Test-Time Training Agents to Solve Challenging Problems

Jonas Hübotter November 5, 2025

About me

- Undergrad at TU Munich in CS and Math
- Masters at ETH Zurich in Theoretical CS and ML
- PhD Student at ETH Zurich with Andreas Krause

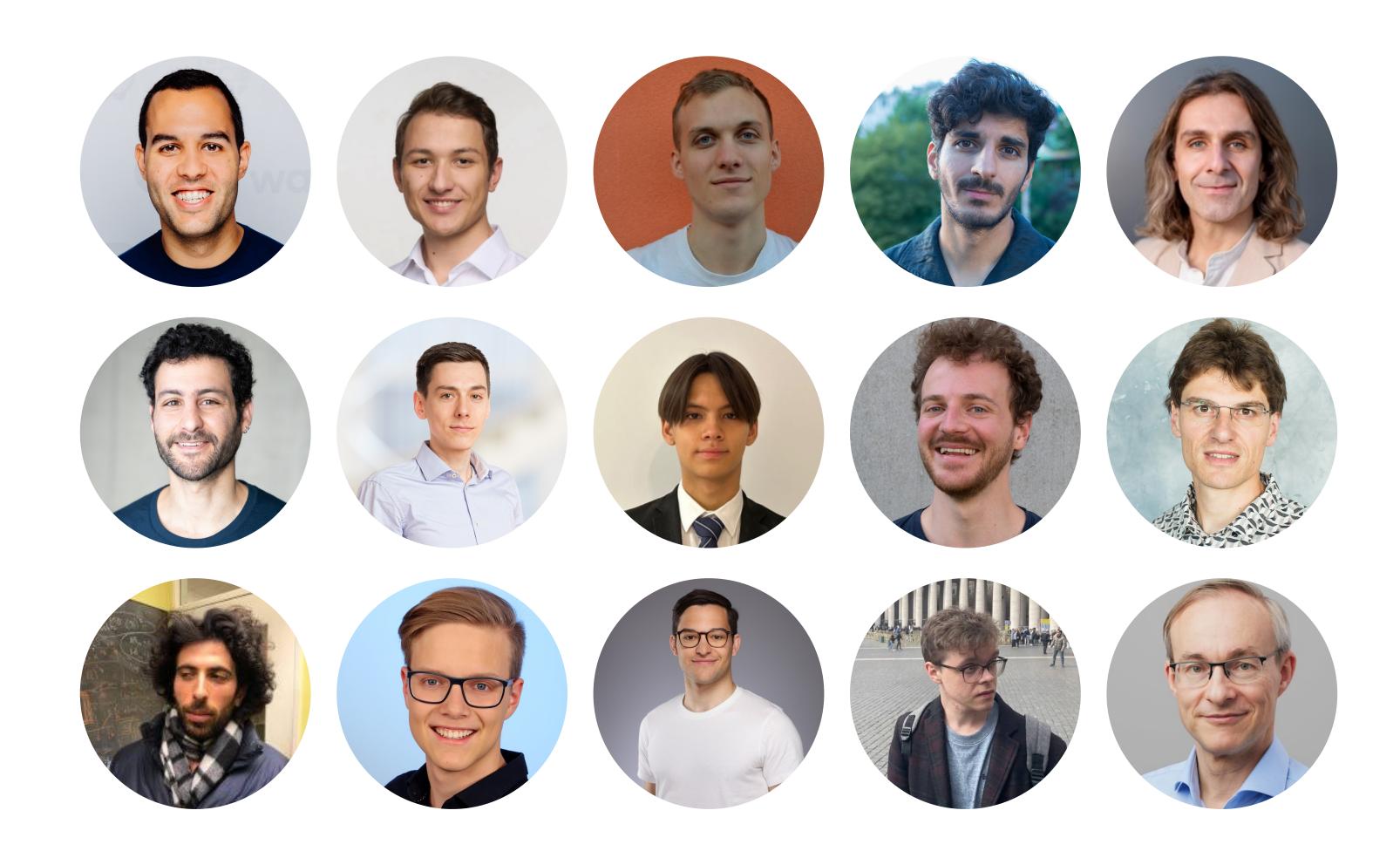
My interests:

examples later!

- Vertical: Solving "hard" tasks
- Horizontal: Specialization, RL, meta-learning & more

Thanks to my collaborators

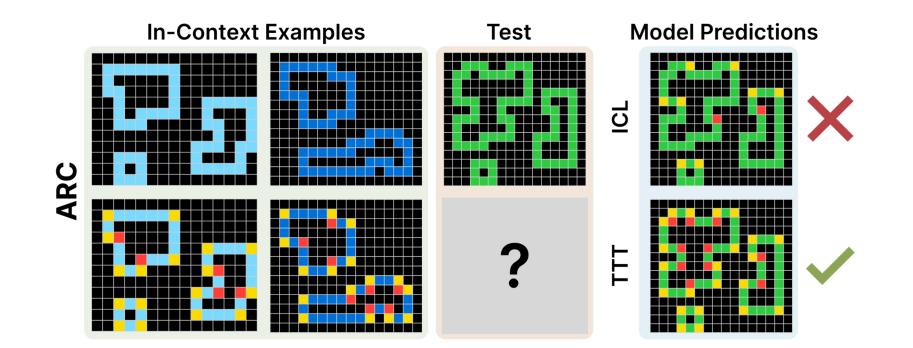
I'll acknowledge everyone along the way



Agenda

- 1. TTT can enable models to outperform globally trained models in-distribution.
- 2. TTT enables models to continue learning & improving at test-time.

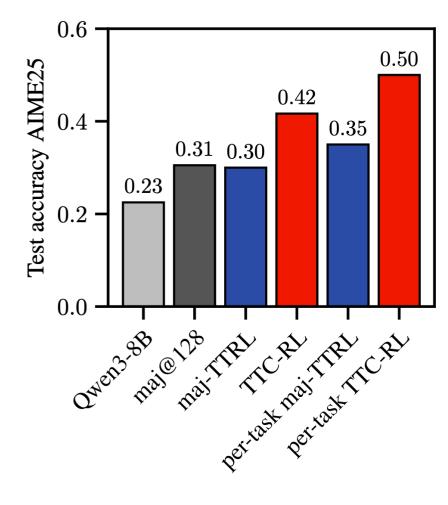
Applications of test-time training



1e7 - 2.0 - 1.5 - 1.0 - 0.5

Few-shot learning (Akyürek et al.; ICML '25)

High-dimensional robotics tasks (Diaz-Bone*, Bagatella*, **H***, Krause; NeurIPS '25)



Reasoning (**H***, Diaz-Bone*, Hakimi, Krause, Hardt; preprint)

Part 1: Test-time training

"When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really need but not a more general one." $-Vladimir\ Vapnik$

Train

Test

Test-time training

Test instance x^{\star}

Training data

$$\mathcal{D} = \{(oldsymbol{x}_i, y_i)\}_{i=1}^n$$

Learnt model

$$f:\mathcal{X} o\mathcal{Y}$$

Prediction

$$f(oldsymbol{x}^{\star})$$

A working definition of test-time training

- Consider a dataset $D = \{(x_i, y_i)\}_i$
- Global training trains a single model f and predicts f(x)
- TTT trains a specific model f_{χ} and predicts $f_{\chi}(\chi)$

Can TTT improve predictions even in-distribution while using $only \ D$ for specializing the model?

