Local Mixtures of Experts: Essentially Free Test-Time Training via Model Merging

ETHZÜrich

Ryo Bertolissi*, Jonas Hübotter*, Ido Hakimi, Andreas Krause

Background

- Goal: Use a specialized model, tailored to each prompt.
- Problem: Test-time training is expensive.

Can we realize the gains of TTT without almost any of its inference overhead?

Contributions

- We propose **TTMM**, which combines MoEs with model merging to approx. TTT.
- At train-time, TTMM clusters the training data and trains separate experts.
- At test-time, TTMM selects best experts via a sparse cross-attention router and merges experts in a single local expert.

 We show that TTMM significantly improves language modeling without almost any increase in inference cost.

Test-time training improves LLMs, but is expensive.

Test-Time Model Merging (ттмм) approximates test-time training w/o increased inference cost by merging experts at test-time.

Details

TTMM approximates TTT in 3 steps:

- 1. Fewer amortized experts
- 2. Summarizing experts via their centroids
- 3. Merging multiple experts

Details:

Corpora: Wikipedia, Github (Python) Models: Llama-3.2-1B, Qwen2.5-1.5B #Experts: 10, 100 (best), 1000

Train-time scaling

Inference cost:

TTMM with 10 active experts has constant overhead of 115ms, a 125x speedup over the 15s overhead of TTT. (with Llama-3.2-1B)

Is merging helpful? Varying the temp of the cross-attention, we see

the tradeoff for *locality*:

- Too narrow: single expert
- Too diverse: no benefit

Algorithm 2 TTMM at test-time

Require: Prompt x^* with embedding ϕ^* . Language model $f(x; \theta)$ with pre-trained weights θ ; expert models $\{(\boldsymbol{\theta}_k, \boldsymbol{\phi}_k)\}_{k=1}^K$; temperature β and sparsity τ (tuned on holdout data).

- 1: Compute cluster-specific merging coefficients: $w_k \leftarrow \text{sparse-softmax}_{\tau} \left(\frac{1}{\beta} \boldsymbol{\phi}_k^{\top} \boldsymbol{\phi}^{\star} \right)$
- 2: Merge into a single expert model: $\boldsymbol{\theta}^{\star} \leftarrow \sum_{k=1}^{K} w_k \boldsymbol{\theta}_k$
- 3: Use $f(x^*; \theta^*)$ to generate the next token.

