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About me

• Undergrad at TU Munich in CS and Math


• Masters at ETH Zurich in Theoretical CS and ML


• PhD Student at ETH Zurich with Andreas Krause


My interests:


• Vertical: Solving “hard” tasks


• Horizontal: Specialization, RL, meta-learning & more
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examples later!



Thanks to my collaborators
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I’ll acknowledge everyone along the way 



Agenda

1. TTT can enable models to outperform globally trained models in-distribution.


2. TTT enables models to continue learning & improving at test-time.
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Applications of test-time training
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Few-shot learning

(Akyürek et al.; ICML ’25)

High-dimensional robotics tasks

(Diaz-Bone*, Bagatella*, H*, Krause; NeurIPS ’25)

Reasoning

(H*, Diaz-Bone*, Hakimi, Krause, Hardt; preprint)



Part 1: Test-time training

“When solving a problem of interest, do not solve a more general problem as 
an intermediate step. Try to get the answer that you really need but not a more 
general one.”   —Vladimir Vapnik
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TestTrain

Training data Learnt model Prediction

Test instance

Test-time training
known!



A working definition of test-time training

• Consider a dataset 


• Global training trains a single model  and predicts 


• TTT trains a specific model  and predicts 

D = {(xi, yi)}i

f f(x)

fx fx(x)
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Can TTT improve predictions even in-distribution 
while using only  for specializing the model?D

training on neighborhoods within the dataset



Why can TTT work?

• Assume existence of an -sparse concept space .


• Assume that the target is linear in the concept space: 


• This is called the linear representation hypothesis 

• Assume our model learns a dense, exponentially-smaller

   approximation of  which we call the feature map 
    with 

s Φ : 𝒳 → ℝd1

f ⋆(x) = ⟨Φ(x), w⋆⟩

Φ
Ψ : 𝒳 → ℝd2 d2 ≪ d1
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CCFM @ NeurIPS ’25

Note: Compressed sensing theory says that  can represent exponentially many concepts in superposition: .Ψ d1 ∼ s exp(d2/s)

Note: In classification, the logits are canonically parameterized as  where  is the class-specific

weight vector. The class probability is then given by .

⟨Φ(x), wc⟩ wc
ℙ(c ∣ x) ∝ exp(⟨Φ(x), wc⟩)

Park et al.; ICML ’24
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• Large concept space 


• Superimposed into the 
feature map 

Φ

Ψ



How does TTT behave?

We trained a sparse autoencoder for ImageNet to learn a concept space 


1. Observation: The learned features  yield similar neighborhoods to 
neighborhoods in concept space .


2. Observation: Among a test point  and its neighborhood (in -space),  
can be approximated by an -sparse linear function in the concept space .


3. Observation: TTT in -space implicitly adjusts coefficients based on only a 
few concepts relevant to the test task.

Φ̂

Ψ
Φ̂

x Ψ f ⋆

s Φ̂

Ψ
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surprising!

also observed in prior work

predicted by prior work on implicit regularization in sparse recovery



How does TTT behave?
Under Observations 1-3, -subgaussian data & regularity conditions,

for any  and sufficiently small neighborhood size :

σ2

x k
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the minimax optimal rate from sparse recovery
( f ⋆(x) − ⟨Ψ(x), ̂vTTT

x ⟩)2 ≤ O ( σ2s log(d1/s)
k )

Under the same assumptions there exist an instance with  where the 
error of the global model is 

f ⋆( ⋅ ) = 1
𝔼[( f ⋆(x) − ⟨Ψ(x), ̂vglobal⟩)2] = 1 − d2/d1

Takeaway: TTT efficiently learns the meaning of exponentially many 
concepts from data whereas global learning cannot disentangle them.
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• TTT temporarily “forgets” irrelevant 
pre-trained knowledge


• This “frees up” capacity to learn 
relevant concepts at a higher resolution

“specialization after generalization”
learning conceptslearning meaning of concepts



When does (simple) TTT work?
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Takeaway: TTT locally improves predictions for underparameterized models, 
but its improvement diminishes as models become overparameterized.



Part 2: Test-time training agents

“I am still learning.”   —Michelangelo, 87 years old



Warm up: Few-shot learning

• Each test task comes with demonstrations


• Performing TTT on a fine-tuned Llama3 8B:
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Akyürek et al.; ICML ‘25

+ augmentations
Data Loss

next-token prediction
Task-specific models



Test-time training agents

If task-specific data is not given to us:


• Can we select it from training data?


• Can we generate it ourselves through interaction within an environment?
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putting the model in the decision-making loop!



