
CS-461 
Foundation Models and
Generative AI

Jonas Hübotter and Andreas Krause, Fall Semester 2025/26

Adaptation, Fine-Tuning, and Test-Time Training

CS-461 · Foundation Models and Generative AI

Our aim for today

17

Typically two different regimes:

• train-time: foundation model is trained on a (wide) distribution of tasks

• test-time: foundation model is given a particular task to solve

Task-specific learning today:

1. models are “manually” fine-tuned to a (narrow) distribution of downstream

tasks (but then kept static)

2. models learn from context, but only over very short horizons

• We will focus on autoregressive models

• Our aim: “adding memory” to enable extensive learning at test-time

we'll focus on task-specific learning

1 Scaling attention to long sequences

2 What data to learn from at test-time?

CS-461 · Foundation Models and Generative AI

Key concept: Self-Attention

• When autoregressively generating , self-attention “attends” to patterns (values) in
previous tokens by matching the current query with previous keys

• Naively computing at every step has per-step latency

The solution: KV Caching

• Compute only the new from

• Append to the cached (in VRAM) to form the new

p(xt ∣ x<t) V<t
qt K<t

K<t, V<t O(T2)

qt, kt, vt xt

kt K<t K≤t

Scaling attention to long sequences

19

Attention(qt; K<t, V<t) = softmax (qtK⊤
<t

dK) V<t

very slow!

per-step latency is with parallel key-lookupO(1)

kt = θKxt

qt = θQxt

vt = θV xt

Legend

CS-461 · Foundation Models and Generative AI

The problem: KV cache size grows linearly with sequence length

• For long sequences, the memory required for the KV cache quickly exceeds the size of model!

• At large sequences, the KV cache dominates VRAM long-context is memory-bound!

T

→

The memory bottleneck

20

Example (Llama 7B): 32 layers, hidden dimension 4096, 16-bit precision

At 32k context, the KV cache is already larger than model weights!

14.0 GBmodel weights (constant)

1.1 GBKV cache @ T=2048

17.2 GBKV cache @ T=32,768

52.4 GBKV cache @ T=100,000

CS-461 · Foundation Models and Generative AI

The KV cache in a transformer is a type of memory, but a memory that grows with time

• Let’s look once more at attention…

• We can think of “attention” as a memory that can be learned from “dataset” !{(ks, vs)}t
s=1

The memory view of transformers

21

Attention(qt; K<t, V<t) = softmax (qtK⊤
<t) V<t =

t

∑
s=1

ws vs, ws ∝ ek⊤
s qt (dK = 1)

attention prescribes a particular way of estimating a memory!
Background: Kernel regression

A standard estimator from statistics is the Nadaraya-Watson estimator:

 self-attention is kernel regression with kernel → k(qt, ks) = ek⊤
s qt

̂y(x) =
n

∑
i=1

wiyi, wi ∝ k(x, xi)
Examples:
• Nearest neighbor estimation: is a one-hot

encoding of neighborhoods

• Gaussian “RBF” kernel:

k

k(x, xi) = e−∥x−xi∥2
2

exercise: equivalent to rbf kernel
for normalized queries & keys

CS-461 · Foundation Models and Generative AI

We can think of the attended past values based on query as a quantity to be learned:V<t qt

Beyond the memory bottleneck

22

Memory(qt; K<t, V<t)

Two kinds of memories

Non-parametric estimates of

• needs to store & access all data

• example: self-attention

Parametric models of
• parameterizes memory as a learnable model of a finite size

• example: linear attention

Memory(qt; K<t, V<t)

Memory(qt; Wt)

uses all seen data for each prediction

maintains a finite memory

“dataset”

“weights”

CS-461 · Foundation Models and Generative AI

Consider memory as a linear model:

• All previous values are compressed into the memory (“weights” / “state”)

Training:

Memory(qt; W) = W qt

W

Linear attention

23

LinearAttention(qt; K<t, V<t) = V<tK⊤
<tqt = Wt−1qt

why is this efficient?

