CS-461
Foundation Models and
Generative Al

Adaptation, Fine-Tuning, and Test-Time Training

Jonas Hubotter and Andreas Krause, Fall Semester 2025/26

Our aim for today

Typically two different regimes:

* train-time: foundation model is trained on a (wide) distribution of tasks

* test-time: foundation model is given a particular task to solve e Jearn’
/ | focus 0”’7%

Task-specific learning today:

1. models are “manually” fine-tuned to a (narrow) distribution of downstream
tasks (but then kept static)

2. models learn from context, but only over very short horizons

1. Autoregressive Models 2 - L

* We will focus on autoregressive models /
* Our aim: “adding memory” to enable extensive learning at test-time

CS-461 - Foundation Models and Generative Al

Y T R . T Y T — —

17

€@ Scaling attention to long sequences

Scaling attention to long sequences

Key concept: Self-Attention

 When autoregressively generating p(x, | x_,), self-attention “attends” to patterns (values) V_, in
previous tokens by matching the current query g, with previous keys K _,

-|- Legend

. th<l- kt — QK'XI

Attention(g,; K_,, V_,) = softmax = V_, g, = O,
K

Ve = Uy,

/
Jer S/OW.
« Naively computing K_,, V_, at every step has O(T?) per-step latency J

The solution: KV Caching

 Compute only the new g, &, v, from 1, PEr=SPep ercy s O(1) i pore)
- Append k, to the cached K, (in VRAM) to form the new K_, porafel %Pj-/oo%“/@

CS-461 - Foundation Models and Generative Al

19

The memory bottleneck

The problem: KV cache size grows linearly with sequence length 1’
* For long sequences, the memory required for the KV cache quickly exceeds the size of model!

Example (Llama 7B): 32 layers, hidden dimension 4096, 16-bit precision

model weights (constant) 14.0 GB
KV cache @ T=2048 1.1 GB
KV cache @ T=32,768 17.2 GB

KV cache @ T=100,000 52.4 GB

At 32k context, the KV cache is already larger than model weights!

* At large sequences, the KV cache dominates VRAM — long-context is memory-bound!

CS-461 - Foundation Models and Generative Al

20

The memory view of transformers

The KV cache in a transformer is a type of memory, but a memory that grows with time
* Let’s look once more at attention...

Attention(g,; K_,, V_,) = softmax (thIt) V_, = Z WV, W, X ek 4 (dy = 1)

s=1

» We can think of “attention” as a memory that can be learned from “dataset” {(k,, v,)}!_,!
offoriton prescribesa parficufar way of esfmafing a memory|
Background: Kernel regression
A standard estimator from statistics is the Nadaraya-\Watson estimator:

Examples:

n
V(x) = WV, w. o k(x. x. * Nearest neighbor estimation: k is a one-hot
y(X) Z iV l (X, ;) encoding of neighborhoods
=1

» Gaussian “RBF” kernel: k(x, x;) = o~ IIx=xill3
kTq eXercige: e?u/l/a/enf 7L0 ré/f /éerne/
s 1t

S

— self-attention is kernel regression with kernel k(g,, k) = € or nonmalzed queries & Feys

CS-461 - Foundation Models and Generative Al

21

Beyond the memory bottleneck

We can think of the attended past values V_, based on query ¢, as a quantity to be learned:

Memory(q; K_,, V_,)

Two kinds of memories

Non-parametric estimates of Memory(q,; K_,, V_,)

“dataset”

e needs to store & access all data
e example: self-attention

“weights”

Parametric models of Memory(q,; W)

 parameterizes memory as a learnable model of a finite size
 example: linear attention

CS-461 - Foundation Models and Generative Al

22

Linear attention

Consider memory as a linear model: Memory(q,; W) = Wgq,

 All previous values are compressed into the memory (“weights” / “state”) W

Training: Z(W; x) = %HMemory(kt; W) — th% = %Hka — Vt”%
Vi (W;x) = (Wk, — v)k/'
Vil (Wy;x) = —vk' (W, =0)

W, = W, - nZ[vkl = Z vl (=1

cierl 7
s=1 W@/Sﬁjsef/cl T

nofe: ffe compresses @75 A; vaues « Compute: State updates in O(1)

