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An almost-linear time 
estimator of Gaussian 
probability of maximality 
that outperforms prior work 
in accuracy and runtime.

Motivation

The probability of maximality of Gaussian vectors 
occurs in Thompson sampling, entropy search, 
entropy estimation, and inverse reinforcement 
learning, but is poorly understood and very 
expensive to compute, scaling in 𝜃(|𝒳|!).

Theoretical InsightsThis box should 
contain
your ma

Contributions

1. By adopting an independence assumption on the 
Gaussian entries, we simplify to a one-
dimensional integral. 

2. To avoid costly numerical integration, we 
approximate the integrand, which is a CDF, with 
the CDF of a standard normal and fit 𝑚" and 𝑠".

• A-LITE uses quartile matching to fit the free 
parameters 𝑚" and 𝑠".

• F-LITE sets 𝑠" = 0 (extreme-value theorem) and 
uses the normalization condition to find 𝑚" = 𝜅∗.
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Figure 2: Asymptotic and empirical scaling of PoM estimators. Only LITE and F-VAPOR remain computa-
tionally feasible on large domains |X | → 1 for the convergence threshold ω ↑ !(1/|X |). The minimal gap between
F-LITE and F-VAPOR stems from evaluation of the slightly more expensive standard Gaussian cumulative
distribution function as opposed to the exponential function. Appendix D.4 details the experimental setup.

where equality holds under Assumption 1. This objec-
tive is maximized precisely by setting E to the indices
of the k largest entries of PoM, motivating our study.

The PoM is an elusive quantity: direct numerical
integration over the probability density function of F
must cover |X |-dimensional space, and Monte Carlo
integration based on n i.i.d. Thompson samples
(which we call TS-MC) converges very slowly at
rate 1/

↓
n (Moroko” and Caflisch 1995). To make

matters worse, PoM is usually rather small, scaling
inversely with |X |.5 Therefore, to yield useful approx-
imations, estimators of PoM need to be “ω-accurate”
with ω ↑ !(1/|X |), that is, they need to run until
ω-convergence to their analytical limit.

Figures 2 and 4 demonstrate that TS-MC, the
standard estimator for Gaussian PoM (Hennig
and Schuler 2012), unfortunately does not scale to
real-world domains (where |X | is often very large).
Addressing these scalability issues, in this work we
develop e#cient estimators of Gaussian PoM that rely
on the following key assumption:

Assumption 2. F is such that PoM can be reasonably
approximated assuming independent entries in F , i.e.,

px = P[Fx ↔ Fz ↗z ↘= x] ≃ p̃x = P[F̃x ↔ F̃z ↗z ↘= x]

where F ⇐ N (µF ,$F ) and F̃ ⇐ N (µF , diag($F )).

This mean-field approximation may hold by design, for
instance in large-scale inverse reinforcement learning

5
To see this, consider F : X → R as a discretization on

a regular grid of a continuous Gaussian process on [0, 1]d.
Then the existence of the PDF of X→

mandates that PoM

scale inversely to |X | as |X | → ↑. See also Appendix A.2.

such as RLHF (Christiano et al. 2017), or under a suf-
ficiently coarse discretization of a continuous Gaussian
process (Wang et al. 2016; Wang and Jegelka 2017). As
we show experimentally in Section 5, LITE e”ectively
estimates PoM in presence of dependence structure.
For further discussion on the bias introduced by As-
sumption 2, we refer the reader to Appendix B.

3 ALMOST-LINEAR TIME POM
ESTIMATION WITH LITE

We obtain the almost-linear-time estimator of PoM,
LITE, in two steps. In the remainder of this paper we
denote by ε the PDF and by % the CDF of the stan-
dard Gaussian, and defer all proofs to Appendix F.

