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Agenda

1. TTT can enable models to outperform globally trained models in-distribution.

2. TTT enables models to continue learning & improving at test-time.



Applications of test-time training

In-Context Examples Test Model Predictions le7
EEEEEEEEEEEEEEE EEEEEEEEEEN N EEEEEEEEENEEEEEE EEEEEEEEENEEEEE :
H muwaw HESEEES 5-OER_CCEGSSEGE § uBumaul SESESE B aEassal ERESSE
ENEE EEEEEEEN = N EEEEEEE B B H EEEEEEE E B .
e S | Bl o 20
EEEEN B § pEEEm B i O ’
EEEEEEN L O S, &
- § Eanu i i .
O m EEEN = EEN i AEE n EEEEwm e
o || HE EEEC | EEE  EEEEEE . + 2
< | III.. = 1.0 7
1] ]
L] = -
u u ||: 0.5
=
u =
L] [

Few-shot learning High-dimensional robotics tasks
(Akyurek et al.; ICML ’25) (Diaz-Bone*, Bagatella*, H*, Krause; NeurlPS ’25)

0.6

0.50

0.23

0.2 =

Test accuracy AIME25

0.0

Reasoning
(H*, Diaz-Bone*, Hakimi, Krause, Hardt; preprint)



Part 1: Test-time training

“When solving a problem of interest, do not solve a more general problem as
an intermediate step. Try to get the answer that you really need but not a more
general one.” —\Vl/adimir Vapnik



Train Test

lTest-time training
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( Test instance x*
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D — {(zi,v:)}", XY f(z*)




A working definition of test-time training

« Consider a dataset D = {(X,-, y,-)}i

» Global training trains a single model f and predicts f(x)

» TTT trains a specific model f, and predicts f, (x)

Can TTT improve predictions even in-distribution
while using only D for specializing the model?



Why can TTT work??

CCFM @ NeurlPS ’'25

d,

« Assume existence of an s-sparse concept space © : X — |

« Assume that the target is linear in the concept space: f*(x) = (®(x), w™)

 This is called the linear representation hypothesis

Note: In classification, the logits are canonically parameterized as (®(x), w.) where w.. is the class-specific
weight vector. The class probability is then given by P(c | x) «x exp({(D(x), w..)).

 Assume our model learns a dense, exponentially-smaller
approximation of @ which we call the feature map
V. - d, with d2 << dl Park et al.; ICML *24

Note: Compressed sensing theory says that ¥ can represent exponentially many concepts in superposition: d; ~ s exp(d,/s).




concept space P

\ K

embedding

d1

lion

king

Ly
L
A

unembedding

_éy

7
/
/
d
0.1 |72 /
0.4 4
0.2

activations W

10

» Large concept space @

e Superimposed into the
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How does TTT behave?

We trained a sparse autoencoder for ImageNet to learn a concept space O

1. Observation: The learned features Y yield similar neighborhoods to
neighborhoods in concept space D.

2. Observation: Among a test point x and its neighborhood (in W-space), f*A

can be approximated by an s-sparse linear function in the concept space . /
SurIDF/S//zy.
3. Observation: TTT in W-space implicitly adjusts coefficients based on only a
few concepts relevant to the test task.
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How does TTT behave?

Under Observations 1-3, az-subgaussian data & regularity conditions,

for any x and sufficiently small neighborhood size k:

25 log(d, /s) )
k

(f*(x) — (P), 1 T))* < 0 (

Under the same assumptions there exist an instance with f*( - ) = 1 where the
error of the global model is E[(f*(x) — (¥(x), P8"°°9))*] = 1 — d,/d,

Takeaway: T 1T efficiently learns the meaning of exponentially many

concepts from data whereas global learning cannot disentangle them.
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o TTT temporarily “forgets” irrelevant
pre-trained knowledge

e This “frees up” capacity to learn
relevant concepts at a higher resolution

‘specialization after generalization”
/eam/@ meaning of conce/a]fg

13



When does (simple) TTT work”?

—s— g¢]obal training majority voting —o— TTT
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Takeaway: TTT locally improves predictions for underparameterized models,

but its Improvement diminishes as models become overparameterized.
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Part 2: Test-time training agents

“I am still learning.” —Michelangelo, 87 years old



Akyurek et al.; ICML ‘25

Warm up: Few-shot learning
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lest-time training agents

If task-specific data is not given to us:
 Can we select it from training data?

 Can we generate it ourselves through interaction within an environment?

( Test instance &~

\4

Training data Learnt model Prediction
D = {(zi,yi) i, f: X =) f(a™)
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Why Is automatic data selection necessary”?

“Interesting”
all of natural language
language
all token
sequences
pre-training post-training test-time training

human-curated human-curated self-curated(!)
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Selecting informative data for fine-tuning (SIFT):

Select data that maximally reduces “uncertainty”

about how to solve the task:

Data Manifold
+

obs,, = argmax I(f(x); obs,, | obs.,) /K_, Selected Data

Full Data Space

Simple TTT procedure:

1. given task x, find local data D, (from dataset D)

2. fine-tune pre-trained model f on local data D, to get specialized model f,

3. predict f,(x)
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1) Estimating uncertainty

 Making this tractable...

