LITE : Efficiently Estimating Gaussian Probability of Maximality

 10^{1}

otter¹, Parnian Kassraie¹, Andreas Krause¹

¹ ETH Zürich

earning &

expel

 10^{2} 10^{3} 10^{4} domain size $|\mathcal{X}|$

 10^{5}

Contributions

in accuracy and runtime.

- By adopting an *independence assumption* on the Gaussian entries, we simplify to a onedimensional integral.
- 2. To avoid costly numerical integration, we approximate the integrand, which is a CDF, with the CDF of a standard normal and fit m_{χ} and s_{χ} .

$$\tilde{p}_{x} = \mathbb{P}[\tilde{F}_{z} \leq \tilde{F}_{x} \ \forall z \neq x] = \mathbb{E} \prod_{z \neq x} \mathbb{P}[\tilde{F}_{z} \leq \tilde{F}_{x} \mid \tilde{F}_{x}].$$
(1)
$$\approx \mathbb{E}\Phi\left(\frac{\tilde{F}_{x} - m_{x}}{s_{x}}\right) = \Phi\left(\frac{\mu_{F_{x}} - m_{x}}{\sqrt{\sigma_{F_{x}}^{2} + s_{x}^{2}}}\right)$$
(2)

A-LITE uses quartile matching to fit the free

Theoretical Insights

Proposition 4. Define the variational objective

$$\mathcal{W}(p) := \sum_{x \in \mathcal{X}} p_x \cdot \left(\mu_{F_x} + \underbrace{\sqrt{2\tilde{I}(p_x)} \cdot \sigma_{F_x}}_{exploration \ bonus} \right), \quad (5)$$

with the quasi-surprisal $I(u) := (\phi(\Phi^{-1}(u))/u)^2/2$. Then the maximizer of \mathcal{W} among elements of the probability simplex is given by F-LITE, i.e., by q with

parameters m_{γ} and s_{γ} .

• F-LITE sets $s_{x} = 0$ (extreme-value theorem) and uses the normalization condition to find $m_{\chi} = \kappa^*$.

	Synthetic Distributions	1-dim GP	2-dim GP(E.2)	DropWave $(E.3)$	Quadcopter
EST	11.54 ± 0.20	45.6 ± 2.7	15.1 ± 1.2	5.17 ± 0.64	14.3 ± 2.0
VAPOR	9.89 ± 0.11	37.0 ± 2.0	15.7 ± 1.0	5.70 ± 0.72	17.2 ± 2.5
F-LITE (ours)	4.65 ± 0.08	13.7 ± 1.0	10.9 ± 0.7	4.87 ± 0.60	11.1 ± 1.4
A-LITE (ours)	3.76 ± 0.06	14.1 ± 1.0	7.5 ± 0.5	4.32 ± 0.53	8.7 ± 0.9
INDEP. ASSUM.	0.00 ± 0.00	6.7 ± 0.4	6.6 ± 0.2	3.85 ± 0.54	9.0 ± 1.0