• Compute: State updates in

• Memory: State consumes
since we only need to store

O(1)
Wt = Wt−1 + vtk⊤

t
O(1)
Wt

note: state compresses keys & values

ℓ(W; xt) = 1
2 ∥Memory(kt; W) − vt∥2

2 = 1
2 ∥W kt − vt∥2

2

∇Wℓ(W; xt) = (Wkt − vt)k⊤
t

∇Wℓ(W0; xt) = − vtk⊤
t (W0 = 0)

Wt = W0 − η
t

∑
s=1

[−vsk⊤
s] =

t

∑
s=1

vsk⊤
s (η = 1)

batched gradient descent

self-supervised reconstruction loss

"write"

"read"

CS-461 · Foundation Models and Generative AI

Linear attention can equivalently be derived as

• a parametric memory (compressing data into a fixed-size state)

• a non-parametric memory (keeping all data)

Duality of linear attention

24

Wt qt =
t

∑
s=1

(ksv⊤
s) qt ⟺

t

∑
s=1

(k⊤
s qt) vs

parametric non-parametric

computing matrixt × tstoring matrixdK × dV

CS-461 · Foundation Models and Generative AI

Remember: meta-learning is about learning how to learn more efficiently

Sequence models learn at two frequencies:

• During inference a model learns a memory, either a growing cache or a parametric memory

• During training a model learns parameters

 Parameters learn how to update the memory along a sequence

W
θ

→ θ x1:t

Fast & slow weights test-time training→

25

This is an example of meta-learning!

• at test-time, an inner loop updates “fast weights”

• at train-time, an outer loop learns “slow weights” that improve the inner loop

W
θ

"learning to learn"

Updating “fast weights” in an inner loop with gradient descent is called test-time training (TTT)W
example: linear attention

“inner” dataset {(ks, vs)}t
s=1

“outer” dataset {(xi)}n
i=1

CS-461 · Foundation Models and Generative AI

We can design alternative memory models!

Extensions of linear attention

26

LinearAttention(qt; K<t, V<t) = V<tK⊤
<tqt =

t

∑
s=1

(k⊤
s qs) vs = Wtqt

Recall

Learning rule: Hebbian vs Delta
• Batched gradient descent (linear attention)

 can lead to “memory overflow”

• Online gradient descent

→
"neurons that fire together, wire together"Wt = Wt−1 + vtk⊤

t

Wt = Wt−1(I − ηktk⊤
t) + ηvtk⊤

t

∇Wℓ(W; xt) = (Wkt − vt)k⊤
t

Wt = Wt−1 − η∇Wℓ(Wt−1; xt)

Wt = Wt−1 − η(Wt−1kt − vt)k⊤
t

Wt = Wt−1(I − ηktk⊤
t) + ηvtk⊤

t

 called the Delta rule

 & used in DeltaNet / RWKV-7

→

"edit/overwrite" instead of just "add"

CS-461 · Foundation Models and Generative AI

We can design alternative memory models!

Extensions of linear attention

27

LinearAttention(qt; K<t, V<t) = V<tK⊤
<tqt =

t

∑
s=1

(k⊤
s qs) vs = Wtqt

Recall

Learning rule: Hebbian vs Delta
• Batched gradient descent (linear attention)

 can lead to “memory overflow”

• Online gradient descent (DeltaNet)

→
"neurons that fire together, wire together"Wt = Wt−1 + vtk⊤

t

Wt = Wt−1(I − ηktk⊤
t) + ηvtk⊤

t

"edit/overwrite" instead of just "add"

Forgetting: slowly forget “old” data

Wt = diag(αt)Wt−1 − η∇ℓ(Wt−1; xt)
e.g., RWKV-7

“weight decay”

Momentum:

Wt = Wt−1 + St

St = βSt−1 − η∇ℓ(Wt−1; xt)
“past surprise” “momentary surprise”

e.g., Titans

https://arxiv.org/pdf/2406.06484
https://arxiv.org/pdf/2503.14456
https://arxiv.org/pdf/2501.00663

CS-461 · Foundation Models and Generative AI

Summary of test-time training (so far)

28

Let’s remember our goal: Efficient & sufficiently expressive memory to solve the test-time task

We have seen:

• Transformers / self-attention model memory as a non-parametric kernel regression

• Test-time training models memory as a parametric regression

• simplest example: linear attention with a linear memory model

A 1d example

 linear attention has limited expressivity

 self-attention can struggle with generalization

 self-attention is computationally inefficient

→
→
→

CS-461 · Foundation Models and Generative AI

Let’s remember our goal: Efficient & sufficiently expressive memory to solve the test-time task

We have seen:

• Transformers / self-attention model memory as a non-parametric kernel regression

• Test-time training models memory as a parametric regression

• simplest example: linear attention with a linear memory model

Summary of test-time training (so far)

29

Over the past decade in ML, deep parametric models have efficiently learned complex patterns.