First step. Under the independence assumption,
we consider F̃ ⇐ N (µF , diag(ϑ

2
F1
, . . . ,ϑ

2
F|X|

)) instead
of F , and obtain its PoM via

p̃x = P[F̃z ⇒ F̃x ↗z ↘= x] = E
∏

z ↑=x

P[F̃z ⇒ F̃x | F̃x]. (1)

This formulation enables us to evaluate a tractable
one-dimensional integral instead of the intractable |X |-
dimensional integral under dependency structure. We
denote the integrand of Equation (1) by

g
x(f) :=

∏

z ↑=x

P[F̃z ⇒ f ] = g(f)/P[F̃x ⇒ f ]

with g(f) :=
∏

z P[F̃z ⇒ f ]. Through reuse of evalua-
tions of g(f), it costs as much to compute (gx(fi))

n
i=1

for one x as it does for all x ↑ X . A good choice of
n+1 ↑ !(

√
log(1/ω)/ω) shared integration points then

guarantees uniformly ω-convergent predictions:

LITE: E!ciently Estimating Gaussian Probability of Maximality

0.0 0.2 0.4 0.6 0.8 1.0

|E|/|X |

0.0

0.2

0.4

0.6

0.8

1.0

E
x
p
e
c
t
e
d
R
e
c
a
ll

F-LITE

TS

MEANS

Figure 1: Selection of E → X according to the PoM
estimates using LITE is near optimal (the gray shaded
area is unachievable in expectation) and outperforms
standard heuristics such as TS or selection based on
the expected rewards (cf. Appendix D.1 for details).

reinforcement learning (Strens 2000), there has been
limited investigation into its e!cient estimation.
In practice, often Thompson sampling is used to
calculate a Monte Carlo estimate of PoM (Hennig and
Schuler 2012). We refer to this technique as TS-MC

1,
and demonstrate in Figure 2 that it becomes infeasible
on sizable domains |X | ↑ 1, preventing large-scale
real-world applications. A handful of works, which we
cover next, provide explicit methods for estimation of
PoM given a Gaussian distribution over the reward.
Figure 2 compares our solution, LITE, with these
works with respect to their computational complexity.

Avoiding a direct estimation of PoM, EST2 calculates
a lower bound to Gaussian PoM (Wang et al. 2016)
and provides a faster alternative to TS-MC. However,
as our results demonstrate, this comes at the cost
of a lower accuracy (cf. Table 1). LITE not only
outperforms EST, but also scales computationally
better to large domains.

Our approach is most closely related to a recent
result on probabilistic inference in reinforcement
learning (Tarbouriech et al. 2024) which proposed
VAPOR,3 a method for estimating sub-Gaussian
PoM. Its authors suggest numerically solving a
variational objective to obtain an approximation to
PoM. In this work, we point out an interpretable
closed-form solution to VAPOR. Furthermore, we

1
Appendix A presents a primer on TS and TS-MC.

2
EST is short for “optimization as estimation with

Gaussian processes in bandit settings”.
3
VAPOR is short for “variational approximation of the

posterior probability of optimality in RL”

demonstrate that LITE achieves a significantly more
accurate estimation of Gaussian PoM.

Our work adds to the literature on Gaussian PoM es-
timation through the following contributions:

• We introduce LITE (Linear-Time Independence-
based Estimators), a novel family of e!cient es-
timators for computing Gaussian PoM with two
variants: A-LITE and F-LITE, which are de-
signed for higher accuracy or faster runtime.

• LITE scales almost-linearly in complexity as the
domain size grows. This is enabled by our key idea
of adopting an Independence Assumption, re-
ducing the complexity by a factor of at least |X |.

• We empirically analyze the statistical accuracy,
time, and memory scaling of PoM estimation us-
ing LITE and existing baselines. LITE achieves
the pareto-optimal performance for these criteria.

2 PRELIMINARIES

We study random reward functions over large but fi-
nite action domains X , concisely expressed as random
vectors F of length |X |. These reward vectors are as-
sumed to follow a multivariate Gaussian, i.e.,

F ↓ N (µF ,”F )

with mean µF and covariance matrix ”F .
4 We let

F
→ := maxx Fx and X

→ := argmaxx Fx be its max-
imum and maximizer, respectively. We assume the
maximizer to be unique almost surely, which is satis-
fied automatically as long as F does not contain same-
mean, perfectly-correlated entries:

Assumption 1. X
→ is almost surely unique, which is

equivalently expressed as
∑

x↑X P[x ↔ X
→] = 1.

Under this model, we are interested in calculating the
probability of maximality (PoM), the probability of any
coordinate being the maximizer:

px := P[x↔X
→] = P[Fx=F

→] = P[Fx↗Fz ↘z ≃=x].

