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Our aim for today

17

Typically two different regimes:

• train-time: foundation model is trained on a (wide) distribution of tasks

• test-time: foundation model is given a particular task to solve


Task-specific learning today:

1. models are “manually” fine-tuned to a (narrow) distribution of downstream 

tasks (but then kept static)

2. models learn from context, but only over very short horizons


• We will focus on autoregressive models

• Our aim: “adding memory” to enable extensive learning at test-time

we'll focus on task-specific learning



1 Scaling attention to long sequences

2 What data to learn from at test-time?
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Key concept: Self-Attention 

• When autoregressively generating , self-attention “attends” to patterns (values)  in 
previous tokens by matching the current query  with previous keys 


• Naively computing  at every step has  per-step latency


The solution: KV Caching


• Compute only the new  from 


• Append  to the cached  (in VRAM) to form the new 

p(xt ∣ x<t) V<t
qt K<t

K<t, V<t O(T2)

qt, kt, vt xt

kt K<t K≤t

Scaling attention to long sequences

19

Attention(qt; K<t, V<t) = softmax ( qtK⊤
<t

dK ) V<t

very slow!

per-step latency is  with parallel key-lookupO(1)

kt = θKxt

qt = θQxt

vt = θV xt

Legend
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The problem: KV cache size grows linearly with sequence length 

• For long sequences, the memory required for the KV cache quickly exceeds the size of model!


• At large sequences, the KV cache dominates VRAM  long-context is memory-bound!

T

→

The memory bottleneck

20

Example (Llama 7B): 32 layers, hidden dimension 4096, 16-bit precision


At 32k context, the KV cache is already larger than model weights!

14.0 GBmodel weights (constant)

1.1 GBKV cache @ T=2048

17.2 GBKV cache @ T=32,768

52.4 GBKV cache @ T=100,000
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The KV cache in a transformer is a type of memory, but a memory that grows with time

• Let’s look once more at attention…


• We can think of “attention” as a memory that can be learned from “dataset” !{(ks, vs)}t
s=1

The memory view of transformers

21

Attention(qt; K<t, V<t) = softmax (qtK⊤
<t) V<t =

t

∑
s=1

ws vs, ws ∝ ek⊤
s qt (dK = 1)

attention prescribes a particular way of estimating a memory!
Background: Kernel regression

A standard estimator from statistics is the Nadaraya-Watson estimator:


 self-attention is kernel regression with kernel → k(qt, ks) = ek⊤
s qt

̂y(x) =
n

∑
i=1

wiyi, wi ∝ k(x, xi)
Examples: 
• Nearest neighbor estimation:  is a one-hot 

encoding of neighborhoods

• Gaussian “RBF” kernel: 

k

k(x, xi) = e−∥x−xi∥2
2

exercise: equivalent to rbf kernel
for normalized queries & keys
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We can think of the attended past values  based on query  as a quantity to be learned:V<t qt

Beyond the memory bottleneck

22

Memory(qt; K<t, V<t)

Two kinds of memories

Non-parametric estimates of 

• needs to store & access all data

• example: self-attention


Parametric models of  
• parameterizes memory as a learnable model of a finite size

• example: linear attention

Memory(qt; K<t, V<t)

Memory(qt; Wt)

uses all seen data for each prediction

maintains a finite memory

“dataset”

“weights”
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Consider memory as a linear model: 


• All previous values are compressed into the memory (“weights” / “state”) 


Training:

Memory(qt; W) = W qt

W

Linear attention

23

LinearAttention(qt; K<t, V<t) = V<tK⊤
<tqt = Wt−1qt

why is this efficient?