training on neighborhoods within the dataset

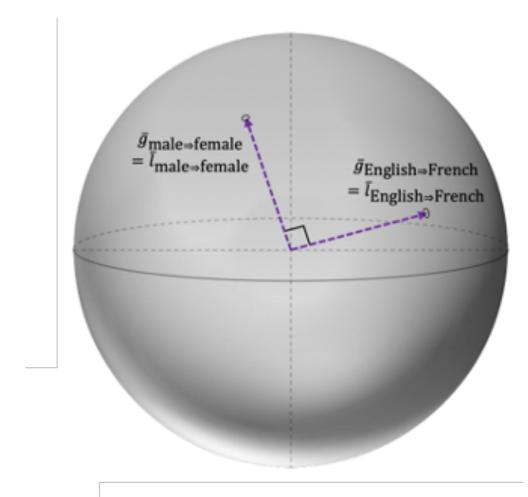
CCFM @ NeurIPS '25

- Assume existence of an s-sparse concept space $\Phi: \mathcal{X} \to \mathbb{R}^{d_1}$.
- Assume that the target is linear in the concept space: $f^*(x) = \langle \Phi(x), w^* \rangle$
 - This is called the linear representation hypothesis

Note: In classification, the logits are canonically parameterized as $\langle \Phi(x), w_c \rangle$ where w_c is the class-specific weight vector. The class probability is then given by $\mathbb{P}(c \mid x) \propto \exp(\langle \Phi(x), w_c \rangle)$.

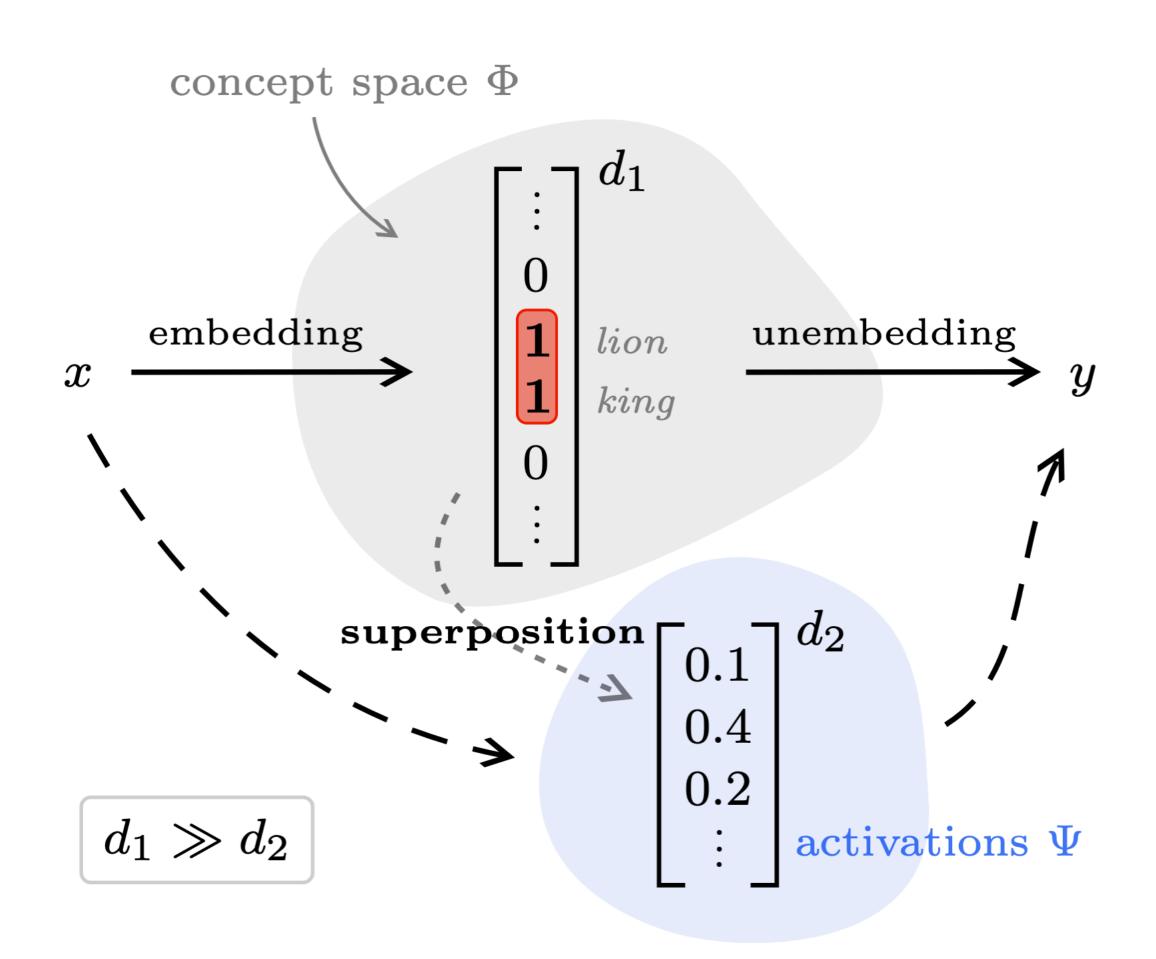
• Assume our model learns a dense, exponentially-smaller approximation of Φ which we call the **feature map**

$$\Psi: \mathcal{X} \to \mathbb{R}^{d_2} \text{ with } d_2 \ll d_1$$



Park et al.; ICML '24

Note: Compressed sensing theory says that Ψ can represent exponentially many concepts in superposition: $d_1 \sim s \exp(d_2/s)$.



- Large concept space Φ
- Superimposed into the feature map $\boldsymbol{\Psi}$

How does TTT behave?

We trained a sparse autoencoder for ImageNet to learn a concept space $\hat{\Phi}$

- **1. Observation**: The learned features Ψ yield similar neighborhoods to neighborhoods in concept space $\hat{\Phi}$.
- **2. Observation**: Among a test point x and its neighborhood (in Ψ -space), f^* can be approximated by an s-sparse linear function in the concept space $\hat{\Phi}$.
- 3. Observation: TTT in Ψ -space implicitly adjusts coefficients based on only a few concepts relevant to the test task.

predicted by prior work on implicit regularization in sparse recovery

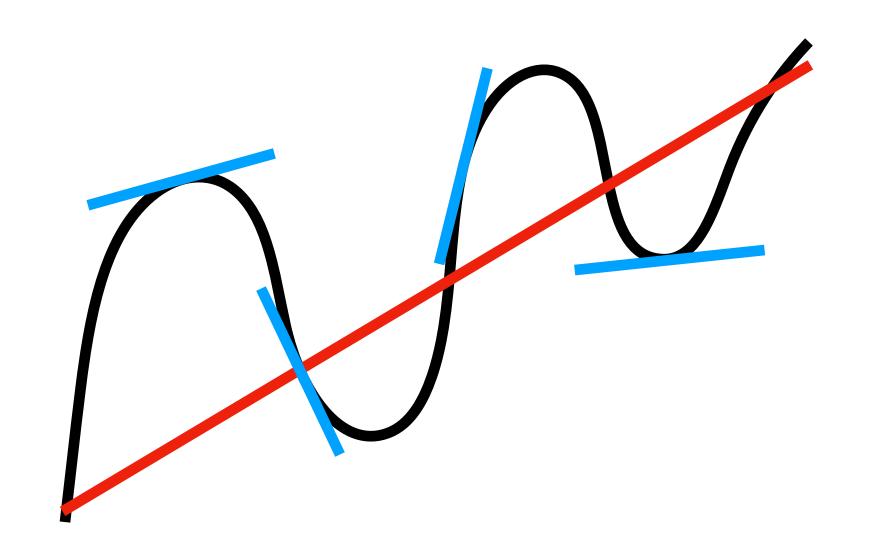
How does TTT behave?