To see how px can be used, consider the recall-optimal
bandit problem, in which the goal is to find a set of k
arms E → X that maximizes the expected recall (true
positives of maximizers). In other words, we solve

argmax
E↓X :|E|=k

P[X→
↔ E] = argmax

E↓X :|E|=k

∑

x↑E

px,

4
As we suggest in Section 6, the Gaussian assumption

may be relaxed to all Lévy alpha-stable distributions.
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Synthetic Distributions 1-dim GP 2-dim GP (E.2) DropWave (E.3) Quadcopter

EST 11.54± 0.20 45.6± 2.7 15.1± 1.2 5.17± 0.64 14.3± 2.0
VAPOR 9.89± 0.11 37.0± 2.0 15.7± 1.0 5.70± 0.72 17.2± 2.5
F-LITE (ours) 4.65± 0.08 13.7± 1.0 10.9± 0.7 4.87± 0.60 11.1± 1.4
A-LITE (ours) 3.76± 0.06 14.1± 1.0 7.5± 0.5 4.32± 0.53 8.7± 0.9

Indep. Assum. 0.00± 0.00 6.7± 0.4 6.6± 0.2 3.85± 0.54 9.0± 1.0

Table 1: Mean and standard error of TV distance (averaged across |X | and BO-steps) in percentage %. A-LITE

and F-LITE consistently outperform competing e!cient PoM estimators from the literature. The Indepen-

dence Assumption is provided as an expensive baseline, since all considered e!cient estimators build on it.

the variational objective

V(p) =
∑

x→X
px ·

(
µFx +

√
2 ln(1/px) · ωFx

)
(6)

on the probability simplex to estimate PoM. To
solve Equation (6), they use Frank-Wolfe (Jaggi 2013;
Lacoste-Julien and Jaggi 2015) with k → ”(ε↑5

|X |
4)

steps to ensure V(p↓) ↑ V(p) ↓ ε with no bounds on
↔p

↓
↑p↔↔ (Bolte et al. 2023). Instead, we derive a pre-

viously unknown near closed-form solution toVAPOR

whose iterates converge exponentially at a linear rate:

Proposition 5 (Fast VAPOR). The maximizer to
Equation (6) on the probability simplex admits the
closed-form expression

vx := v

(
µFx ↑ ϑ

↓

ωFx

)
with ϑ

↓ s.t.
∑

x

vx = 1,

where v(c) := exp(↑(
√

c2 + 4↑ c)2/8).

Moreover, to find ϑ
↓ we can use binary search with

k → ”(log(
√
log |X |/ε)) iterations, ensuring that the

k-th iterate v
k satisfies ↔v

↓
↑ v

k
↔↔ < ε.

Note the similarity to F-LITE: we have only replaced
# by the sigmoidal v. As such, Algorithm 1 is easily
adapted to obtain a novel almost-linear-time imple-
mentation of VAPOR, which we call F-VAPOR.

5 EXPERIMENTS

Next, we compare the PoMs estimated by A-LITE

and F-LITE against the e!cient baselines EST and
VAPOR. We measure the total variation distance to
the “ground truth” PoM obtained via expensive TS-

MC as well as the root mean squared relative error
on the down-stream task of entropy estimation. The
Independence Assumption is computing an asymp-
totically exact estimate under Assumption 2, which
we report as a (up to significance) error lower bound
for independence-based PoM estimators. The code is
available at https://github.com/lasgroup/LITE.

5.1 PoM Estimation

To compare PoM estimators in various settings (for
various (µF ,$F )), we rely on synthetic distributions
as well as posteriors produced during Bayesian opti-
mization. Table 1 provides a summary of our results.

Synthetic distributions. We obtain a set of
synthetic (µF ,ωF ) by independently sampling
µFx ↗ U([0, 5]) and ωFx ↗ U([1/2, 10]) for all x. We
employ Proposition 1 for the ground-truth PoM, i.e.,
estimation under the Independence Assumption.
Figure 3a shows how A-LITE and F-LITE signif-
icantly outperform VAPOR and EST. We remark
that estimation of PoM seems to become easier on
large domains. We suspect that more repetition in µF

and ωF leads to a more uniform PoM that is easier to
estimate. Similar results on alternative distributions
over µF ,ωF are provided in Appendix E.1.

Samples from a Gaussian process. Figure 3b
shows the total variation distance between a ground-
truth estimate using TS-MC and the PoM of the var-
ious estimators. The posteriors are derived from cali-
brated Bayesian optimization with ftrue sampled from
a squared exponential prior on a one-dimensional do-
main. A-LITE and F-LITE outperform VAPOR

and EST by a large margin. F-LITE becomes most
accurate at late stages of optimization, once F

↓ be-
comes quite concentrated. The details of the experi-
mental setup are in Appendix D.5.