• Compute: State updates in 



• Memory: State consumes  
since we only need to store 

O(1)
Wt = Wt−1 + vtk⊤

t
O(1)
Wt

note: state compresses keys & values

ℓ(W; xt) = 1
2 ∥Memory(kt; W) − vt∥2

2 = 1
2 ∥W kt − vt∥2

2

∇Wℓ(W; xt) = (Wkt − vt)k⊤
t

∇Wℓ(W0; xt) = − vtk⊤
t (W0 = 0)

Wt = W0 − η
t

∑
s=1

[−vsk⊤
s ] =

t

∑
s=1

vsk⊤
s (η = 1)

batched gradient descent

self-supervised reconstruction loss

"write"

"read"
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Linear attention can equivalently be derived as 

• a parametric memory (compressing data into a fixed-size state)

• a non-parametric memory (keeping all data)

Duality of linear attention

24

Wt qt =
t

∑
s=1

(ksv⊤
s ) qt ⟺

t

∑
s=1

(k⊤
s qt) vs

parametric non-parametric

computing   matrixt × tstoring   matrixdK × dV
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Remember: meta-learning is about learning how to learn more efficiently

Sequence models learn at two frequencies:


• During inference a model learns a memory, either a growing cache or a parametric memory 


• During training a model learns parameters 


 Parameters  learn how to update the memory along a sequence 

W
θ

→ θ x1:t

Fast & slow weights  test-time training→

25

This is an example of meta-learning!


• at test-time, an inner loop updates “fast weights” 


• at train-time, an outer loop learns “slow weights”  that improve the inner loop

W
θ

"learning to learn"

Updating “fast weights”  in an inner loop with gradient descent is called test-time training (TTT)W
example: linear attention

“inner” dataset {(ks, vs)}t
s=1

“outer” dataset {(xi)}n
i=1
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We can design alternative memory models!

Extensions of linear attention

26

LinearAttention(qt; K<t, V<t) = V<tK⊤
<tqt =

t

∑
s=1

(k⊤
s qs) vs = Wtqt

Recall

Learning rule: Hebbian vs Delta 
• Batched gradient descent (linear attention)


 can lead to “memory overflow”

• Online gradient descent

→
"neurons that fire together, wire together"Wt = Wt−1 + vtk⊤

t

Wt = Wt−1(I − ηktk⊤
t ) + ηvtk⊤

t

∇Wℓ(W; xt) = (Wkt − vt)k⊤
t

Wt = Wt−1 − η∇Wℓ(Wt−1; xt)

Wt = Wt−1 − η(Wt−1kt − vt)k⊤
t

Wt = Wt−1(I − ηktk⊤
t ) + ηvtk⊤

t

 called the Delta rule 

 & used in DeltaNet / RWKV-7

→

"edit/overwrite"  instead of just "add"
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We can design alternative memory models!

Extensions of linear attention

27

LinearAttention(qt; K<t, V<t) = V<tK⊤
<tqt =

t

∑
s=1

(k⊤
s qs) vs = Wtqt

Recall

Learning rule: Hebbian vs Delta 
• Batched gradient descent (linear attention)


 can lead to “memory overflow”

• Online gradient descent (DeltaNet)

→
"neurons that fire together, wire together"Wt = Wt−1 + vtk⊤

t

Wt = Wt−1(I − ηktk⊤
t ) + ηvtk⊤

t

"edit/overwrite"  instead of just "add"

Forgetting: slowly forget “old” data

Wt = diag(αt)Wt−1 − η∇ℓ(Wt−1; xt)
e.g., RWKV-7

“weight decay”

Momentum:

Wt = Wt−1 + St

St = βSt−1 − η∇ℓ(Wt−1; xt)
“past surprise” “momentary surprise”

e.g., Titans

https://arxiv.org/pdf/2406.06484
https://arxiv.org/pdf/2503.14456
https://arxiv.org/pdf/2501.00663
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Summary of test-time training (so far)

28

Let’s remember our goal: Efficient & sufficiently expressive memory to solve the test-time task


We have seen:

• Transformers / self-attention model memory as a non-parametric kernel regression

• Test-time training models memory as a parametric regression


• simplest example: linear attention with a linear memory model

A 1d example 

 linear attention has limited expressivity


 self-attention can struggle with generalization


 self-attention is computationally inefficient

→
→
→
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Let’s remember our goal: Efficient & sufficiently expressive memory to solve the test-time task


We have seen:

• Transformers / self-attention model memory as a non-parametric kernel regression

• Test-time training models memory as a parametric regression


• simplest example: linear attention with a linear memory model

Summary of test-time training (so far)

29

Over the past decade in ML, deep parametric models have efficiently learned complex patterns.