Non-parametric learning has not scaled beyond small datasets.

Key question: If we want to meta-learn models that learn to solve complex tasks at test-time,
should their memory also be a deep parametric model?

θ

CS-461 · Foundation Models and Generative AI

Which loss?

Which “fast weights”?

Outlook: Open questions

30

• separate from (linear / deep)

• “fast weights” = “slow weights”

• or low-rank adapters of

• KV cache prefix 📝

θ
W θ

θ

(k1, v1), …, (kt, vt), (kt+1, vt+1)
KV cache (z1, z′￼1), …, (zd, z′￼d), (kt+1, vt+1)

trainable KV prefix of size d

• self-supervised reconstruction loss

• at the current token:

• across all previous tokens 📝

• other (self-)supervised losses (next part)

• context distillation 📝

ℓ(W; xi)

behavior with kv cache is distilled into memory

https://arxiv.org/pdf/2506.06266
https://arxiv.org/pdf/2506.05233
https://arxiv.org/pdf/2506.06266

CS-461 · Foundation Models and Generative AI

Challenge: Parallel training

31

During inference TTT is efficient compared to self-attention

BUT fast GPU training requires parallelization!

• Self-attention has no sequential dependency, but the attention matrix takes space

 fast training if attention matrices fit onto GPU

• TTT has a sequential dependency ! How can we pre-train on a sequence in parallel?

QK⊤ O(T2)
→

W1, W2, …, Wt

inference is inherently sequential!

Option 1: Parallel scan with linear attention
• Goal:

• Step 1: each element adds value from 1 pos to its left

•

• Step 2: each element adds value from 2 pos to its left

•

• Completes in parallel steps for sequence length

[x1, x2, x3, x4] → [x1, x1 ⊕ x2, x1 . . ⊕ x3, x1 . . ⊕ x4]

[x1, x2 ⊕ x1, x3 ⊕ x2, x4 ⊕ x3]

[x1, x1 ⊕ x2, x1 . . ⊕ x3, x1 . . ⊕ x4]

log2(T) T

any associative operation

generalizes only to associative updates like the delta rule

Option 2: Large chunks of TTT 📝
• Keep memory “weights” fixed across large chunk of

sequence (like 4k tokens)

• Within a chunk, use a KV cache restricted to the chunk

• low-level KV cache + high-level memory

• Each chunk can be processed in parallel

• can adjust chunk/memory size for maximum throughput

Wt

generalizes to arbitrary parametric memory!

"windowed" attention

https://arxiv.org/pdf/2505.23884

CS-461 · Foundation Models and Generative AI

Summary

32

• Self-attention (aka transformers) perform non-parametric learning at test-time

 memory bottleneck when scaling to learning over long sequences!

• Test-time training (TTT) avoids the memory bottleneck by training a parametric model at test-time

• Linear attention is the simplest example where the memory model is linear

• While TTT avoids the memory bottleneck, training cannot generally be parallelized

• combination with self-attention through chunked TTT

→

→

CS-461 · Foundation Models and Generative AI

Example: Few-shot learning

33

Sequences often have additional structure, for example:

• prompt-response:

• few-shot demonstrations:

A test-time training pipeline for few-shot learning:

x⋆, y⋆

x1, y1, x2, y2, …, xt, yt, x⋆, y⋆

task is only revealed by examples!

Akyürek et al.; ICML ‘25

+ augmentations
Data Loss

next-token prediction
Task-specific models

LoRA adapters

on top of Llama3 8B

https://arxiv.org/pdf/2411.07279

CS-461 · Foundation Models and Generative AI

meta-learning
test-time training

Perspective: Meta-learning in a few-shot setting

34

Previously, we learned “slow weights” that lead to good “fast weights” at test-time

We can do the same here!

