “+” is a cyclic group
of order n. It is often denoted by

Zn
.
= Z/nZ = ⟨1⟩. (2.12)

As an example, consider Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. We have,
• 2 + 5 = 7,
• 2 + 6 = 8 = 0, and
• −6 = 2.
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Definition 2.8 (Cokernel). The cokernel of a homomorphism φ : G → H
is the quotient group H/ im φ.

Example 2.9: Outer automorphism group

Automorphisms that are not inner automorphisms are called
outer automorphisms. The outer automorphism group is the group
of cosets of the inner automorphism group with respect to outer
automorphisms,

Out(G)
.
= Aut(G)/Inn(G). (2.13)

Let us define the homomorphism σ : G → Aut(G), g 7→ ig. It can
be shown that
• ker σ = Z(G),
• im σ = Inn(G), and
• the cokernel of σ is Out(G) = Aut(G)/Inn(G).



3
Homomorphism and Isomorphism Theorems

In this chapter, we will discuss tools to show that two groups are
isomorphic.

Theorem 3.1 (Homomorphism Theorem). Let φ : G → H be a group
homomorphism. Then,

φ : G/ ker φ → im φ, a ker φ 7→ φ(a) (3.1)

is an isomorphism. Especially, G/ ker φ∼= im φ.

Proof.

• We will first show that φ is well-defined. For any a, b ∈ G,

a ker φ = b ker φ

⇐⇒ a−1b ∈ ker φ by lemma 1.23.(b)

⇐⇒ φ(a−1b) = eH using the definition of the kernel (1.17)

⇐⇒ φ(a)−1 φ(b) = eH using that φ is a homomorphism (1.16)

⇐⇒ φ(a) = φ(b)

⇐⇒ φ(a ker φ) = φ(b ker φ). using the definition of φ

The direction “⇒” shows that φ is well-defined. Note that “⇐”
shows that φ is injective.

• Next, we show that φ is a homomorphism. For any a, b ∈ G,

φ(a ker φ · b ker φ) = φ(ab ker φ) using the operation of the quotient
group (2.5)

= φ(ab) using the definition of φ

= φ(a) · φ(b) using that φ is a homomorphism (1.16)

= φ(a ker φ) · φ(b ker φ). using the definition of φ

• Finally, we observe that φ is surjective. That is, for any a ∈ im φ,
we have that a ker φ ∈ G/ ker φ.
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Example 3.2: Homomorphism theorem

We have already seen in example 1.29 that for any field
K, det : GLn(K) → K \ {0} is a homomorphism with
ker det = SLn(K). Thus, by the homomorphism theorem,

GLn(K)/SLn(K)∼=K \ {0}. (3.2)

Figure 3.1: Sketch of the correspon-
dence of subgroups Ui “between”
G and N and the subgroups Ui/N
“between” G/N and N/N.

Theorem 3.3 (Correspondence Theorem). The mapping,

f : {U ≤ G | N ⊆ U} → {V ≤ G/N}, U 7→ U/N, (3.3)

is an inclusion-preserving1 bijection and fore every U ≤ G,
1 We say that a mapping f : A → B
is inclusion-preserving if for any
a1, a2 ∈ A such that a1 ⊆ a2, we have
f (a1) ⊆ f (a2).

U ⊴G ⇐⇒ U/N ⊴G/N. (3.4)

A sketch of the correspondence theorem is given in fig. 3.1.

Figure 3.2: Sketch of the first isomor-
phism theorem.

Theorem 3.4 (First Isomorphism Theorem). Let U ≤ G and N ⊴G.
Then,

(a) UN ≤ G where UN .
= {x · n | x ∈ U, n ∈ N}

(b) U ∩ N ⊴U
(c) UN/N ∼=U/(U ∩ N)

A sketch of the correspondence theorem is given in fig. 3.2.

Figure 3.3: Sketch of the second isomor-
phism theorem..

Theorem 3.5 (Second Isomorphism Theorem). Let U, N ⊴G with
N ⊆ U. Then, (G/N)/(U/N)∼= G/U.
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Summary of Notation

We follow these general rules:

• lowercase italic for indices i and scalar variables a
• uppercase italic bold for matrices M
• uppercase italic for sets A

.
= equality by definition
N set of natural numbers {1, 2, . . . }
N0 set of natural numbers, including 0, N ∪ {0}
[n] set of natural numbers from 1 to n, {1, 2, . . . , n − 1, n}
Z set of integers {. . . ,−2, 1, 0, 1, 2, . . . }
R set of real numbers
C = R2 set of complex numbers
A ·∪ B disjoint union of sets A and B
f : A → B function f from elements of set A to elements of set B
a | b a is a divisor of b

groups

U ≤ G U is a subgroup of G
⟨M⟩ ≤ G for M ⊆ G, the subgroup generated by M
⟨a⟩ the cyclic group ⟨{a}⟩
o(a) order of element a, |⟨a⟩|
aU left coset of a ∈ G and U ≤ G, {a · u | u ∈ U}
Ua right coset of a ∈ G and U ≤ G, {u · a | u ∈ U}
[G : U] index of U ≤ G in G, |{aU | a ∈ G}|
ker φ kernel of homomorphism φ : G → H, {a ∈ G | φ(a) = eH} ⊆ G
im φ image of homomorphism φ : G → H, {φ(a) | a ∈ G} ⊆ H
G ∼= H G and H are isomorphic
N ⊴G N is a normal subgroup of G
a = aN the (left) coset of some a ∈ G in the context of the quotient group G/N

GLn(K) general linear group over invertible linear maps A ∈ Kn×n, det A ̸= 0
SLn(K) special linear group over volume-preserving linear maps A ∈ Kn×n, det A = 1
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Sn symmetric group over bijections on [n] (so-called permutations)
An alternating group over bijections σ on [n] with positive sign, sgn σ = 1
Z(G) center of group G, {a ∈ G | ∀x ∈ G. ax = xa}⊴G
Aut(G) automorphism group over automorphisms on G
Inn(G) inner automorphism group over inner automorphisms on G
G/N for some N ⊴G, quotient group G modulo N over (left) cosets of N
nZ = ⟨n⟩ subgroup nZ≤Z of multiples of n ∈ Z

Zn = Z/nZ quotient group Z modulo nZ, ⟨1⟩ = {0, 1, . . . , n − 1}
Out(G) outer automorphism group over cosets of the inner automorphism group and

outer automorphisms on G, Aut(G)/Inn(G)

ig inner automorphism of some conjugating element g ∈ G, ig : G → G, x → g · x · g−1
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