Non-parametric learning has not scaled beyond small datasets.

Key question: If we want to meta-learn models  that learn to solve complex tasks at test-time, 
should their memory also be a deep parametric model?

θ
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Which loss?

Which “fast weights”?

Outlook: Open questions

30

• separate from  (linear / deep)


• “fast weights”  = “slow weights” 


• or low-rank adapters of 


• KV cache prefix 📝

θ
W θ

θ

(k1, v1), …, (kt, vt), (kt+1, vt+1)
KV cache (z1, z′￼1), …, (zd, z′￼d), (kt+1, vt+1)

trainable KV prefix of size d

• self-supervised reconstruction loss


• at the current token: 


• across all previous tokens 📝


• other (self-)supervised losses (next part)


• context distillation 📝

ℓ(W; xi)

behavior with kv cache is distilled into memory

https://arxiv.org/pdf/2506.06266
https://arxiv.org/pdf/2506.05233
https://arxiv.org/pdf/2506.06266
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Challenge: Parallel training

31

During inference TTT is efficient compared to self-attention

BUT fast GPU training requires parallelization!


• Self-attention has no sequential dependency, but the attention matrix  takes  space


 fast training if attention matrices fit onto GPU


• TTT has a sequential dependency ! How can we pre-train on a sequence in parallel?

QK⊤ O(T2)
→

W1, W2, …, Wt

inference is inherently sequential!

Option 1: Parallel scan with linear attention 
• Goal: 


• Step 1: each element adds value from 1 pos to its left


• 


• Step 2: each element adds value from 2 pos to its left


• 


• Completes in  parallel steps for sequence length 

[x1, x2, x3, x4] → [x1, x1 ⊕ x2, x1 . . ⊕ x3, x1 . . ⊕ x4]

[x1, x2 ⊕ x1, x3 ⊕ x2, x4 ⊕ x3]

[x1, x1 ⊕ x2, x1 . . ⊕ x3, x1 . . ⊕ x4]

log2(T ) T

any associative operation

generalizes only to associative updates like the delta rule

Option 2: Large chunks of TTT 📝 
• Keep memory “weights”  fixed across large chunk of 

sequence (like 4k tokens)


• Within a chunk, use a KV cache restricted to the chunk


• low-level KV cache + high-level memory 

• Each chunk can be processed in parallel


• can adjust chunk/memory size for maximum throughput

Wt

generalizes to arbitrary parametric memory!

"windowed" attention

https://arxiv.org/pdf/2505.23884
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Summary

32

• Self-attention (aka transformers) perform non-parametric learning at test-time


 memory bottleneck when scaling to learning over long sequences!


• Test-time training (TTT) avoids the memory bottleneck by training a parametric model at test-time

• Linear attention is the simplest example where the memory model is linear


• While TTT avoids the memory bottleneck, training cannot generally be parallelized


•  combination with self-attention through chunked TTT

→

→
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Example: Few-shot learning

33

Sequences often have additional structure, for example:


• prompt-response: 


• few-shot demonstrations: 

A test-time training pipeline for few-shot learning:

x⋆, y⋆

x1, y1, x2, y2, …, xt, yt, x⋆, y⋆

task is only revealed by examples!

Akyürek et al.; ICML ‘25

+ augmentations
Data Loss

next-token prediction
Task-specific models

LoRA adapters

on top of Llama3 8B

https://arxiv.org/pdf/2411.07279
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meta-learning
test-time training

Perspective: Meta-learning in a few-shot setting

34

Previously, we learned “slow weights”  that lead to good “fast weights”  at test-time

We can do the same here!