Under **Observations 1-3**, σ^2 -subgaussian data & regularity conditions, for any x and sufficiently small neighborhood size k:

$$(f^{\star}(x) - \langle \Psi(x), \hat{v}_{x}^{TTT} \rangle)^{2} \leq O\left(\frac{\sigma^{2} s \log(d_{1}/s)}{k}\right)$$
the minimax optimal rate from sparse recovery

Under the same assumptions there exist an instance with $f^*(\cdot) = 1$ where the error of the global model is $\mathbb{E}[(f^*(x) - \langle \Psi(x), \hat{v}^{global} \rangle)^2] = 1 - d_2/d_1$

Takeaway: TTT *efficiently* learns the meaning of *exponentially many* concepts from data whereas global learning cannot disentangle them.



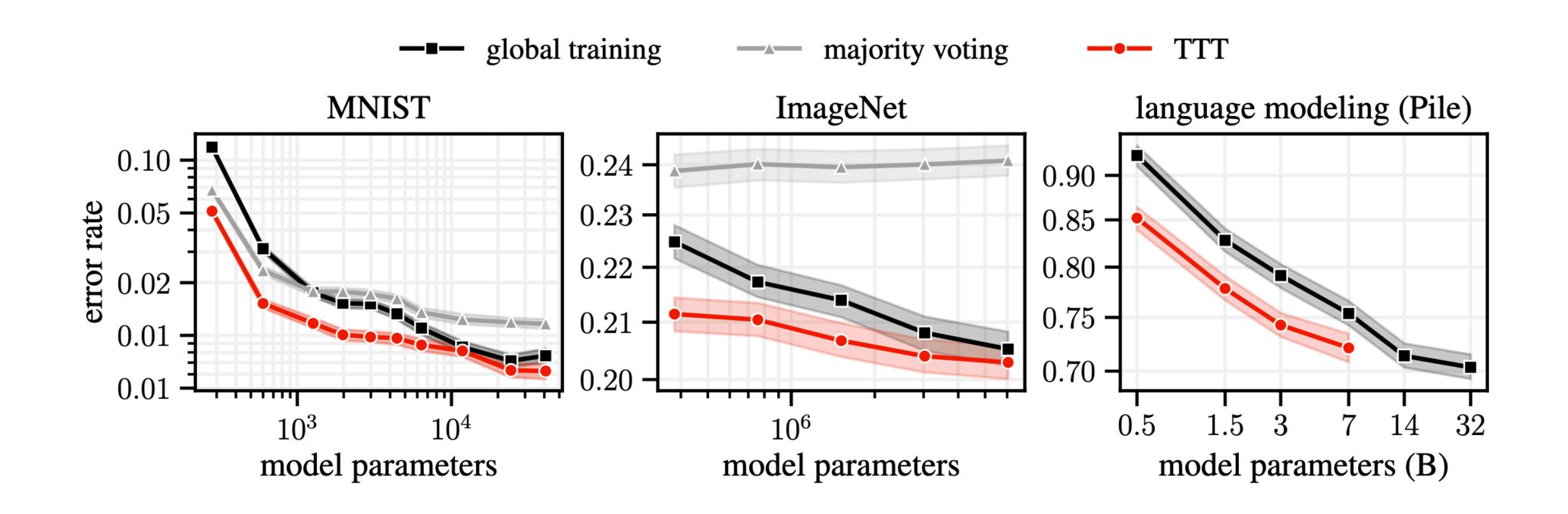
- TTT temporarily "forgets" irrelevant pre-trained knowledge
- This "frees up" capacity to learn relevant concepts at a higher resolution

"specialization after generalization"

learning meaning of concepts

learning concepts

When does (simple) TTT work?



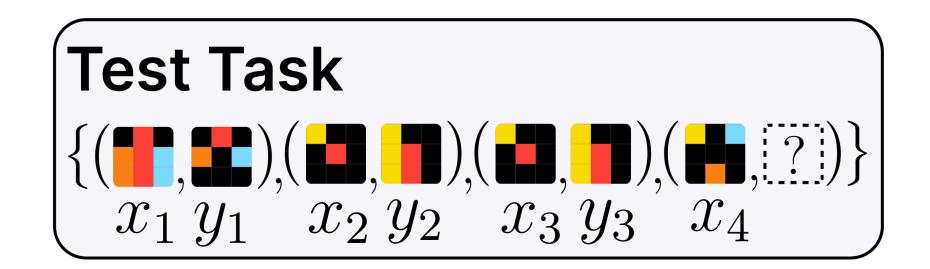
Takeaway: TTT locally improves predictions for underparameterized models, but its improvement diminishes as models become overparameterized.

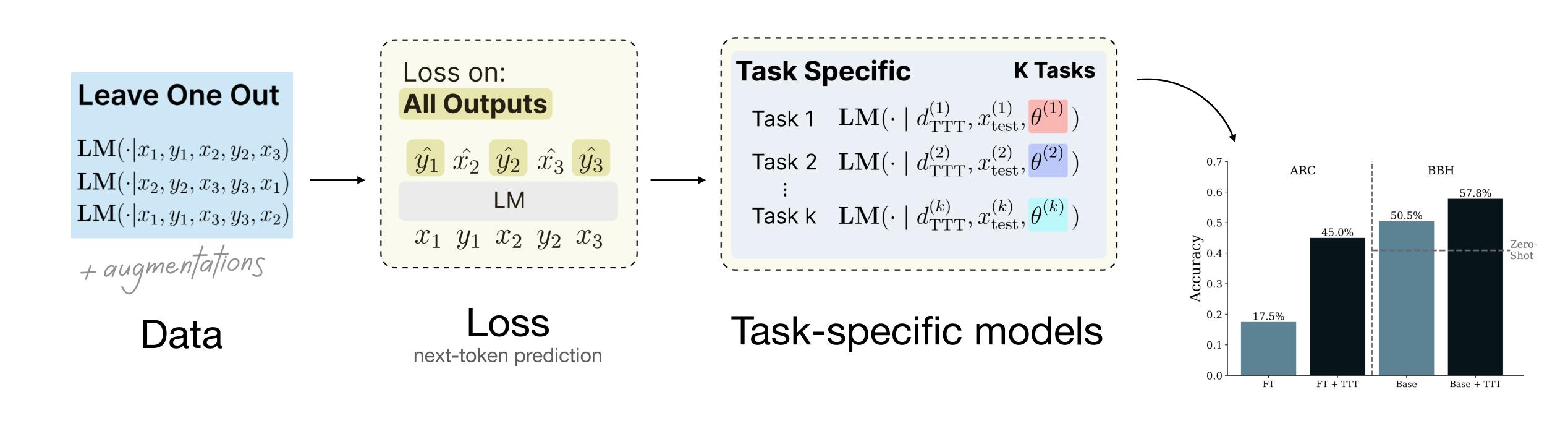
Part 2: Test-time training agents

"I am still learning." — Michelangelo, 87 years old

Warm up: Few-shot learning

- Each test task comes with demonstrations
- Performing TTT on a fine-tuned Llama3 8B:

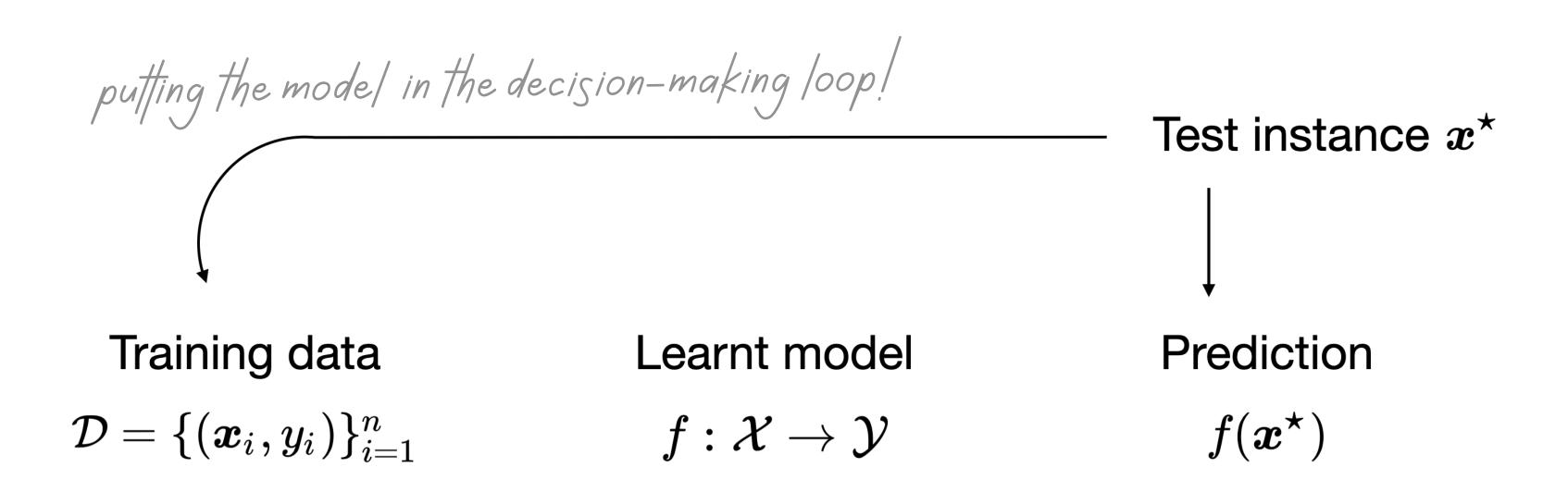




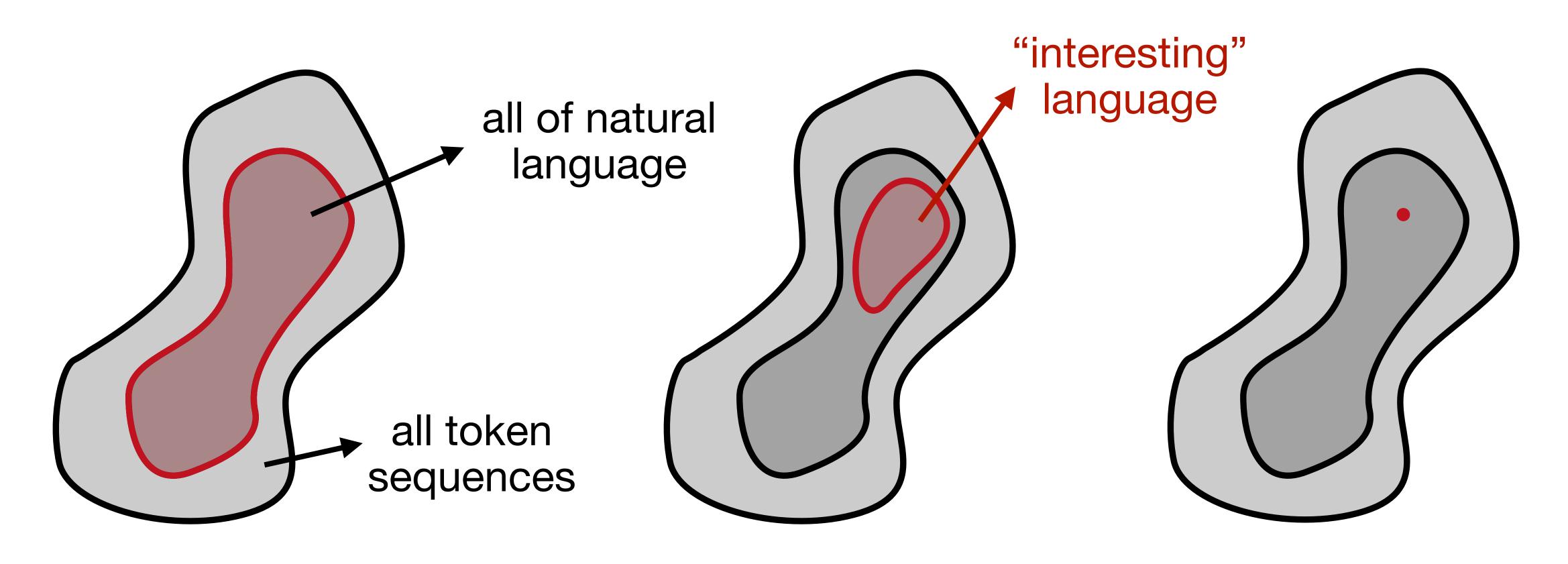
Test-time training agents

If task-specific data is not given to us:

- Can we select it from training data?
- Can we generate it ourselves through interaction within an environment?



Why is automatic data selection necessary?



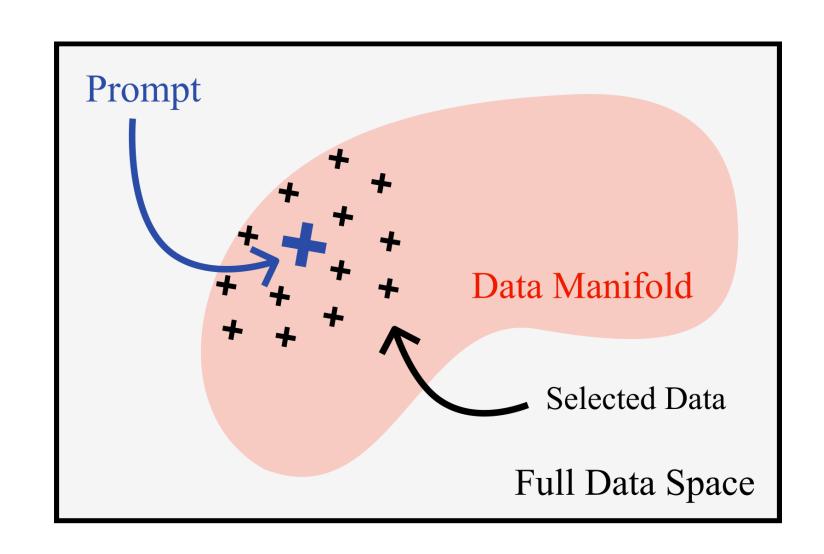
pre-training human-curated post-training human-curated test-time training self-curated(!)

Step 1: Imitating existing data from D

Selecting informative data for fine-tuning (SIFT):

Select data that maximally reduces "uncertainty" about how to solve the task:

$$obs_n = argmax I(f(x); obs_n | obs_{< n})$$



Simple TTT procedure:

- 1. given task x, find local data D_x (from dataset D)
- 2. fine-tune pre-trained model f on local data $D_{\scriptscriptstyle \chi}$ to get specialized model $f_{\scriptscriptstyle \chi}$
- 3. predict $f_{\chi}(x)$

1) Estimating uncertainty

Making this tractable...

Surrogate model: approximate model f as logit-linear model in a known representation space

- → linear representation hypothesis
- Error bound: $d_{\text{TV}}(f_n(x), f^*(x)) \leq \beta(\delta) \sigma_n(x)$ (with prob. 1δ) error scaling uncertainty
- $\rightarrow \sigma_n(x)$ measures uncertainty about response to x!