W=W_ + VtktT
LinearAttention(qt; K . vV <t) — V K < q; = VVt—l% « Memory: State consumes O(1)

since we only need to store W,

CS-461 - Foundation Models and Generative Al

23

Duality of linear attention

Linear attention can equivalently be derived as
e a parametric memory (compressing data into a fixed-size state)
* a non-parametric memory (keeping all data)

parametric non-parametric
[[
W.g, = kv!') = (k!g)v
14 = sVs) 4y s 1) Vs
s=1 s=1

CS-461 - Foundation Models and Generative Al

24

Fast & slow weights — test-time training

Seguence models learn at two frequencies:

* During inference a model learns a memory, either a growing cache or a parametric memory W

 During training a model learns parameters 6

— Parameters @ learn how to update the memory along a sequence X .,

¥ 9 f
This is an example of meta-learning! inner” dataset {(k,, v},

o at test-time, an inner loop updates “fast weights” W /

‘outer” dataset {(x,)}"_,

» at train-time, an outer loop learns “slow weights” @ that improve the inner loop _j

Updating “fast weights” W in an inner loop with gradient descent is called test-time training (TTT)

Remember: meta-learning is about learning how to learn more efficiently

CS-461 - Foundation Models and Generative Al 25

Extensions of linear attention

Recall
t

LinearAttention(g,; K_,, V_,) = V<tKIt% = Z (ksT q,) vy = Wiq,

s=1

We can design alternative memory models!

Learning rule: Hebbian vs Delta Vil (W;x) = (Wk, — v)k'
* Batched gradient descent (linear attention) W=W_,—-nVyZW,_;x)

_ T
W=W_, +vk W=W_,—n(W_k, — Vt)ktT

— can lead to “memory overflow” Wo=W (I T -
* Online gradient descent ¢ = Wil (L= nkik,) + nvik,

_ T T — called the Delt |
W=W_U-nkk')+nvk, e Delta rule
& used in DeltaNet / RWKV-7

CS-461 - Foundation Models and Generative Al

20

Extensions of linear attention

Recall

[
LinearAttention(g,; K_,, V_,) = V<tKIt% = Z (ksT q,) vy = Wiq,

s=1

We can design alternative memory models! Forgetting: slowly forget “old” data

Learning rule: Hebbian vs Delta W, = diag(a)W,_, —nVZW,_;;x)
 Batched gradient descent (linear attention) welght decay e.9., RWKV-7
W=W_+ VtktT
Momentum:
— can lead to “memory overflow”
W=W_,+5

* Online gradient descent (DeltaNet)

5= PS1 —nVE(W_:x)

“past surprise” “momentary surprise”

W,=W,_ (- ﬂktktT) + ”VtktT

e.g., litans

CS-461 - Foundation Models and Generative Al

https://arxiv.org/pdf/2406.06484
https://arxiv.org/pdf/2503.14456
https://arxiv.org/pdf/2501.00663

Summary of test-time training (so far)

Let’s remember our goal: Efficient & sufficiently expressive memory to solve the test-time task

We have seen:

* Transformers / self-attention model memory as a non-parametric kernel regression
» Jest-time training models memory as a parametric regression

* simplest example: linear attention with a linear memory model

Linear attention vs self-attention
A 1d example

x Data
- | inear attention
— = Self-attention

— linear attention has limited expressivity

— self-attention can struggle with generalization g

1

|

i

|

|
211

|

|

!

| I

SN

e R

— self-attention is computationally inefficient

CS-461 - Foundation Models and Generative Al 28

Summary of test-time training (so far)

Let’s remember our goal: Efficient & sufficiently expressive memory to solve the test-time task

We have seen:
* Transformers / self-attention model memory as a non-parametric kernel regression
» Jest-time training models memory as a parametric regression

* simplest example: linear attention with a linear memory model

Over the past decade in ML, deep parametric models have efficiently learned complex patterns.
Non-parametric learning has not scaled beyond small datasets.

Key question: If we want to meta-learn models @ that learn to solve complex tasks at test-time,
should their memory also be a deep parametric model?