θ θ′￼

Canonical example: model-agnostic meta learning (MAML) 

• The inner loop optimizes a loss on the few-shot examples


• The outer loop finds an initialization  leading to small 
loss after the inner loop (on average across )

θ
x⋆

θ′￼x⋆ = θ − α∇θ ∑k
i=1 ℓ(θ; xi, yi)

θ ← θ − β∇θ ∑x⋆ ℓ(θ′￼x⋆; x⋆, y⋆)

https://arxiv.org/pdf/1703.03400


What data to learn from at test-time?2

1 Scaling attention to long sequences
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• TTT enables learning across long sequences at test-time

• Few-shot learning is a setting where task-specific data is 

given at test-time: x1, y1, …, xt, yt, x⋆

What data to learn from at test-time?

36

Recap

If task-specific data is not given to us: Can we acquire it from existing datasets?


• Goal: Find data  such that prediction error at  is minimizedx1, …, xt x⋆

putting the model in the decision-making loop!
{(xs, ys)}t

s=1

Training data
f(x⋆)

Prediction
f : 𝒳 → 𝒴

Learnt model

x⋆Test instance

think:  = key,  = valuexs ys



data manifold

data space

pre-training fine-tuning test-time training

“interesting” data

37

Perspective: Induction vs Transduction
“When solving a problem of interest, do not solve 
a more general problem as an intermediate step. 
Try to get the answer that you really need but not 
a more general one.”   —Vladimir Vapnik (80’s)

Inductive learning: extract general rules from data

Transductive learning: learn only what you need

inductive! inductive / transductive transductive!
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Model

Corresponds to a regularized TTT

wt = argminw

t

∑
s=1

(ϕ(xs)⊤w − ys)2 +
λ
2

∥w∥2
2

𝔼[ f(x⋆) ∣ x1:t, y1:t] = wt

• linear model: assume 


• Gaussian prior: let 


• Gaussian noise: let , with 

f(x) = ϕ(x)⊤w
w ∼ 𝒩(0,I)
ys = f(xs) + εs εs ∼ 𝒩(0,λ)

A simple probabilistic model

38

Goal: Retrieve  such that the predictive 
uncertainty  is minimal


• Would be optimal to retrieve , but  is typically 
not within the dataset 

x1, …, xt
Var( f(x⋆) ∣ x1:t, y1:t)

x⋆ f(x⋆)

Bayesian linear regression

NeurIPS ‘24

Can we acquire task-specific examples from existing datasets?

https://arxiv.org/pdf/2402.15898
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• linear model: assume 


• Gaussian prior: let 


• Gaussian noise: let , with 

f(x) = ϕ(x)⊤w
w ∼ 𝒩(0,I)
ys = f(xs) + εs εs ∼ 𝒩(0,λ)

Predictive uncertainty

39

Model
Goal: Retrieve  such that 

 is minimal
x1, …, xt

Var( f(x⋆) ∣ x1:t, y1:t)

Var( f ⋆ |x⋆) = ϕ(x⋆)⊤Var(w)ϕ(x⋆) = ϕ(x⋆)⊤ϕ(x⋆)

[y1:t

f ⋆ ] ∣ x1:t, x⋆ ∼ 𝒩 (0, [ ΦΦ⊤ + λI Φϕ(x⋆)
(Φϕ(x⋆))⊤ ϕ(x⋆)⊤ϕ(x⋆)])

y1:t = Φw + ε1:tΦ =
ϕ(x1)

⋮
ϕ(xt)

Var( f ⋆ |x1:t, y1:t, x⋆) = ϕ(x⋆)⊤ϕ(x⋆) − ϕ(x⋆)⊤Φ⊤(ΦΦ⊤ + λI)−1Φϕ(x⋆)
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x2 = argminx Var( f ⋆ |x1,2, y1,2, x⋆) = argmaxx [
∡ϕ(x⋆, x1)

∡ϕ(x⋆, x) ]
⊤

[
∡ϕ(x1, x1) + λ ∡ϕ(x, x1)

∡ϕ(x1, x) ∡ϕ(x, x) + λ]
−1

[
∡ϕ(x⋆, x1)