2) Minimizing uncertainty

• SIFT: minimizes uncertainty about prediction for input x^*

$$D_{x^*} = X_n \cup \{x_{n+1}\} \quad \text{with } x_{n+1} = \underset{\mathcal{X}}{\operatorname{argmin}} \sigma_{X_n \cup \{x\}}(x^*)$$

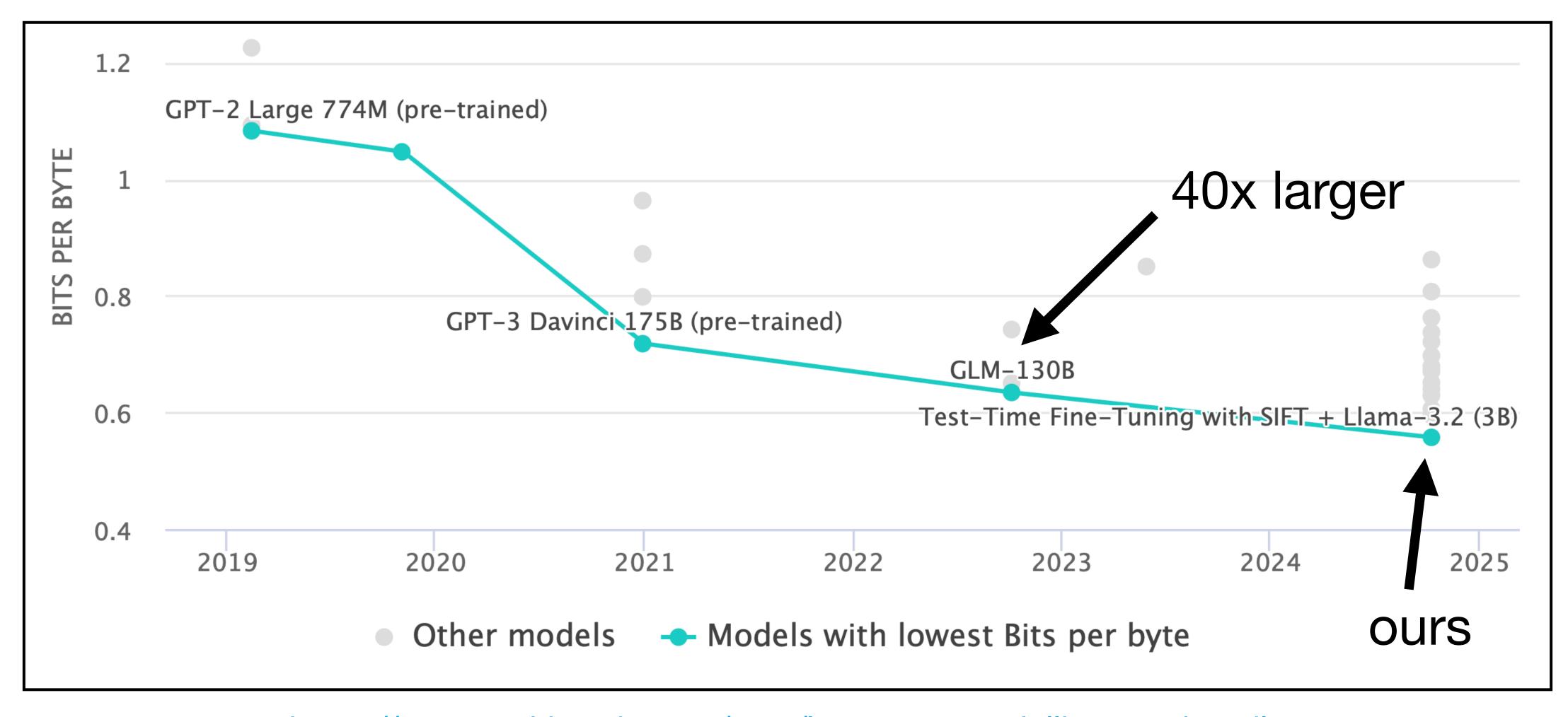
convergence of uncertainty is guaranteed!

$$\sigma_n(x^*) \to \sigma_\infty(x^*)$$

irreducible uncertainty

Takeaway: SIFT guarantees convergence to the smallest possible "uncertainty" given the *available* data and *pre-learned* representations.

New SOTA on the Pile benchmark

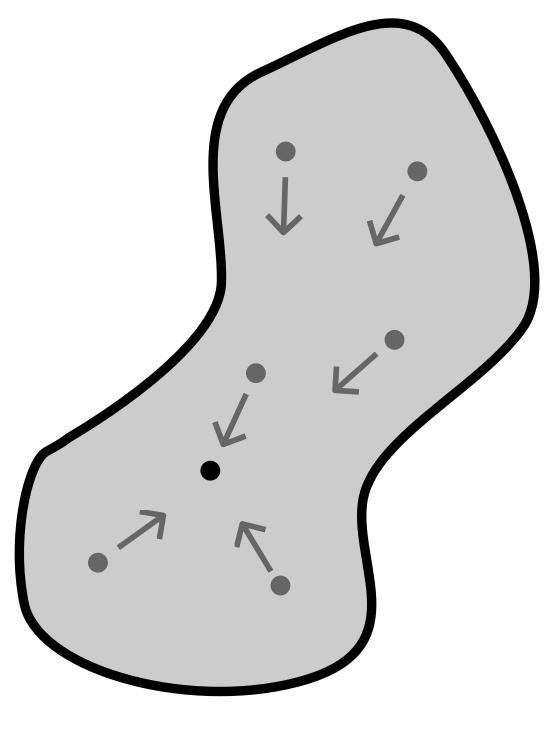


https://paperswithcode.com/sota/language-modelling-on-the-pile

Takeaway: SIFT guarantees convergence to the smallest possible "uncertainty" given the *pre-learned* representations and *available* data.

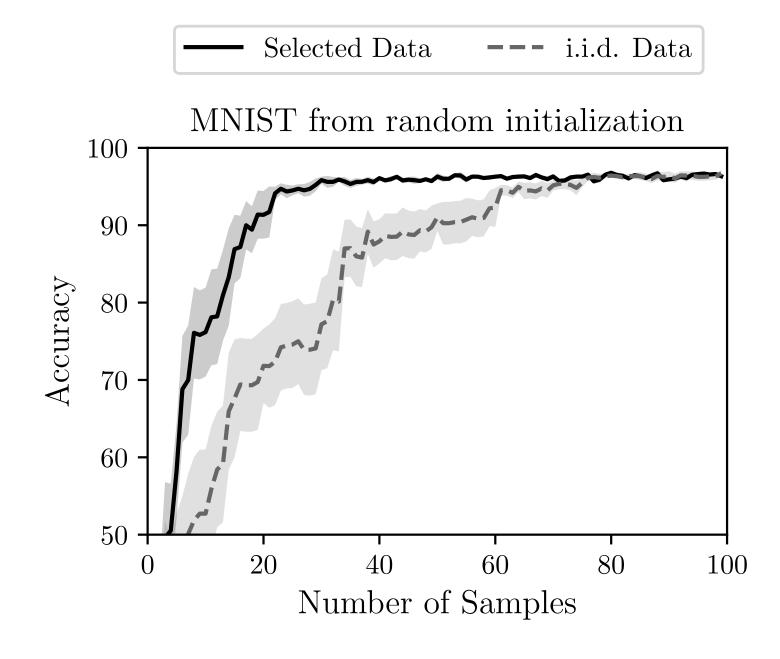
- Can we learn representations over time?
- Can we obtain new data over time?