DropWave function. In practice, Bayesian opti-
mization is run on a single test function and cali-
brated through marginal likelihood maximization of
the prior parameters. Figure 4 demonstrates the ac-
curacy/runtime operating points according to the vari-
ous considered PoM estimators under di%erent choices
of the convergence parameter ε = 1/(ϖ · |X |). Here,
ftrue is set to the drop-wave function, notorious for its
di!culty in Bayesian optimization, quantized to 625
points. Given su!cient compute, consistent estima-
tion through TS-MC is recommended. However, as
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1-dim GP 2-dim GP (E.2) DropWave (E.3) Quadcopter

EST 215.5 (195.4, 233.9) 36.3 (27.5, 43.3) 5.4 (4.9,5.8) 3.4 (2.9,3.9)
VAPOR 169.4 (158.4, 179.7) 33.7 (26.9, 39.4) 8.2 (5.9, 10.0) 3.8 (3.4, 4.2)
F-LITE (ours) 35.9 (34.7,37.0) 12.4 (10.8,13.9) 5.3 (4.8,5.7) 2.6 (1.9,3.2)
A-LITE (ours) 44.9 (42.8, 47.0) 11.0 (9.5,12.4) 4.7 (4.2,5.1) 3.0 (2.4,3.5)

Indep. Assum. 18.4 (17.8, 18.9) 4.9 (4.4, 5.4) 4.6 (4.2, 5.1) 2.4 (1.6, 3.0)

Table 2: Empirical root mean squared relative error of entropy in percentage % (along with confidence bands).
A-LITE and F-LITE consistently outperform competing e!cient estimators of PoM. The confidence bands
correspond to the square root of mean ± standard error of the squared relative error (averaged across BO-steps).

across multiple seeds of optimization, defined as

√√√√ 1

m

m∑

i=1

(
H[E | Di]→H[X→ | Di]

H[X→ | Di]

)2

.

The ground-truth H[X→
| D

i] is estimated based on
expensive TS-MC, whereas H[E | D

i] denotes the en-
tropy estimation according to the PoM estimator at
hand. The relative error is a natural performance cri-
terion, ensuring normalization across di”erent stages
of optimization and across various ground-truths ftrue.

As Table 2 demonstrates, the entropy of X→ can be
faithfully estimated based on the Independence As-

sumption. Whereas the two variants of LITE re-
main competitive with the Independence Assump-

tion, VAPOR and EST are often much worse in their
estimation of entropy. Here, the experimental setups
correspond to Section 5.1. In particular, the 1-dim
GP experiment is described in Appendix D.5, the 2-
dim GP experiment in Appendix E.2, DropWave in
Appendix E.3, and Quadrotor in Appendix D.6.
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Figure 5: Entropy Search with LITE admits better
computational and statistical e!ciency than with TS-

MC. We describe the setup in Appendix D.2.

5.3 Applications of PoM Entropy Estimation

Entropy Search (Hennig and Schuler 2012) is a
widely used strategy in Bayesian optimization, which
queries the reward at the point x ↑ X promising

(in expectation) the largest reduction in entropy of
Gaussian PoM. In Figure 5, we run calibrated Entropy
Search on a 1-dimensional Gaussian process with
squared exponential kernel, discretized to a domain
of size |X | = 250. Simply replacing the standard
PoM estimator (TS-MC) with LITE results in
significantly shorter runtimes and better optimization
trajectories, already for moderately large domains X .
This indicates that LITE can be used to markedly
improve the scalability of Entropy Search.

Finally, through its almost-linear time and memory
complexity, the estimation of PoM entropy with LITE

can be used to better understand the state of Bayesian
optimization in large-scale settings where previous ap-
proaches for PoM entropy estimation would become
intractable. To capture such a large-scale setting, we
consider an objective ftrue set to a hyperplane in 1‘000
dimensions sampled to a finite domain with |X | =
10‘000 points. On an NVIDIA A100 GPU, compared
to the Independence Assumption and thus alsoTS-

MC, LITE reduces computation time from 21 days to
30 seconds. We describe details in Appendix D.3.