∡ϕ(x⋆, x) ]

Minimizing predictive uncertainty

40

Goal: Retrieve  such that  is minimalx1, …, xt Var( f(x⋆) ∣ x1:t, y1:t)

Var( f ⋆ |x1:t, y1:t, x⋆) = ϕ(x⋆)⊤ϕ(x⋆) − ϕ(x⋆)⊤Φ⊤(ΦΦ⊤ + λI)−1Φϕ(x⋆)

But: Combinatorial optimization over  variables! 
Can minimize greedily (one-by-one):

t

x1 = argminx Var( f ⋆ |x1, y1, x⋆) = argmaxx
(ϕ(x⋆)⊤ϕ(x))2

∥ϕ(x)∥2
2 + λ

= argmaxx (∡ϕ(x⋆, x))
2

nearest neighbor retrieval!
∥ϕ(x)∥2

2 = 1

θ

ϕ(x′￼)

ϕ(x)

∡ϕ(x, x′￼) =
ϕ(x)⊤ϕ(x′￼)

∥ϕ(x)∥∥ϕ(x′￼)∥
= cos θ

Cosine similarity

similarity to x⋆ diversity of x1:t
: pick nearest neighbor


: more diverse 
λ → ∞
λ → 0 x1:t
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Visualization of transductive active learning

41

Example: Selecting data where features  correspond to the RBF kernel (Euclidean similarity)ϕ

Blue: prediction targets Blue: prediction targets

Gray: sample space
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We have seen: how to retrieve examples for learning with linear test-time training

Summary: Learning from retrieved examples

42

x⋆

x1, y1

x2, y2

xt, yt

⋮

Called retrieval augmented generation (RAG) 

• Most common today: RAG + transformers / self-attention


• For RAG + test-time training, we can approximate deep test-time training 
(i.e., non-linear memory) as a linear function in frozen features   next!ϕ(x) →

doesn't  scale to many retrieved examples!

Memory(x; Wt) = Wt x
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Example: Language modeling

43

Selecting informative data for fine-tuning (SIFT): 
Select data that maximally reduces “uncertainty” 
about how to solve the task

ICLR ‘25

Simple TTT procedure:


1. given task , find local data  (from dataset )


2. fine-tune pre-trained model  on local data  to get specialized model    


3. predict 

x Dx D

f Dx fx
fx(x)

https://arxiv.org/pdf/2410.08020
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too little similarity

too little 
diversity
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Evaluation: language modeling on the Pile

45

Pile dataset

0 20 40

Test-Time Iterations

0.8

1.0

1.2

1.4

1.6

B
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(→
be

tte
r)

SIFT (ours)

Nearest Neighbor
with duplication

Nearest Neighbor
without duplication

with GPT-2

Error relative to base model

(100 = base model, 0 = no error)
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GPT-2 GPT-2-large Phi-3

Test-time training vs Self-attention

46

GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B) Phi-3 (14B) Gemma-2 (27B)

0.50

0.75

1.00

1.25

B
its

pe
rB

yt
e

Base Context Fine-Tuning
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SOTA on the Pile benchmark

47

ours

https://paperswithcode.com/sota/language-modelling-on-the-pile

40x larger
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Learning through trial & error

48

What if do not have any labels / demonstrations to learn from?

• Can we generate examples ourselves through “practice” within an environment?

x⋆

x1, y1

x2, y2

xt, yt

⋮

supervised learning reinforcement learning

x⋆

x1, a1, r1

x2, a2, r2

xt, at, rt

⋮

 keep doing “good” attempts, 
stop doing “bad” attempts
→

Attempt

Was attempt “good” or “bad”?



CS-461  ·  Foundation Models and Generative AI

Reinforcement learning (RL)

49

Agent

Environment

state st → st+1

feedback rt

action at ∼ πθ( ⋅ ∣ st)action at

• Action: “attempt” by agent 


• example: coding a sorting algorithm 

• Feedback: score indicating whether attempt was “good” or “bad”


• example: does the code pass unit tests?