θ θ′￼

Canonical example: model-agnostic meta learning (MAML)

• The inner loop optimizes a loss on the few-shot examples

• The outer loop finds an initialization leading to small
loss after the inner loop (on average across)

θ
x⋆

θ′￼x⋆ = θ − α∇θ ∑k
i=1 ℓ(θ; xi, yi)

θ ← θ − β∇θ ∑x⋆ ℓ(θ′￼x⋆; x⋆, y⋆)

https://arxiv.org/pdf/1703.03400

What data to learn from at test-time?2

1 Scaling attention to long sequences

CS-461 · Foundation Models and Generative AI

• TTT enables learning across long sequences at test-time

• Few-shot learning is a setting where task-specific data is

given at test-time: x1, y1, …, xt, yt, x⋆

What data to learn from at test-time?

36

Recap

If task-specific data is not given to us: Can we acquire it from existing datasets?

• Goal: Find data such that prediction error at is minimizedx1, …, xt x⋆

putting the model in the decision-making loop!
{(xs, ys)}t

s=1

Training data
f(x⋆)

Prediction
f : 𝒳 → 𝒴

Learnt model

x⋆Test instance

think: = key, = valuexs ys

data manifold

data space

pre-training fine-tuning test-time training

“interesting” data

37

Perspective: Induction vs Transduction
“When solving a problem of interest, do not solve
a more general problem as an intermediate step.
Try to get the answer that you really need but not
a more general one.” —Vladimir Vapnik (80’s)

Inductive learning: extract general rules from data

Transductive learning: learn only what you need

inductive! inductive / transductive transductive!

CS-461 · Foundation Models and Generative AI

Model

Corresponds to a regularized TTT

wt = argminw

t

∑
s=1

(ϕ(xs)⊤w − ys)2 +
λ
2

∥w∥2
2

𝔼[f(x⋆) ∣ x1:t, y1:t] = wt

• linear model: assume

• Gaussian prior: let

• Gaussian noise: let , with

f(x) = ϕ(x)⊤w
w ∼ 𝒩(0,I)
ys = f(xs) + εs εs ∼ 𝒩(0,λ)

A simple probabilistic model

38

Goal: Retrieve such that the predictive
uncertainty is minimal

• Would be optimal to retrieve , but is typically
not within the dataset

x1, …, xt
Var(f(x⋆) ∣ x1:t, y1:t)

x⋆ f(x⋆)

Bayesian linear regression

NeurIPS ‘24

Can we acquire task-specific examples from existing datasets?

https://arxiv.org/pdf/2402.15898

CS-461 · Foundation Models and Generative AI

• linear model: assume

• Gaussian prior: let

• Gaussian noise: let , with

f(x) = ϕ(x)⊤w
w ∼ 𝒩(0,I)
ys = f(xs) + εs εs ∼ 𝒩(0,λ)

Predictive uncertainty

39

Model
Goal: Retrieve such that

 is minimal
x1, …, xt

Var(f(x⋆) ∣ x1:t, y1:t)

Var(f ⋆ |x⋆) = ϕ(x⋆)⊤Var(w)ϕ(x⋆) = ϕ(x⋆)⊤ϕ(x⋆)

[y1:t

f ⋆] ∣ x1:t, x⋆ ∼ 𝒩 (0, [ΦΦ⊤ + λI Φϕ(x⋆)
(Φϕ(x⋆))⊤ ϕ(x⋆)⊤ϕ(x⋆)])

y1:t = Φw + ε1:tΦ =
ϕ(x1)

⋮
ϕ(xt)

Var(f ⋆ |x1:t, y1:t, x⋆) = ϕ(x⋆)⊤ϕ(x⋆) − ϕ(x⋆)⊤Φ⊤(ΦΦ⊤ + λI)−1Φϕ(x⋆)

CS-461 · Foundation Models and Generative AI

x2 = argminx Var(f ⋆ |x1,2, y1,2, x⋆) = argmaxx [
∡ϕ(x⋆, x1)

∡ϕ(x⋆, x)]
⊤

[
∡ϕ(x1, x1) + λ ∡ϕ(x, x1)

∡ϕ(x1, x) ∡ϕ(x, x) + λ]
−1

[
∡ϕ(x⋆, x1)

∡ϕ(x⋆, x)]

Minimizing predictive uncertainty

40

Goal: Retrieve such that is minimalx1, …, xt Var(f(x⋆) ∣ x1:t, y1:t)