6 FUTURE WORK

Generalization of LITE. The developed method-
ology can be extended to distributions other than
Gaussians. In fact, the Independence Assumption

has a generalization to arbitrary distributions in the
form of Proposition 8 in Appendix F. Moreover, the
variational approximation of LITE, which allows ana-
lytical integration, can be extended to any Lévy alpha
stable distribution: let P[Fx ↓ f ] = G((f → µFx)/ωFx)
for a stable G, then approximating g

x(f) with G((f →

mx)/sx) results in an analytical expression for PoM.
Together, this indicates that LITE can be generalized
to a much larger class of distributions than just Gaus-
sians. In this work, we emphasize Gaussians due to
their ubiquity across many applications domains and
leave a more general analysis to future work.
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Figure 11: PoM entropy estimation with LITE allows tracking the state of large-scale Bayesian optimization.
On an NVIDIA A100 GPU, LITE reduces time of computation from more than 21 days to 30 seconds.

D.4 Figure 2

We densely discretise the drop-wave function ftrue(x1, x2) := (1 + cos(12
√

x
2
1 + x

2
2))/((x

2
1 + x

2
2)/2 + 2) on the

rectangle [→5, 4]2 using a grid with 3002 = 90→000 nodes. To obtain di!erent domain sizes, we subsample the grid
uniformly at random (without repetition). Next, we run Bayesian optimisation using the expected improvement
(over best observation) acquisition function. The posterior is derived based on a Gaussian process prior fitted at
each step with marginal likelihood maximisation (we fit the length scale and amplitude of a Matern 5/2 kernel,
the constant mean function, and ωnoise). To jump start the kernel selection, we make 50 random observations
prior to starting Bayesian optimisation. We assume additive centred Gaussian noise with ωnoise = 0.1. We
report on the mean and standard deviation of the runtime averaged across 100 steps of Bayesian optimisation
for 5 seeds. All estimators use ε = 1. We cancel runs exceeding a computational budget of 6 hours (216 seconds
per step), which is why TS-MC and EST do not have values at all time steps.

D.5 Figure 3b

ftrue is sampled from a centred Gaussian process GP with squared-exponential kernel (length scale 0.005, am-
plitude 1.0) on the interval [0, 1] discretised with |X | = 300 points. The prior belief over ftrue coincides with
GP. A Bayesian optimisation scheme according to Thompson sampling is run for 200 steps with observations
Yx = ftrue(x) + ϑ for i.i.d. ϑ ↑ N (0, 0.12). All estimators are ensured to converge to within ϖ = 1/(10 · |X |)
of their analytical expressions. We report on the mean and standard error of TV-distance to the ground-truth
PoM (estimated using TS-MC) based on 50 di!erent seeds of optimisation. Figure 12 illustrates the setup along
with a possible set of estimated PoMs.

(a) Example ftrue with associated p(f |D) and ωTS(x;D)

after 20 queries to ftrue.
(b) P[x → X→|D] according to di!erent PoM estimators

after 20 queries to example ftrue

Figure 12: Illustration of the setup for Figure 3b.
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Here, hx is a sensitivity factor. Equations (3) and (4)
are remarkably interpretable: increasing µFz renders z
a more likely and x →= z a less likely maximizer. More-
over, increasing ωFz renders z a more likely and x →= z

a less likely maximizer if qz < 0.5 (here uncertainty
helps), otherwise z becomes a less likely and x →= z a
more likely maximizer.

Balancing two sources of exploration. E!cient
exploration is a key challenge in many domains of ma-
chine learning, including Bayesian optimization and
reinforcement learning. The necessity for exploration
in optimization arises when we are uncertain about
the rewards of actions. In estimation of PoM, we
face the same challenge: a faithful estimate of PoM
needs to account for what we do not know, and as-
sign a larger PoM to points with low mean and large
variance than to points with low mean and low vari-
ance. Remarkably, we show in the following that
F-LITE can be seen as a combination of two com-
mon exploration-inducing approaches: optimism in
the form of an upper-confidence bound (Garnett 2023;
Jones 2001; Srinivas et al. 2010; Vanchinathan et al.
2015; Chen et al. 2017), short UCB, and entropy reg-
ularization (Ziebart 2010; Neu et al. 2017; Geist et al.
2019; Mnih et al. 2016; Haarnoja et al. 2018).

