Maximizing Prefix-Confidence at Test-Time Efficiently Improves Mathematical Reasoning ETHzürich Matthias Otth, Jonas Hübotter, Ido Hakimi, Andreas Krause ## Background - Goal: Improve at reasoning by leveraging the models "confidence" about its attempts. - **Problem:** BoN sampling on full attempts is expensive & unreliable due to <u>length biases</u>. Can LLMs <u>reliably</u> self-improve at test-time without relying on a verifier or reward? ### Contributions - We propose **Test-Time Prefix-Confidence** scaling, which samples N prefixes of length K, and then completes the prefix about which the model is most confident. - Compared to majority voting and BoN ("confidence voting" on full attempts), prefix-confidence scaling achieves a better accuracy-compute trade-off. #### Confidence measures: - Self-consistency / majority voting - Baseline requiring full attempts - Self-certainty $$\frac{1}{n} \sum_{i=1}^{n} KL(Unif || \pi(y_i | x, y_{< i}))$$ Self-confidence (performs best) $$\log \pi(y \mid x) = \sum_{i=1}^{n} \log \pi(y_i \mid x, y_{< i})$$ LLMs improve at mathematical reasoning when continuing only their most confident prefixes. #### Details Model: Qwen2.5-Math-1.5B-Instruct N: {8,16,32}, K: 32 (seems relatively robust to these) | | | GSM8K | MATH500 | AMC23 | AIME24 | AIME25 | avg | time (s) | |-------------------------|--|--|--|----------------------------------|--|--|--|-------------------------| | Base | | 84.6 | 73.6 | 55.0 | 10.0 | 13.3 | 47.3 | 10.68 | | BoN@8 | self-confidence
self-certainty | 83.0 ± 0.3
83.8 ± 0.4 | $71.3{\pm}0.4$ $71.8{\pm}0.3$ | $48.0{\pm}1.4$ $49.8{\pm}1.1$ | 10.3 ± 0.9
11.7 ± 0.9 | 8.3±1.9
8.7±1.6 | $44.2 \pm 0.5 \ 45.2 \pm 0.4$ | 85.43 | | BoN@16 | self-confidence
self-certainty | $82.0{\pm}0.2\\83.0{\pm}0.2$ | $69.7{\pm}0.2\\70.2{\pm}0.4$ | $44.8{\pm}1.2\\47.5{\pm}1.4$ | $9.0{\pm}1.3$
$9.7{\pm}1.0$ | $5.3{\pm}0.9$ $6.3{\pm}1.8$ | $42.2{\pm}0.4\\43.3{\pm}0.5$ | 170.86 | | Maj@2
Maj@4
Maj@8 | self-consistency
self-consistency
self-consistency | 86.7 ± 0.4
87.5 ± 0.2
88.9 ± 0.2 | 73.7 ± 0.6 74.4 ± 0.2 74.9 ± 1.1 | | $10.3{\pm}1.4 \\ \underline{14.0}{\pm}1.0 \\ \underline{16.7}{\pm}0.7$ | 10.0 ± 3.3 16.7 ± 1.9 15.6 ± 1.1 | 48.0 ± 0.8
50.5 ± 0.7
51.1 ± 0.7 | 21.36
42.72
85.43 | | PC@8 | self-confidence
self-certainty | 84.9 ± 0.2
86.0 ± 0.2 | 73.2 ± 0.1
73.3 ± 0.2 | $\frac{58.0}{56.3} \pm 0.4$ | $\underline{16.0} \pm 0.4$
$\underline{16.0} \pm 0.7$ | $\frac{16.3}{13.3}\pm0.3$ | $\frac{49.7}{49.0}$ ± 0.2 | 14.52 | | PC@16 | self-confidence
self-certainty | 85.1 ± 0.1
86.4 ± 0.2 | $73.4{\pm}0.1$
$73.0{\pm}0.2$ | 58.8 ± 0.7
57.3 ± 0.6 | $\frac{16.7}{16.7} \pm 0.0$ | $\frac{16.7}{13.3} \pm 0.0$ | $\underline{50.1} \pm 0.1$
$\underline{49.3} \pm 0.1$ | 18.89 | | PC training | NLL (4)
entropy (5) | 85.8 ± 0.2
85.3 ± 0.3 | $\frac{74.1}{75.2} \pm 0.2$ | 59.3±1.1
57.5±1.1 | $\frac{11.7}{13.3} \pm 0.9$ | $11.7{\pm}1.4\\12.7{\pm}0.8$ | $\frac{48.5}{48.8} \pm 0.4$ | 30.87 |