Surrogate model: approximate model f as logit-linear model in a
Known representation space

* Error bound: dyy(f,(x).f*(x) < () 6,(x) (with prob. 1 - )

error scaling uncertainty

— 0, (x) measures uncertainty about response to x!
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2) Minimizing uncertainty

. SIFT: minimizes uncertainty about prediction for input x*

D.=X,U({x,.,} withx, =argmin oy (x™)
X

e convergence of uncertainty is guaranteed!

Gn(x*) — Goo(x*)

Takeaway: SIFT guarantees convergence to the smallest possible

“uncertainty” given the available data and pre-learned representations.
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New SOTA on the Pile benchmark
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Takeaway: SIFT guarantees convergence to the smallest possible

“uncertainty” given the pre-learned representations and available data.

€) Can we learn representations over time?

© Can we obtain new data over time?
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Q: Can we learn representations over time?

Strong representations can be bootstrapped!

Selected Data - == 1.i.d. Data
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Solving “challenging” tasks

* One family of challenging tasks are sparse-reward tasks

* Such tasks require chaining particular actions before observing any reward

 Standard RL approach: Repeatedly attempt test task

TD3 Thompson Sampling SAC SAC + MaxInfoRL

+ + +
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Step 2. Collecting new experience

NeurlPS ‘25

+

Solving previously unsolved tasks requires obtaining new experience
— online interaction with an environment

We ask: What if the agent uses its current understanding of the task landscape
to set itself informative tasks?

gach +

+++
+ +++

0

+
+
g g~

Standard RL Global exploration DISCOVER
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How to determine which tasks to attempt?

» We learn a task-conditioned value function V,(g, g’) which measures the
“similarity” of tasks g and g’

task,, = argmax a, - optimistic V,(s,, g) + (1 — a) - optimistic V (g, g™)
g

» The parameter a, can be auto-tuned to have 50% task achievability
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Observations from DISCOVER

1. Targeted exploration is crucial in high-dimensional task spaces

2. DISCOVER can leverage prior knowledge about the task space

Dim. 2 3 4 5 6
HER o JNe < TNe o JNe'®
MEGA 48 o0 00 O
Ach.+Nov. 52 o0 o0 o

DISCOVER 29 31 74 354 18.

Required #steps (M) for reaching 10%
success rate in point mazes of varying Using a pre-trained value

dimensions function from point maze in

ant maze with same layout
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Can TTT improve reasoning”?

o~
7 WA

Preprint

* Given a test task, an LLM self-curates Solutions
- - ® Target task
a test-time curriculum (TTC) of ® TTC —
similar tasks for practicing X X
 The TTC is adaptively selected from a Tacke X
corpus (with SIFT) to balance similarity
to the test task and diversity v d
Y
7 Y

« We train on the TTC via GRPO

29



Malin results

We treat each benchmark as a set of test tasks, and train on the TTC with RL

Pass@1 accuracy on reasoning tasks of

Model AIME24 AIME25 MATHS500 Codeforces CodeElo LCB*  GPQA-D "~
Qwen3-SB 21.67 23.33 69.55 20.85 13.73 20.61 49.11 * model after global RL post-training
+ RL post-training ~ 41.67 3833  82.50 27.83 2267 2595 5647 r TTCRL
+ TTC-RL 50.83°"° 41.67"'°° 85.10°7"° 3335  2934"° 2729 5838 0.50
=M= RL Post-Trainin

Qwen3-4B-Instruct-2507 52.50 40.83 72.00 26.70 20.27 21.56 61.93 > -0- Test_TiItne cumfulum I
+ RL post-training  55.83 47.50 86.30 28.39 21.18 25.95 62.82 g 0.45 — ./
+ TTC-RL 60.007° 45.837° 88.50"'°° 34.99°° 2720 26917 61.93¢ < o— !

% -
Qwen3-8B-Base 15.83 14.17 63.10 9.92 6.67 11.26 29.70 = 0.40 - -%l/
+ RL post-training  22.50 20.33 76.85 17.46 9.97 18.51 42.77 f | | |
+ TTC-RL 30.00°“7 21.677° 7815 17.847°  11.33"7  17.94°%7 4594°°° 1 10 100 1000

# Training Samples

Takeaway: TTC-RL consistently achieves a higher pass@1 than general-

purpose RL post-training & learns from significantly fewer attempits.
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TTC-RL with additional test-time scaling

Comparison to scaling thinking:
8k context + TTC-RL vs 30k context

Comparison to majority voting:

Qwen3-8B - 0.38 0.18 0.49

O
O

+ Thinking - 0.73 0.34 0.61

Test pass@k
Test maj@k

N
S

+ TTC-RL

—®— TTC-RL RL Post-Training —Hl— Qwen3-8B

Takeaway: TTCs can complement existing methods for test-time scaling

such as majority voting & reasoning in-context.
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Do TTCs specialize models?

. _ Individual training for each task in AIME25
Trained model (row) vs Evaluation (column)
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Takeaway: T T1Cs effectively specialize models to their target tasks.
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Conclusion

TTT is a class of methods for specializing “foundation” models to individual tasks

1. TTT can enable models to outperform globally trained models in-distribution.

2. TTT enables models to continue learning & improving at test-time.

Happy to talk more!
jonas.huebotter@inf.ethz.ch
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