Proposition 4. Define the variational objective

W(p) :=
∑

x→X
px ·

(
µFx +

√
2Ĩ(px) · ωFx︸ ︷︷ ︸

exploration bonus

)
, (5)

with the quasi-surprisal Ĩ(u) := (ε(”↑1(u))/u)2/2.
Then the maximizer of W among elements of the prob-
ability simplex is given by F-LITE, i.e., by q with

qx := ”

(
µFx ↑ ϑ

↓

ωFx

)
with ϑ

↓ s.t.
∑

x

qx = 1.

The quasi-surprisal Ĩ(·) behaves similarly to the sur-
prisal ↑ ln(·), a key quantity in information the-
ory (Cover 1999). In fact, their asymptotics coincide:

Ĩ(1) = 0 = ↑ ln(1) and Ĩ(u) ↓ ↑ lnu as u ↔ 0+.

The objective from Equation (5) is maximized for
those probability distributions p that are concen-
trated around points with large mean µFx and points
with large exploration bonus. The uncertainty ωFx

about Fx is the standard exploration bonus of UCB
algorithms. In Equation (5), ωFx is weighted by the
quasi-surprisal, which acts as entropy regularization:
it increases the entropy of p by uniformly pushing px

away from zero. The variational objective suggests
that Thompson sampling (Thompson 1933; Russo
and Van Roy 2016; Russo et al. 2018; Chapelle and Li
2011), i.e., sampling from PoM, achieves exploration
through two means:

1. Optimism: by preferring points with large un-
certainty ωFx about the reward value Fx.

2. Decision uncertainty: by assigning some prob-
ability mass to all x, that is, by remaining uncer-
tain about which x is the maximizer.

Interestingly, the recall task from Figure 1 is solved
by choosing actions with highest PoM. Contrary to
initial intuition, the good performance of LITE in
the recall task indicates that optimism and decision
uncertainty, normally associated with exploration, are
also useful for pure exploitation.

4 LANDSCAPE OF POM
ESTIMATION

Motivated by the intimate relation between PoM esti-
mation in the form of F-LITE and decision-making,
we next connect PoM to several methods developed
for Bayesian optimization and reinforcement learning.

Probability of improvement. F-LITE measures
the probability of improvement over the normalizing
threshold ϑ

↓: qx := ”((µFx ↑ ϑ
↓)/ωFx) = P[Fx ↗ ϑ

↓].
Similarly, the true PoM can be seen as measuring
a probability of improvement: px = P[Fx ↗ F

↓].
By comparing the two expressions, the normalizing
threshold in F-LITE can be understood as a de-
terministic surrogate for the maximum. Probability
of improvement is widely known as an acquisition
function in Bayesian optimization (Kushner 1964;
Garnett 2023; Jones 2001; Žilinskas 1992), with the
threshold ϑ

↓ typically set to the best observation.

Estimating the maximum reward value. The
EST(-imate) algorithm (Wang et al. 2016) proposes
to approximate Gaussian PoM with its lower bound

p̃x ↘
P[F̃x ↗ ϑ̃]

1↑ P[F̃x ↗ ϑ̃]

∏
z→X

P[F̃z ≃ ϑ̃],

where ϑ̃ = E[F̃ ↓] with F̃ ↓ N (µF , diag(#F )). It
then directly uses this lower bound as an acquisition
function for Bayesian optimization. With the denom-
inator being usually close to 1, EST corresponds to a
globally rescaled F-LITE, but using the expectation
of F̃

↓ instead of the normalizing threshold ϑ
↓ as a

surrogate for the maximum. In our experiments, we
linearly normalize the PoM predicted by EST to sum
to 1, creating a stronger baseline for us to beat.

UCB + entropy regularization. In analogy
to our variational formulation of F-LITE, VA-

POR (Tarbouriech et al. 2024) proposes to maximize
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Figure 2: Asymptotic and empirical scaling of PoM estimators. Only LITE and F-VAPOR remain computa-
tionally feasible on large domains |X | → 1 for the convergence threshold ω ↑ !(1/|X |). The minimal gap between
F-LITE and F-VAPOR stems from evaluation of the slightly more expensive standard Gaussian cumulative
distribution function as opposed to the exponential function. Appendix D.4 details the experimental setup.

where equality holds under Assumption 1. This objec-
tive is maximized precisely by setting E to the indices
of the k largest entries of PoM, motivating our study.