Var(f ⋆ |x1:t, y1:t, x⋆) = ϕ(x⋆)⊤ϕ(x⋆) − ϕ(x⋆)⊤Φ⊤(ΦΦ⊤ + λI)−1Φϕ(x⋆)

But: Combinatorial optimization over variables!
Can minimize greedily (one-by-one):

t

x1 = argminx Var(f ⋆ |x1, y1, x⋆) = argmaxx
(ϕ(x⋆)⊤ϕ(x))2

∥ϕ(x)∥2
2 + λ

= argmaxx (∡ϕ(x⋆, x))
2

nearest neighbor retrieval!
∥ϕ(x)∥2

2 = 1

θ

ϕ(x′￼)

ϕ(x)

∡ϕ(x, x′￼) =
ϕ(x)⊤ϕ(x′￼)

∥ϕ(x)∥∥ϕ(x′￼)∥
= cos θ

Cosine similarity

similarity to x⋆ diversity of x1:t
: pick nearest neighbor

: more diverse
λ → ∞
λ → 0 x1:t

CS-461 · Foundation Models and Generative AI

Visualization of transductive active learning

41

Example: Selecting data where features correspond to the RBF kernel (Euclidean similarity)ϕ

Blue: prediction targets Blue: prediction targets

Gray: sample space

CS-461 · Foundation Models and Generative AI

We have seen: how to retrieve examples for learning with linear test-time training

Summary: Learning from retrieved examples

42

x⋆

x1, y1

x2, y2

xt, yt

⋮

Called retrieval augmented generation (RAG)

• Most common today: RAG + transformers / self-attention

• For RAG + test-time training, we can approximate deep test-time training
(i.e., non-linear memory) as a linear function in frozen features next!ϕ(x) →

doesn't scale to many retrieved examples!

Memory(x; Wt) = Wt x

CS-461 · Foundation Models and Generative AI

Example: Language modeling

43

Selecting informative data for fine-tuning (SIFT):
Select data that maximally reduces “uncertainty”
about how to solve the task

ICLR ‘25

Simple TTT procedure:

1. given task , find local data (from dataset)

2. fine-tune pre-trained model on local data to get specialized model

3. predict

x Dx D

f Dx fx
fx(x)

https://arxiv.org/pdf/2410.08020

CS-461 · Foundation Models and Generative AI 44

too little similarity

too little
diversity

CS-461 · Foundation Models and Generative AI

Evaluation: language modeling on the Pile

45

Pile dataset

0 20 40

Test-Time Iterations

0.8

1.0

1.2

1.4

1.6

B
its

pe
rB

yt
e

(→
be

tte
r)

SIFT (ours)

Nearest Neighbor
with duplication

Nearest Neighbor
without duplication

with GPT-2

Error relative to base model

(100 = base model, 0 = no error)

CS-461 · Foundation Models and Generative AI

GPT-2 GPT-2-large Phi-3

Test-time training vs Self-attention

46

GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B) Phi-3 (14B) Gemma-2 (27B)

0.50

0.75

1.00

1.25

B
its

pe
rB

yt
e

Base Context Fine-Tuning

CS-461 · Foundation Models and Generative AI

SOTA on the Pile benchmark

47

ours

https://paperswithcode.com/sota/language-modelling-on-the-pile

40x larger

CS-461 · Foundation Models and Generative AI

Learning through trial & error

48

What if do not have any labels / demonstrations to learn from?

• Can we generate examples ourselves through “practice” within an environment?

x⋆

x1, y1

x2, y2

xt, yt

⋮

supervised learning reinforcement learning

x⋆

x1, a1, r1

x2, a2, r2

xt, at, rt

⋮

 keep doing “good” attempts,
stop doing “bad” attempts
→

Attempt

Was attempt “good” or “bad”?

CS-461 · Foundation Models and Generative AI

Reinforcement learning (RL)

49

Agent

Environment

state st → st+1

feedback rt

action at ∼ πθ(⋅ ∣ st)action at

• Action: “attempt” by agent

• example: coding a sorting algorithm

• Feedback: score indicating whether attempt was “good” or “bad”

• example: does the code pass unit tests?