Why is automatic data selection necessary?

all of natural 
language

all token 
sequences

pre-training

human-curated

post-training

human-curated

test-time training

self-curated(!)

“interesting” 
language
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Step 1: Imitating existing data from D
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Selecting informative data for fine-tuning (SIFT): 
Select data that maximally reduces “uncertainty” 
about how to solve the task:

Simple TTT procedure:


1. given task , find local data  (from dataset )


2. fine-tune pre-trained model  on local data  to get specialized model    


3. predict 

x Dx D

f Dx fx
fx(x)

ICLR ‘25

obsn = argmax I( f(x); obsn ∣ obs<n)



• Making this tractable…


Surrogate model: approximate model  as logit-linear model in a 
known representation space


• Error bound:

f

1) Estimating uncertainty
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 linear representation hypothesis→

dTV( fn(x), f ⋆(x)) ≤ β(δ) σn(x) (with prob. 1 − δ)

  measures uncertainty about response to !→ σn(x) x
scaling uncertaintyerror

dTV( fn(x), f ⋆(x))



• SIFT: minimizes uncertainty about prediction for input 


• convergence of uncertainty is guaranteed!

x⋆

2) Minimizing uncertainty
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Dx⋆ = Xn ∪ {xn+1}  with xn+1 = argmin σXn∪{x}(x⋆)
x

irreducible uncertainty

→ σ∞(x⋆)σn(x⋆)

Takeaway: SIFT guarantees convergence to the smallest possible 
“uncertainty” given the available data and pre-learned representations.
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New SOTA on the Pile benchmark

ours

https://paperswithcode.com/sota/language-modelling-on-the-pile

40x larger
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Takeaway: SIFT guarantees convergence to the smallest possible 
“uncertainty” given the pre-learned representations and available data.

Can we learn representations over time?1

2 Can we obtain new data over time?



Q: Can we learn representations over time?
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representations
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Strong representations can be bootstrapped!

NeurIPS ‘24



Solving “challenging” tasks

• One family of challenging tasks are sparse-reward tasks


• Such tasks require chaining particular actions before observing any reward


• Standard RL approach: Repeatedly attempt test task
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never observes any reward signal!



Solving previously unsolved tasks requires obtaining new experience

 online interaction with an environment→

Step 2. Collecting new experience
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NeurIPS ‘25

We ask: What if the agent uses its current understanding of the task landscape 
to set itself informative tasks?

Standard RL Global exploration DISCOVER



• We learn a task-conditioned value function  which measures the 
“similarity” of tasks  and 


• The parameter  can be auto-tuned to have 50% task achievability

Vθ(g, g′￼)
g g′￼

αn

How to determine which tasks to attempt?
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taskn = argmax αn ⋅ optimistic Vθ(s0, g) + (1 − αn) ⋅ optimistic Vθ(g, g⋆)
not too hard & diverse relevant to test taskg



1. Targeted exploration is crucial in high-dimensional task spaces


2. DISCOVER can leverage prior knowledge about the task space

Observations from DISCOVER

28

Required #steps (M) for reaching 10% 
success rate in point mazes of varying 

dimensions

1
Using a pre-trained value 

function from point maze in 
ant maze with same layout

2



Can TTT improve reasoning?

• Given a test task, an LLM self-curates 
a test-time curriculum (TTC) of 
similar tasks for practicing


• The TTC is adaptively selected from a 
corpus (with SIFT) to balance similarity 
to the test task and diversity


• We train on the TTC via GRPO
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Preprint



Main results
We treat each benchmark as a set of test tasks, and train on the TTC with RL
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Pass@1 accuracy on reasoning tasks of

• base model

• model after global RL post-training

• TTC-RL

Takeaway: TTC-RL consistently achieves a higher pass@1 than general-
purpose RL post-training & learns from significantly fewer attempts.



TTC-RL with additional test-time scaling
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Comparison to scaling thinking:

8k context + TTC-RL vs 30k contextComparison to majority voting:

Takeaway: TTCs can complement existing methods for test-time scaling 
such as majority voting & reasoning in-context.



Do TTCs specialize models?
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Trained model (row) vs Evaluation (column)
Individual training for each task in AIME25

Takeaway: TTCs effectively specialize models to their target tasks.



Conclusion
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TTT is a class of methods for specializing “foundation” models to individual tasks


1. TTT can enable models to outperform globally trained models in-distribution.


2. TTT enables models to continue learning & improving at test-time.

Happy to talk more!

jonas.huebotter@inf.ethz.ch

mailto:jonas.huebotter@inf.ethz.ch