The PoM is an elusive quantity: direct numerical
integration over the probability density function of F
must cover |X |-dimensional space, and Monte Carlo
integration based on n i.i.d. Thompson samples
(which we call TS-MC) converges very slowly at
rate 1/

↓
n (Moroko” and Caflisch 1995). To make

matters worse, PoM is usually rather small, scaling
inversely with |X |.5 Therefore, to yield useful approx-
imations, estimators of PoM need to be “ω-accurate”
with ω ↑ !(1/|X |), that is, they need to run until
ω-convergence to their analytical limit.

Figures 2 and 4 demonstrate that TS-MC, the
standard estimator for Gaussian PoM (Hennig
and Schuler 2012), unfortunately does not scale to
real-world domains (where |X | is often very large).
Addressing these scalability issues, in this work we
develop e#cient estimators of Gaussian PoM that rely
on the following key assumption:

Assumption 2. F is such that PoM can be reasonably
approximated assuming independent entries in F , i.e.,

px = P[Fx ↔ Fz ↗z ↘= x] ≃ p̃x = P[F̃x ↔ F̃z ↗z ↘= x]

where F ⇐ N (µF ,$F ) and F̃ ⇐ N (µF , diag($F )).

This mean-field approximation may hold by design, for
instance in large-scale inverse reinforcement learning

5
To see this, consider F : X → R as a discretization on

a regular grid of a continuous Gaussian process on [0, 1]d.
Then the existence of the PDF of X→

mandates that PoM

scale inversely to |X | as |X | → ↑. See also Appendix A.2.

such as RLHF (Christiano et al. 2017), or under a suf-
ficiently coarse discretization of a continuous Gaussian
process (Wang et al. 2016; Wang and Jegelka 2017). As
we show experimentally in Section 5, LITE e”ectively
estimates PoM in presence of dependence structure.
For further discussion on the bias introduced by As-
sumption 2, we refer the reader to Appendix B.

3 ALMOST-LINEAR TIME POM
ESTIMATION WITH LITE

We obtain the almost-linear-time estimator of PoM,
LITE, in two steps. In the remainder of this paper we
denote by ε the PDF and by % the CDF of the stan-
dard Gaussian, and defer all proofs to Appendix F.

First step. Under the independence assumption,
we consider F̃ ⇐ N (µF , diag(ϑ

2
F1
, . . . ,ϑ

2
F|X|

)) instead
of F , and obtain its PoM via

p̃x = P[F̃z ⇒ F̃x ↗z ↘= x] = E
∏

z ↑=x

P[F̃z ⇒ F̃x | F̃x]. (1)

This formulation enables us to evaluate a tractable
one-dimensional integral instead of the intractable |X |-
dimensional integral under dependency structure. We
denote the integrand of Equation (1) by

g
x(f) :=

∏

z ↑=x

P[F̃z ⇒ f ] = g(f)/P[F̃x ⇒ f ]

with g(f) :=
∏

z P[F̃z ⇒ f ]. Through reuse of evalua-
tions of g(f), it costs as much to compute (gx(fi))

n
i=1

for one x as it does for all x ↑ X . A good choice of
n+1 ↑ !(

√
log(1/ω)/ω) shared integration points then

guarantees uniformly ω-convergent predictions:

LITE: E!ciently Estimating Gaussian Probability of Maximality

Informal Proposition 1 (Formalized in Proposi-

tion 1). Let ω → (0, 1/4]. With n+1 → !(
√

log(1/ω)/ω)
appropriately set integration points f0, . . . , fn → R ↑

{±↓}, we estimate Gaussian PoM ↔x → X by

q̃x :=
n→1∑

i=0

g
x(fi+1) + g

x(fi)

2
P[F̃x→(fi, fi+1]].

It then holds for all x → X that |p̃x ↗ q̃x|↘ω.

The shared integrand g(f) is computed in !(|X |) for
a single integration point. So, under the independence
assumption, consistent estimation of PoM can be per-
formed in just !(|X |

√
log(1/ω)/ω), our first significant

runtime improvement over TS-MC.

Second step. To remove the linear scaling in 1/ω
that stems from numerical integration, we propose to
approximate g

x(f) with the CDF of a Gaussian:

g
x(f) =

∏

z ↑=x

”

(
f ↗ µFz

εFz

)
≃ ”

(
f ↗mx

sx

)
.