CS-461 - Foundation Models and Generative Al

29

Outlook: Open questions

Which “fast weights”?
» separate from @ (linear / deep)
 “fast weights” W = “slow weights” €

 or low-rank adapters of @

« KV cache prefix

(kla V])a coey (kp vt)a (kH-]a VH-])
KV cache

(Zla Zi)a s sy (Zda Zcfl)a (kt-|-]9 VH—])

trainable KV prefix of size d

CS-461 - Foundation Models and Generative Al

Which loss?

* self-supervised reconstruction loss

» at the current token: Z(W; x;)

* across all previous tokens >
» other (self-)supervised losses (next part)

e context distillation >

30

https://arxiv.org/pdf/2506.06266
https://arxiv.org/pdf/2506.05233
https://arxiv.org/pdf/2506.06266

Challenge: Parallel training

During inference TTT is efficient compared to self-attention

BUT fast GPU training requires parallelization!

. Self-attention has no sequential dependency, but the attention matrix QK ' takes O(T?) space

CS-461

— fast training if attention matrices fit onto GPU

TTT has a sequential dependency W, W,, .

Option 1: Parallel scan with linear attention

e Goal: [x{, Xy, X3, X4] = [X1, X D X5, X1 .. D X3, %; .. D x4]

e Step 1: each element adds value from 1 pos to its left
o [xp, %) @ xp, %3 D X5, X4 D X3]

e Step 2: each element adds value from 2 pos to its left
o [x1,x; D Xy, x;.. D x5, X1 .. D xy]

« Completes in log,(T') parallel steps for sequence length T

jenera//’zeg on\/y]Lo aggoc/a]/LVe ulna/a]ég //'/ée]%e a/e/fa ru/e

- Foundation Models and Generative Al

.., Wl How can we pre-train on a sequence in parallel?

Option 2: Large chunks of TTT

« Keep memory “weights” W, fixed across large chunk of
sequence (like 4k tokens)

e Within a chunk, use a KV cache restricted to the chunk
* low-level KV cache + high-level memory
 Each chunk can be processed in parallel

e can adjust chunk/memory size for maximum throughput

jenera//zeg ZLO mﬂé/ﬁmy /narameﬁ”/c memm\ﬂy‘/

31

https://arxiv.org/pdf/2505.23884

Summary

o Self-attention (aka transformers) perform non-parametric learning at test-time

— memory bottleneck when scaling to learning over long sequences!

* Test-time training (TTT) avoids the memory bottleneck by training a parametric model at test-time
* Linear attention is the simplest example where the memory model is linear

* While TTT avoids the memory bottleneck, training cannot generally be parallelized

« — combination with self-attention through chunked TTT

CS-461 - Foundation Models and Generative Al

32

Akyurek et al.; ICML ‘25

Example: Few-shot learning

ften h tional structure, f e: e A
Sequences often have additional structure, for example Test Task

. prompt-response: x*, y* ()@@ W7

. few-shot demonstrations: x|, y;, X5, V5, ..., X, V, x*,y* (L1Y1 T2Y2 T3Ys Tq4 /
revealed By examples.

A test-time training pipeline for few-shot learning: fask is only

In-Context Examples Test
[(LTI HEN 1111

] One Out . Loss on: 5 ' Task Specific K Tasks | g B =l L
T B ask1 LM(-|dfprall6) 7 R ?
MO 020 t) gy gy By g L Task2 IM(| d@hy o2, 0%)
LM(-|72, y2, 23, Y3, 1) — | M T : . 0.6
LM(CEl,yl,IEg,yg,Qfg) E E E Task k LM(‘ dr(I{Cr%T,ZEESS)t,H(k)) E 0.5
- L1 Y1 T2 Y2 T3 : : Z | N
_______________________ L =
o %0.3-
Data Loss Task-specific models -
next-token prediction LoRA adapters |

0.0-

FT FT + TTT

on top of Llama3 8B

CS-461 - Foundation Models and Generative Al 33

https://arxiv.org/pdf/2411.07279

Perspective: Meta-learning in a few-shot setting

Previously, we learned “slow weights” @ that lead to good “fast weights” @’ at test-time
We can do the same here!