• State: “effect” of actions is conditionally independent of the past given the 
present state


• example: updated file system (if an action modified the file system)


• Objective: maximize returns 𝔼πθ,MDP[∑T
t=1 rt]

x⋆

x1, a1, r1

x2, a2, r2

xt, at, rt

⋮

reinforcement learning

sequence of trials + feedback

called an MDP (Markov decision process)
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Perspective: Decision transformer

50

As seen multiple times already: The inner loop can learn 


• with a non-parametric memory  self-attention / transformer


• with a parametric memory  training a policy with gradient descent (example: linear attention)


Example of RL with non-parametric memory: Decision transformer 📝


Today’s models (like decision transformers) have seen many learning sequences during training & 
meta-learned how to learn from fewer examples at test-time  self-attention is feasible

→
→

→

doesn't  scale to long sequences!

historically more common in rl

limited to relatively few examples

https://arxiv.org/pdf/2106.01345
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Can TTT improve reasoning?

51

Preprint

• Can test-time training learn through trial & error?


• Given a test task, an LLM self-curates a test-time 
curriculum (TTC) of similar tasks for practicing


• The TTC is adaptively selected from a corpus (with SIFT) 
to balance similarity to the test task and diversity


• The LLM is trained on the TTC via RL

https://arxiv.org/pdf/2510.04786
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Test-time training for reasoning tasks

52

We treat each benchmark as a set of test tasks, and train on the TTC with RL
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Test-time training for reasoning tasks

53

Pass@1 accuracy on reasoning tasks of

• base model

• model after global RL post-training

• TTC-RL

We treat each benchmark as a set of test tasks, and train on the TTC with RL
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Test-time training for reasoning tasks

54

Pass@1 accuracy on reasoning tasks of

• base model

• model after global RL post-training

• TTC-RL

Takeaway: TTC-RL consistently achieves a higher pass@1 than general-purpose RL post-training 
on frontier open-weight models  learning how to use context (self-attention) for individual attempts.→

We treat each benchmark as a set of test tasks, and train on the TTC with RL
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Summary #2

55

Where we started: If task-specific data is not given to us, can we acquire it ourselves?


We saw:


• In supervised linear setting, we can compute “optimal” retrieval scheme in closed-form  SIFT

• This retrieval scheme also works empirically with non-linear TTT

• Can use reinforcement learning to learn through practice, without supervision / solutions


Can we learn how to acquire data instead of relying on simplifying assumptions?

→

in the spirit of machine learning
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Goal: Can we learn how to acquire data instead of relying on simplifying assumptions? 


• What is the optimal  for task  without any assumption on the underlying  ?


Can also learn how to select data in the inner loop!  example: RL2 📝

x1, …, xt x⋆ f

→

Outlook: Learning how to acquire data

56

Recall meta-learning! 

• Can learn what to store in memory (  part 1)→

memory

first task second task
environment

https://arxiv.org/pdf/1611.02779
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Outlook: RL2

57

• Test-time: The inner loop aims to maximize returns in its environment 
(defined by task ): 


• Train-time: The outer loop finds an initialization leading to high returns 
of the inner loop (on average across ) via RL: 

x⋆ 𝔼πθ,env(x⋆)[∑T
t=1 rt]

x⋆ 𝔼x⋆𝔼πθ,env(x⋆)[∑T
t=1 rt]

memory

first task second task
environment
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RL2 example

58

memory

first task second task
environment

goal
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RL2 example

59

memory

first task second task
environment

goal
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RL2 example

60

memory

first task second task
environment
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RL2 example

61

memory

first task second task
environment
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Key question: By solving many of these 
environments, can we learn an algorithm for 
efficient exploration of novel environments?



Acquiring data to learn from at test-time2

1 TTT scales attention to long sequences



About us

• I’m a PhD student at LAS with Andreas Krause


• Our lab works on learning & adaptive systems that


• actively acquire information


• continually learn at test-time


Talk to us if you’re interested in doing a research visit at LAS!


• e.g., Master’s thesis
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