• State: “effect” of actions is conditionally independent of the past given the
present state

• example: updated file system (if an action modified the file system)

• Objective: maximize returns 𝔼πθ,MDP[∑T
t=1 rt]

x⋆

x1, a1, r1

x2, a2, r2

xt, at, rt

⋮

reinforcement learning

sequence of trials + feedback

called an MDP (Markov decision process)

CS-461 · Foundation Models and Generative AI

Perspective: Decision transformer

50

As seen multiple times already: The inner loop can learn

• with a non-parametric memory self-attention / transformer

• with a parametric memory training a policy with gradient descent (example: linear attention)

Example of RL with non-parametric memory: Decision transformer 📝

Today’s models (like decision transformers) have seen many learning sequences during training &
meta-learned how to learn from fewer examples at test-time self-attention is feasible

→
→

→

doesn't scale to long sequences!

historically more common in rl

limited to relatively few examples

https://arxiv.org/pdf/2106.01345

CS-461 · Foundation Models and Generative AI

Can TTT improve reasoning?

51

Preprint

• Can test-time training learn through trial & error?

• Given a test task, an LLM self-curates a test-time
curriculum (TTC) of similar tasks for practicing

• The TTC is adaptively selected from a corpus (with SIFT)
to balance similarity to the test task and diversity

• The LLM is trained on the TTC via RL

https://arxiv.org/pdf/2510.04786

CS-461 · Foundation Models and Generative AI

Test-time training for reasoning tasks

52

We treat each benchmark as a set of test tasks, and train on the TTC with RL

CS-461 · Foundation Models and Generative AI

Test-time training for reasoning tasks

53

Pass@1 accuracy on reasoning tasks of

• base model

• model after global RL post-training

• TTC-RL

We treat each benchmark as a set of test tasks, and train on the TTC with RL

CS-461 · Foundation Models and Generative AI

Test-time training for reasoning tasks

54

Pass@1 accuracy on reasoning tasks of

• base model

• model after global RL post-training

• TTC-RL

Takeaway: TTC-RL consistently achieves a higher pass@1 than general-purpose RL post-training
on frontier open-weight models learning how to use context (self-attention) for individual attempts.→

We treat each benchmark as a set of test tasks, and train on the TTC with RL

CS-461 · Foundation Models and Generative AI

Summary #2

55

Where we started: If task-specific data is not given to us, can we acquire it ourselves?

We saw:

• In supervised linear setting, we can compute “optimal” retrieval scheme in closed-form SIFT

• This retrieval scheme also works empirically with non-linear TTT

• Can use reinforcement learning to learn through practice, without supervision / solutions

Can we learn how to acquire data instead of relying on simplifying assumptions?

→

in the spirit of machine learning

CS-461 · Foundation Models and Generative AI

Goal: Can we learn how to acquire data instead of relying on simplifying assumptions?

• What is the optimal for task without any assumption on the underlying ?

Can also learn how to select data in the inner loop! example: RL2 📝

x1, …, xt x⋆ f

→

Outlook: Learning how to acquire data

56

Recall meta-learning!

• Can learn what to store in memory (part 1)→

memory

first task second task
environment

https://arxiv.org/pdf/1611.02779

CS-461 · Foundation Models and Generative AI

Outlook: RL2

57

• Test-time: The inner loop aims to maximize returns in its environment
(defined by task):

• Train-time: The outer loop finds an initialization leading to high returns
of the inner loop (on average across) via RL:

x⋆ 𝔼πθ,env(x⋆)[∑T
t=1 rt]

x⋆ 𝔼x⋆𝔼πθ,env(x⋆)[∑T
t=1 rt]

memory

first task second task
environment

CS-461 · Foundation Models and Generative AI

RL2 example

58

memory

first task second task
environment

goal

CS-461 · Foundation Models and Generative AI

RL2 example

59

memory

first task second task
environment

goal

CS-461 · Foundation Models and Generative AI

RL2 example

60

memory

first task second task
environment

CS-461 · Foundation Models and Generative AI

RL2 example

61

memory

first task second task
environment

CS-461 · Foundation Models and Generative AI

RL2 example

62

memory

first task second task
environment

Key question: By solving many of these
environments, can we learn an algorithm for
efficient exploration of novel environments?

Acquiring data to learn from at test-time2

1 TTT scales attention to long sequences

About us

• I’m a PhD student at LAS with Andreas Krause

• Our lab works on learning & adaptive systems that

• actively acquire information

• continually learn at test-time

Talk to us if you’re interested in doing a research visit at LAS!

• e.g., Master’s thesis

64