Canonical example: model-agnostic meta learning (MAML)

* The inner loop optimizes a loss on the few-shot examples

- Meta-learning

/ k . -
o — 9 — VH zi=l f(e, xl., yl) 6 -===test-time training

* The outer loop finds an initialization @ leading to small v£3
loss after the inner loop (on average across x*)

0 —0—pVy2 C(00;x",y")

CS-461 - Foundation Models and Generative Al

34

https://arxiv.org/pdf/1703.03400

€ \What data to learn from at test-time?

What data to learn from at test-time?

Recap

 TTT enables learning across long sequences at test-time
* Few-shot learning is a setting where task-specific data is think: x; = key, y, = value

given at test-time: X1s Vs ooesXp Vo x* \ /

If task-specific data is not given to us: Can we acquire it from existing datasets?

« Goal: Find data X, ..., x, such that prediction error at x* is minimized
/ Test instance x*
l
Training data » Learnt model ~ Prediction
{EM'S) . L > Y (™)

CS-461 - Foundation Models and Generative Al

36

Perspective: Induction vs Transduction

“When solving a problem of interest, do not solve

Inductive learning: extract general rules from data 2 more general problem as an intermediate step.
Transductive learning: learn only what you need Try to get the answer that you really need but not
a more general one.”

“Interesting” data

data manifold

data space

pre-training fine-tuning test-time training

37

/ ‘
[] | | | M
A simple probabilistic model g
NeurlPS 24
Can we acquire task-specific examples from existing datasets?
Model Bayesian linear regression
- linear model: assume f(x) = ¢(x)'w Prior
3t —— True function
« Gaussian prior: let w ~ 4(0,]) 5| S

 Gaussian noise: let y. = f(x,) + ¢, with &, ~ A (0,4) > 1\
0

Goal: Retrieve xy, ..., x, such that the predictive “L0Z05 0005 10

uncertainty Var(f(x*) | x;.,, ¥;.,) is minimal

» Would be optimal to retrieve x*, but f(x™) is typically Corresponds to a reqularized TTT
not within the dataset

[
. A
w, = argmin,, Z (P(x) ' w—y)* + EHWH%
s=1

*
_[f(-x) ‘ X115 yl:t] — W
CS-461 - Foundation Models and Generative Al 38

https://arxiv.org/pdf/2402.15898

Predictive uncertainty

Model
Goal: Retrieve X, ..., x, such that

+ linear model: assume f(x) = ¢(x)'w Var(f(x™) | x;.,» y;.,) is minimal

« Gaussian prior: let w ~ A4(0,])
» Gaussian noise: let y, = f(x,) + ¢, with &, ~ A4 (0,4)

Var(f* [x*) = ¢p(x*) ' Var(w)(x*) = p(x*)" p(x*)

¢(X1)

O = Y1t = (I)W_l_gl:t

px)

lyu] PR PO+ A DP(x*)
o (@pN)T p*) Th(x*)

Var(f* [Xy 1. X*) = () ' p(x*) — p(x*) '@ (@D + AI) ™' Deh(x*)

CS-461 - Foundation Models and Generative Al

Minimizing predictive uncertainty

Goal: Retrieve xy, ..., x, such that Var(f(x™) | x;.,, y;.,) is minimal

Var(f* [Xy 1. X*) = (™) ' p(x*) — p(x*) '@ (@D + A~ Deh(x*)

p)
D) p(x)
: : C : , A (x, x") = — = cos 6
But: Combinatorial optimization over ¢ variables! ’ lpGIHIACO
Can minimize greedily (one-by-one):
*\ T 2 o
. X X
x; = argmin, Var(f™ | x;, y;,x*) = argmax (D7) gzb() = argmax, <A¢(x*,x)>
lp@I3+2 1 el
||¢(x)”% — 1 nearegf ne\/yé or relfr :
* v *
A (x ,X) X (x ,X)
° * * ¢ 1 ¢ 1
X, = argmin, vVar(f™ | x; 5, y; 5, X™) = argmax N .
T A 5(x7, X) A p(X™, X)
\ /
A — 00: pick nearest neighbor '/* / |
A — 0: more diverse x;., S/m’/“”@ o X “/"/6’5@ of Xt