Q: Can we learn representations over time?



representations

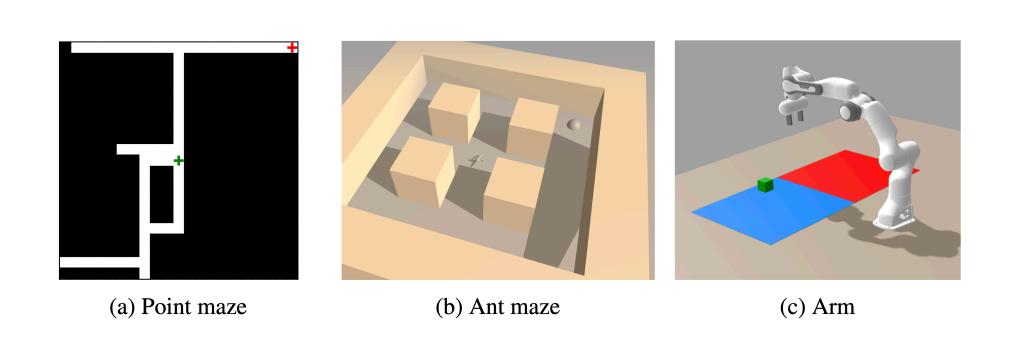
Strong representations can be bootstrapped!

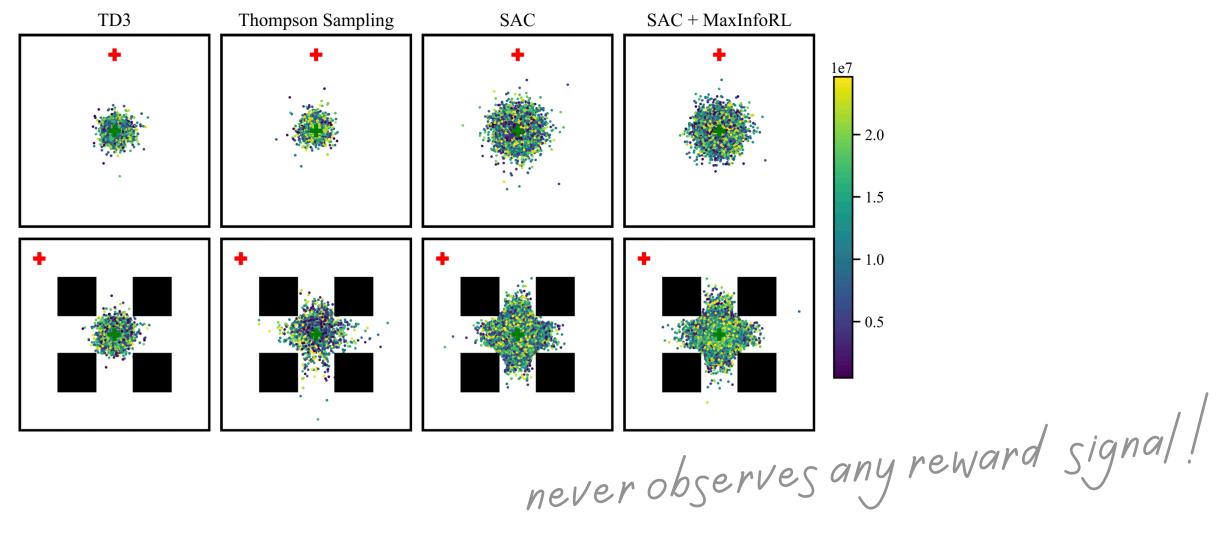


NeurIPS '24

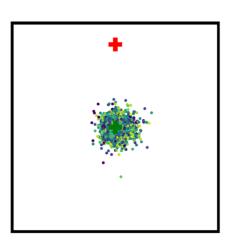
Solving "challenging" tasks

- One family of challenging tasks are sparse-reward tasks
- Such tasks require chaining particular actions before observing any reward
- Standard RL approach: Repeatedly attempt test task





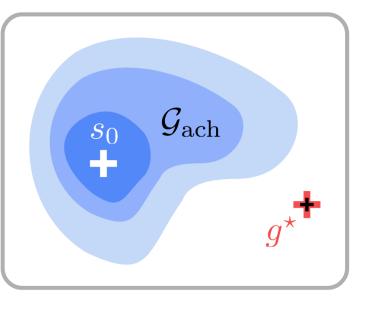
NeurIPS '25



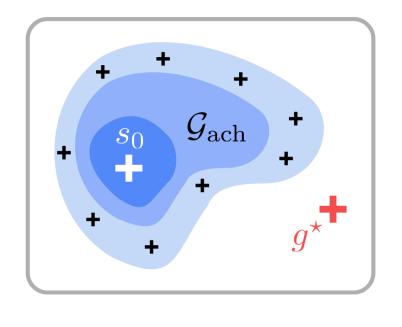
Solving previously unsolved tasks requires obtaining new experience

-> online interaction with an environment

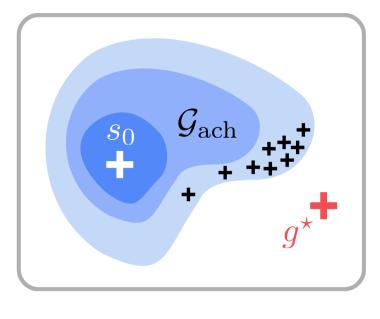
We ask: What if the agent uses its current understanding of the task landscape to set itself *informative* tasks?