Under this variational approximation, we can solve the
integral of Equation (1) in closed-form:

p̃x = E[gx(F̃x)] ≃ E”
(
F̃x ↗mx

sx

)
= ”

(
µFx ↗mx√
ε
2
Fx

+ s2x

)
.

(2)
Both variants of LITE rely on Equation (2), but di#er
in how they approximate g

x, i.e., in how they deter-
mine the free variables mx and sx:

• A-LITE uses nested binary search to match the
quartiles of ”(( · ↗mx)/sx) to those of gx.

• F-LITE sets sx = 0 and leverages Assumption 1
to find a shared normalizing threshold mx = ϑ

↓.

In the following, we focus our exposition on the “fast”
(and simpler) variant F-LITE, even though we find in
our experiments that the “accurate” variant A-LITE

tends to be the more faithful estimator. We include a
detailed discussion of A-LITE in Appendix C.

3.1 Fast LITE

F-LITE approximates the Gaussian PoM in Equa-
tion (2) with sx = 0, which is suggested by concentra-
tion of measure of the maximum,6 and leverages As-
sumption 1 to find a shared normalizing threshold ϑ

↓:

p̃x ≃ qx := ”

(
µFx ↗ ϑ

↓

εFx

)
with ϑ

↓ s.t.
∑

x

qx = 1.

6
Proposition 9 in Appendix F shows that the distribu-

tion of the maximum concentrates as |X | → ↑.

Algorithm 1 F-LITE

Require: µF ,εF , ω

ϑlow ⇐ µ
min
F + ε

min
F ·↗”→1(1/|X |)

ϑup ⇐ µ
max
F + ε

max
F ·↗”→1(1/|X |)

max-error ⇐ ω

while max-error ⇒ ω do
ϑ ⇐

1
2ϑup +

1
2ϑlow

s ⇐

∑
x↔X

”(
µFx ↗ ϑ

εFx

)

if s > 1 then ϑlow ⇐ ϑ else ϑup ⇐ ϑ

max-error ⇐ max
x↔X

”(
µFx -ϑlow

εFx

)↗ ”(
µFx -ϑup

εFx

)

end while

qx ⇐
1
2”(

µFx ↗ ϑlow

εFx

) + 1
2”(

µFx ↗ ϑup

εFx

) ↔x → X

return (qx/
∑

z↔X
qz)x↔X

Here, ϑ↓ can be found e$ciently using binary search.
We summarize F-LITE in Algorithm 1. The bound-
aries of the binary search window and the implied
complexity is derived in the following proposition:

Informal Proposition 2 (Formalized in Proposi-
tion 2). Observe that

∑
x↔X ”((µFx ↗ ϑ)/εFx) is con-

tinuous and monotonically decreasing in ϑ. We deter-
mine bounds ϑlow,ϑup on ϑ

↓ such that ϑup ↗ ϑlow →

!(
√

log |X |). Therefore, with ϑ
k the k-th iterate of bi-

nary search and k → !(log(log(|X |)/ω)) it holds for all
x → X that |P[Fx ⇒ ϑ

↓]↗ P[Fx ⇒ ϑ
k]| ↘ ω.

Each iteration of binary search requires summing the
entries qx, and therefore the compute cost of F-LITE

is almost-linear at !(|X | log(log(|X |)/ω)) operations.
This provides us with an e$cient PoM estimator that
can be applied to real-world tasks with large domains.

3.2 Properties of F-LITE

Di!erentiability. F-LITE admits a closed-form
expression for the derivatives of the estimated PoMs
w.r.t. the parameters µF and εF of the Gaussian re-
ward vector. Such derivatives are essential for the use
of PoM estimates as data likelihoods in machine learn-
ing. For example, the likelihood of k-option prefer-
ence feedback (a case of inverse RL) is measured by
PoM (Christiano et al. 2017; Bradley and Terry 1952;
Thurstone 1927), and derivatives are key to end-to-end
learning of such preferences.

Proposition 3. Let hx := ϖ

(
µFx ↗ ϑ

↓

εFx

)
1

εFx

. Then

dqx

dµFz

= hx ·

(
1x=z ↗

hz∑
w↔X hw

)
(3)

dqx

dεFz

= hx ·

(
1x=z ↗

hz∑
w↔X hw

)
·
ϑ
↓
↗ µFz

εFz

. (4)

(2)