CS-461 - Foundation Models and Generative Al

Cosine similarity

P(x)
/
-

40

Visualization of transductive active learning

Example: Selecting data where features ¢ correspond to the RBF kernel (Euclidean similarity)

Blue: prediction targets Blue: prediction targets
Gray: sample space

CS-461 - Foundation Models and Generative Al

41

Summary: Learning from retrieved examples

We have seen: how to retrieve examples for learning with linear test-time training

CS-461

\ Memory(x; W) = W, x

- A1)
X, s Called retrieval augmented generation (RAG)

 Most common today: RAG + transformers / self-attention .

, jeved exam es.
0/06’/5/77L Sca/e]bmmzy reﬁ“ ved examp
— Ap Vi
N For RAG + test-time training, we can approximate deep test-time training

A (i.e., non-linear memory) as a linear function in frozen features ¢(x) — next!

- Foundation Models and Generative Al

42

Example: Language modeling E]

ICLR ‘25

Selecting informative data for fine-tuning (SIFT):

Select data that maximally reduces “uncertainty”

about how to solve the task |
Data Manifold

Simple TTT procedure: &" >elected Data

Full Data Space

1. given task x, find local data D, (from dataset D)

2. fine-tune pre-trained model f on local data D, to get specialized model f,

3. predict f,(x)

CS-461 - Foundation Models and Generative Al 43

https://arxiv.org/pdf/2410.08020

CS-461

90

=@®=SIFT (ours)

= 85
9
2 80
g
g 79
an

70

10~

too little similarity

- Foundation Models and Generative Al

102

too little
diversity

44

Evaluation: language modeling on the Pile

CS-461

Pile dataset

NIH Grants

US Patents
GitHub

Enron Emails
Common Crawl
ArXiv
Wikipedia
PubMed Abstr.
Hacker News
Stack Exchange
PubMed Central
DeepMind Math

FreeLaw

All

- Foundation Models and Generative Al

Bits per Byte ({ better)

e
-

—
N

e
DO

-
-

=
Q0

with GPT-2

Nearest Neighbor
with duplication

Nearest Neighbor
without duplication

¥

_y

20 40
Test-Time Iterations

US NN NN-F SIFT A
NIH Grants 93.1¢.1) 8491 91.60167 53.8389 |31.1
US Patents 85.6(1.5) 80.3(1.9 108.8(.6) 62935 |17.4
GitHub 45.6(22) 42120 53240 30022 |12.1
Enron Emails 68.6 (9.8) 64.4(10.1) 91.6(20.6) 53.1(11.4) [|11.3
Wikipedia 67.51.9 66320 121.235 62721 |3.6
Common Crawl 92.6 (04) 90.4(0.5) 148.8(1.5 87507 2.9
PubMed Abstr. 88.9(0.3) 87.2(04) 162.6(1.3) 84.406) |2.8
ArXiv 85412 85.0(16) 166.806.4) 825014 2.5
PubMed Central 81.7 2.6) 81.7(26) 155.6(¢5.1) 79526 [2.2
Stack Exchange 78.6(0.7) 78.2(0.7) 141915 76.70.77 |1.5
Hacker News 80.4(2.5) 79.228) 133.16.3) 78428 |0.8
FreeLaw 639141 64140 122471 64041 10.1
DeepMind Math 69.4 (2.1) 69.6(2.1) 121.83.1) 69.72.1) 10.3
All 80.20.5) 78.30.5) 1333120 73506 [4.8

(100 = base model, 0 = no error)