Standard RL



Global exploration

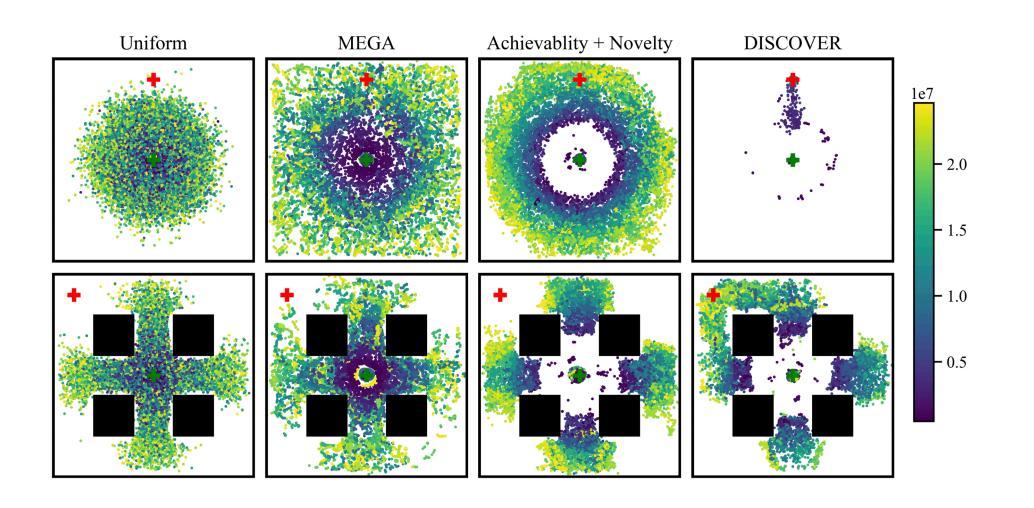


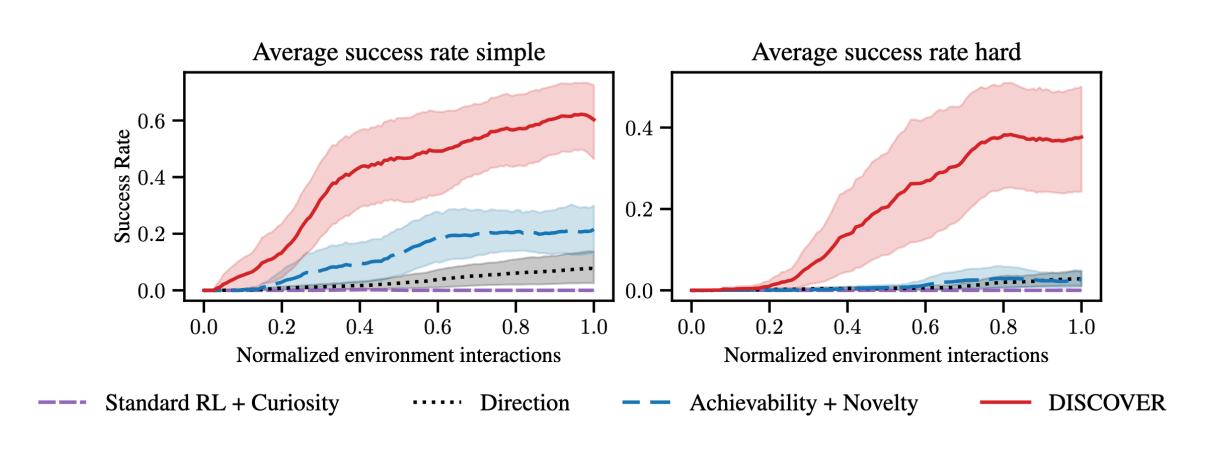
DISCOVER

How to determine which tasks to attempt?

• We learn a task-conditioned value function $V_{\theta}(g,g')$ which measures the "similarity" of tasks g and g'

• The parameter α_n can be auto-tuned to have 50% task achievability



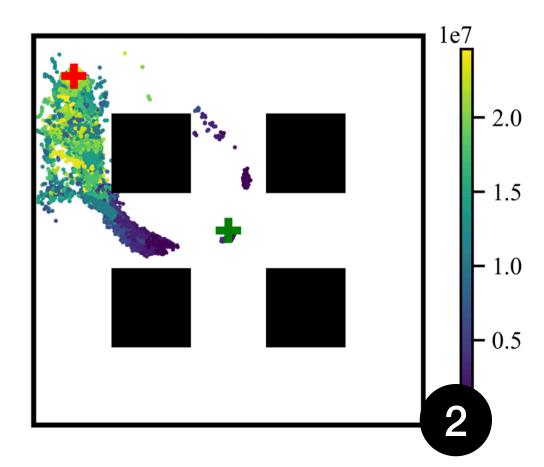


Observations from DISCOVER

- 1. Targeted exploration is crucial in high-dimensional task spaces
- 2. DISCOVER can leverage prior knowledge about the task space

Dim.	2	3	4	5	6
HER	∞	∞	∞	∞	∞
MEGA	4.8	∞	∞	∞	∞
Ach. + Nov.	5.2	∞	∞	∞	∞
DISCOVER	2.9	3.1	7.4	5.4	18.7

Required #steps (M) for reaching 10% success rate in point mazes of varying dimensions

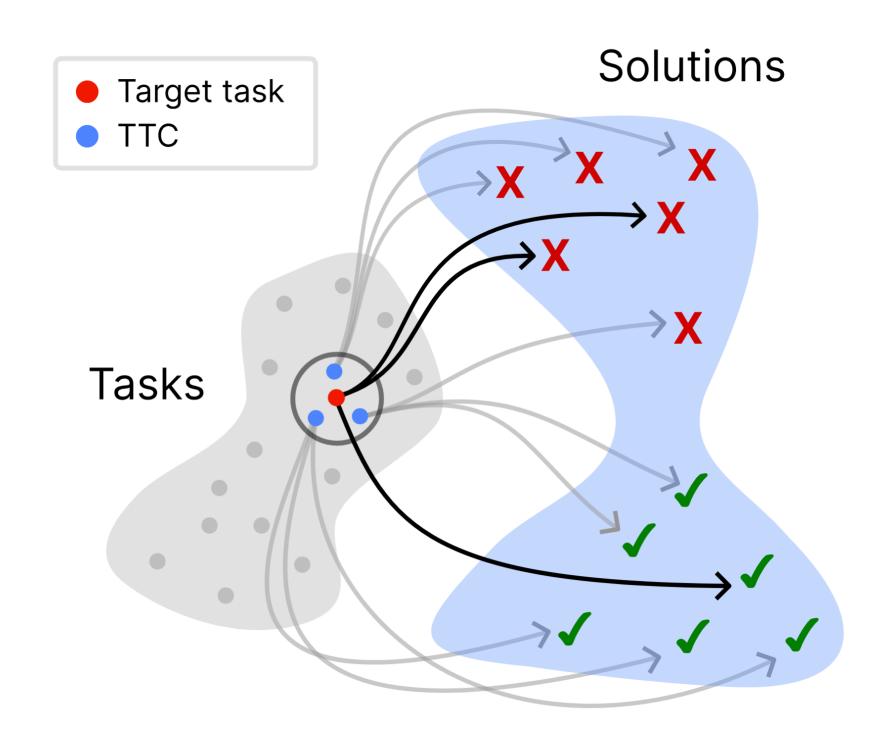


Using a pre-trained value function from point maze in ant maze with same layout

Can TTT improve reasoning?

Preprint

- Given a test task, an LLM self-curates a test-time curriculum (TTC) of similar tasks for practicing
- The TTC is adaptively selected from a corpus (with SIFT) to balance similarity to the test task and diversity
- We train on the TTC via GRPO



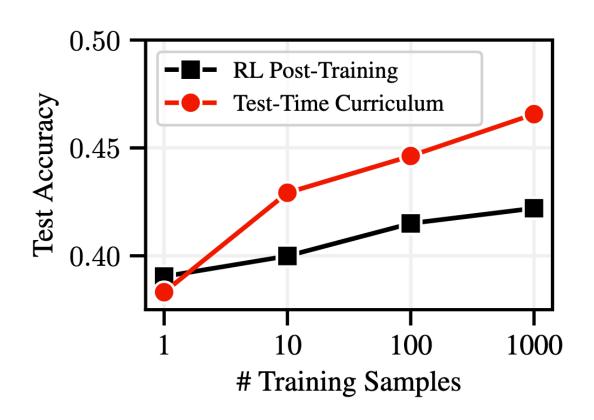
Main results

We treat each benchmark as a set of test tasks, and train on the TTC with RL

Model	AIME24	AIME25	MATH500	Codeforces	CodeElo	LCB ^{v6}	GPQA-D
Qwen3-8B	21.67	23.33	69.55	20.85	13.73	20.61	49.11
+ RL post-training	41.67	38.33	82.50	27.83	22.67	25.95	56.47
+ TTC-RL	50.83 ^{+29.2}	41.67 ^{+18.3}	85.10 ^{+15.6}	33.35 ^{+12.5}	29.34 ^{+15.6}	27.29 ^{+6.7}	58.38 ^{+9.3}
Qwen3-4B-Instruct-2507	52.50	40.83	72.00	26.70	20.27	21.56	61.93
+ RL post-training	55.83	47.50	86.30	28.39	21.18	25.95	62.82
+ TTC-RL	60.00 ^{+7.5}	45.83 ^{+5.0}	88.50 ^{+16.5}	34.99 ^{+8.3}	27.20 ^{+6.9}	26.91 ^{+5.4}	61.93+0.0
Qwen3-8B-Base	15.83	14.17	63.10	9.92	6.67	11.26	29.70
+ RL post-training	22.50	20.83	76.85	17.46	9.97	18.51	42.77
+ TTC-RL	30.00 ^{+14.2}	21.67 ^{+7.5}	78.15 ^{+15.1}	17.84 ^{+7.9}	11.33 ^{+4.7}	17.94 ^{+6.7}	45.94 ^{+16.2}