Error relative to base model

45

Test-time training vs Self-attention

CS-461

1.25 4 Base B Context [Fine-Tuning
L
=)
21,00
D)
aF
2 0.75 -
m | - I N ?- I B B B = Y/ v |
0.50 /. 7 //
GPT-2 (124M) GPT-2-large (774M) Phi-3(3.8B) Phi-3 (14B) Gemma-2 (27B)
Context Fine-Tuning A Context Fine-Tuning A Context Fine-Tuning A
GitHub 74.6 2.5) 28.6 2.2) 156.0 GitHub 74.6 2.5) 31.0 22 143.6 DeepMind Math 100.8 75.3 $25.5
DeepMind Math 100.2 0.1y 70.1cn |30.1 DeepMind Math 100.2 07 74223 |26.0 GitHub 71.3 46.5 124.8
US Patents 87.4 (2.5) 62.2 3.6 125.2 US Patents 87.4 (2.5) 64.7 3.8 122.7 FreeLaw 78.2 67.2 $11.0
FreeLaw 87.2 3.6) 65542 |21.7 FreeLaw 87.2 3.6) 683142 |18.9 ArXiv 101.0 94.3 16.4
GPT-2 GPT-2-large Phi-3

- Foundation Models and Generative Al

46

SOTA on the Pile benchmark

1.2
GPT-2 Large 774M (pre-trained)

1 N 40x larger

BITS PER BYTE

0.8

GPT-3 Davincix175B (pre-trained)
| GLM-1308B
0.6 Test-Time Fine-Tuning with-SIET_+ Llama-3.2 (3B)

0.4
2019 2020 2021 2022 2023 2024 2025

Other models -o- Models with lowest Bits per byte Oours

https://paperswithcode.com/sota/language-modelling-on-the-pile

CS-461 - Foundation Models and Generative Al

Learning through trial & error

What if do not have any labels / demonstrations to learn from?

 Can we generate examples ourselves through “practice” within an environment?

CS-461

supervised learning

- Foundation Models and Generative Al

— AL AT

— Xp, Uy, I

reinforcement learning

Attempt

Was attempt “good” or “bad”?

— keep doing “good” attempts,
stop doing “bad” attempts

48

Reinforcement learning (RL)

CS-461

state s, = §
v action a, ~ my(- | s,)

feedback r,

d an MDP (Markov decision process)

calle

Action: “attempt” by agent
 example: coding a sorting algorithm

Feedback: score indicating whether attempt was “good” or “bad”
 example: does the code pass unit tests?

State: “effect” of actions is conditionally independent of the past given the
present state

 example: updated file system (if an action modified the file system)

L - T
Objective: maximize returns £, \ippl 2. _, 77

- Foundation Models and Generative Al

— AL A T

— A2, Uy, 17

reinforcement learning

49

Perspective: Decision transformer

As seen multiple times already: The inner loop can learn

 with a non-parametric memory — self-attention / transformer /ecn/ scafe Jo long 5894¢"<E3:

/

* with a parametric memory — training a policy with gradient descent (example: linear attention)

Example of RL with non-parametric memory: Decision transformer

(@), (2),

causal transformer

graph training dataset (random walks) generation

-1 -00 -1

-4 -00 -0 start

//m/fea/ 7L0 re/a]l/'Ve\/y /[e,l,\/ eXam/O/eS

Today’s models (like decision transformers) have seen many learning sequences during training &
meta-learned how to learn from fewer examples at test-time — self-attention is feasible

CS-461

- Foundation Models and Generative Al

50

https://arxiv.org/pdf/2106.01345

Can TTT improve reasoning? E

Preprint

» Can test-time training learn through trial & error? ® Target task Solutions
TTC
. ’ x X X
 Given a test task, an LLM self-curates a test-time > X
curriculum (TTC) of similar tasks for practicing X
X
« The TTC is adaptively selected from a corpus (with SIFT) Tasks
to balance similarity to the test task and diversity ./
v v
e The LLM is trained on the TTC via RL ?
4 v /

CS-461 - Foundation Models and Generative Al 51

https://arxiv.org/pdf/2510.04786

Test-time training for reasoning tasks

We treat each benchmark as a set of test tasks, and train on the TTC with RL

Model AIME24 AIME25 MATHS500 Codeforces CodeElo LCBY® GPQA-D

CS-461 - Foundation Models and Generative Al

52

Test-time training for reasoning tasks

We treat each benchmark as a set of test tasks, and train on the TTC with RL

Model AIME24 AIME25 MATH500 Codeforces CodeElo LCBY GPQA-D ?35':?61 aec ey on feasoning tasks of

Qwen3-8B * model after global RL post-training
« TTC-RL

+ RL post-training
+ TTC-RL

Qwen3-4B-Instruct-2507
+ RL post-training
+ TTC-RL

Qwen3-8B-Base
+ RL post-training
+ TTC-RL

CS-461 - Foundation Models and Generative Al

53

Test-time training for reasoning tasks

We treat each benchmark as a set of test tasks, and train on the TTC with RL

Pass@1 accuracy on reasoning tasks of

Model AIME24 AIME25 MATHS500 Codeforces CodeElo LCB* GPQA-D "~

Qwen3-8B 21.67 23.33 69.55 20.85 13.73 20.61 49.11 * model after global RL post-training
+RL post-training ~ 41.67 3833 82.50 27.83 2267 2595 5647 © TTC-RL

+ TTC-RL 50.83°7 41.67° 85.10° 33.35° 2934790 27297 58.38"

Qwen3-4B-Instruct-2507 52.50 40.83 72.00 26.70 20.27 21.56 61.93

+ RL post-training 55.83 47.50 86.30 28.39 21.18 25.95 62.82

+ TTC-RL 60.00 45.83 88.50° 34.99° 27.20°°7 26.917" 61.93"°

Qwen3-8B-Base 15.83 14.17 63.10 9.92 6.67 11.26 29.70

+ RL post-training 22.50 20.83 76.85 17.46 9.97 18.51 42.77

+ TTC-RL 30.00°'“7 21.67°7° 78.15° 17.84"° 11.33°7 17.94°%7 45.94"

Takeaway: TTC-RL consistently achieves a higher pass@1 than general-purpose RL post-training
on frontier open-weight models — learning how to use context (self-attention) for individual attempts.

CS-461 - Foundation Models and Generative Al

54

Summary #2

Where we started: If task-specific data is not given to us, can we acquire it ourselves?

We saw:

* |In supervised linear setting, we can compute “optimal” retrieval scheme in closed-form — SIFT

* This retrieval scheme also works empirically with non-linear TT1
» Can use reinforcement learning to learn through practice, without supervision / solutions

Can we learn how to acquire data instead of relying on simplifying assumptions?

in /'Ae glnir/f of machine /earn/nz

CS-461 - Foundation Models and Generative Al

55

Outlook: Learning how to acquire data

Goal: Can we learn how to acquire data instead of relying on simplifying assumptions?

» What is the optimal X, ..., x, for task x* without any assumption on the underlying f ?

Recall meta-learning!

e Can learn what to store in memory (— part 1)

Can also learn how to select data in the inner loop! — example: RL2

Trial 2

CS-461 - Foundation Models and Generative Al

56

https://arxiv.org/pdf/1611.02779

Outlook: RL2

Trial 2

 Test-time: The inner loop aims to maximize returns in its environment

. T
(defined by task x™): E, opvoonl 20— 7]

* Train-time: The outer loop finds an initialization leading to high returns

of the inner loop (on average across x*) via RL:

CS-461 - Foundation Models and Generative Al

XX

T
_ﬂg,env(x*)[ztzl r t]

57

g

Episode 1

Episode 1

x goal

CS-461 - Foundation Models and Generative Al

Episode 1

x goal

CS-461 - Foundation Models and Generative Al 59

RLZ2 example

N

Episode 1

t=1 t=2

su lam
BN IEEEE
-

Episode 1

|
17 B
e

7

Episode 2

X

JEN

CS-461 - Foundation Models and Generative Al

CS-461

Episode 2 Episode 1

Episode 3

e

Episode 1

- Foundation Models and Generative Al

61

CS-461

Episode 2 Episode 1

Episode 3

Episode 4

Key question: By solving many of these
environments, can we learn an algorithm for
efficient exploration of novel environments?

- Foundation Models and Generative Al

62

G TTT scales attention to long sequences

G Acquiring data to learn from at test-time

About us

e I’'m a PhD student at LAS with Andreas Krause

* Our lab works on learning & adaptive systems that

» actively acquire information

Learning &

o continually learn at test-time Adaptive Systems

Talk to us if you're interested in doing a research visit at LAS!

* e.g., Master’s thesis

64