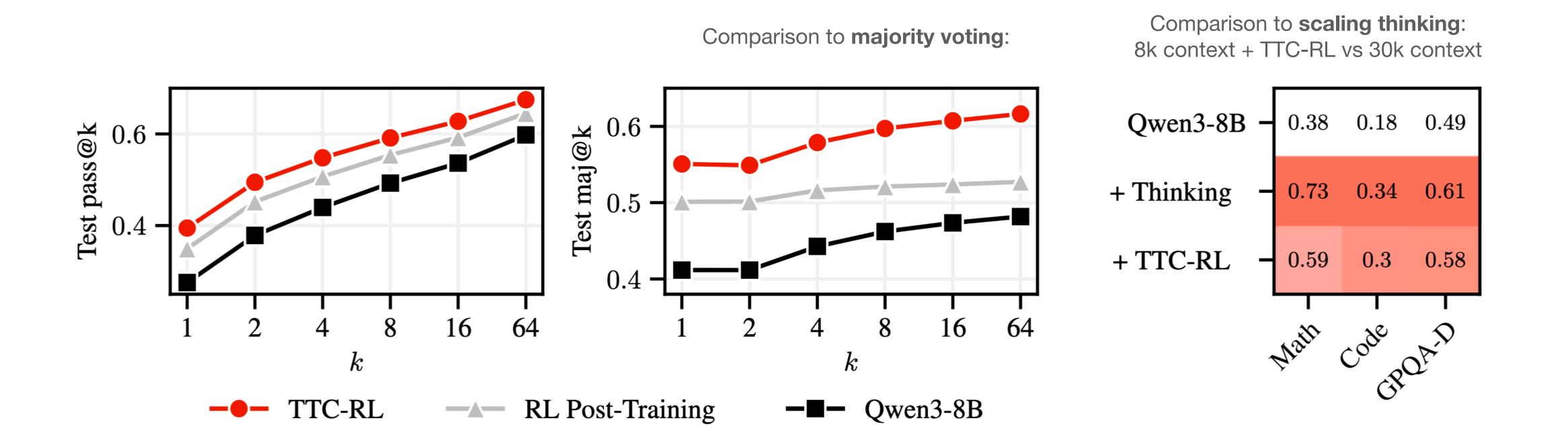
Pass@1 accuracy on reasoning tasks of

- base model
- model after global RL post-training
- TTC-RL



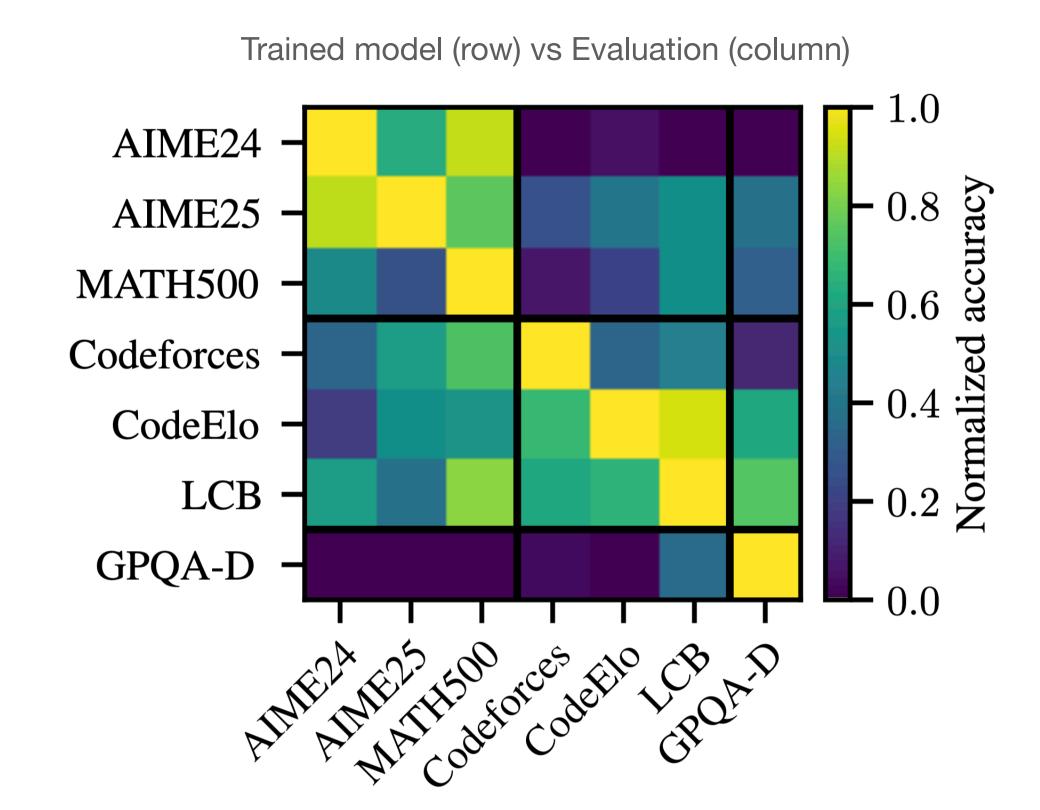
Takeaway: TTC-RL consistently achieves a higher pass@1 than general-purpose RL post-training & learns from significantly fewer attempts.

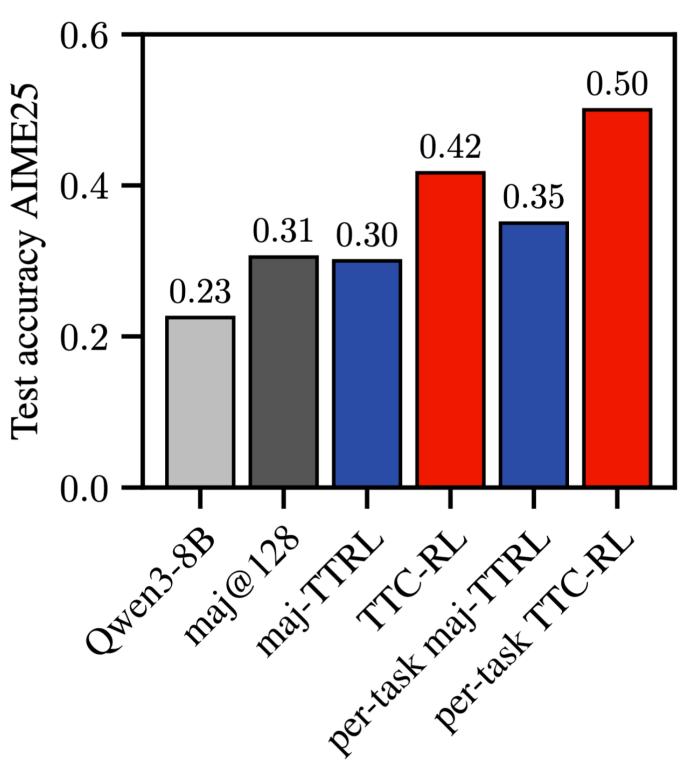
TTC-RL with additional test-time scaling



Takeaway: TTCs can complement existing methods for test-time scaling such as majority voting & reasoning in-context.

Do TTCs specialize models?





Takeaway: TTCs effectively specialize models to their target tasks.

Conclusion

TTT is a class of methods for specializing "foundation" models to individual tasks

- 1. TTT can enable models to outperform globally trained models in-distribution.
- 2. TTT enables models to continue learning & improving at test-time.

Happy to talk more!

jonas.huebotter@inf.ethz.ch