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What I will not talk about: How to use a small dataset for fine-tuning
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What I will not talk about: How to use a small dataset for fine-tuning

What I aim to convince you of:
Retrieving the right examples for fine-tuning can lead to 

substantial performance gains
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Setting
•  - sample space


•  - target space 

• Unknown function  over 

𝒮 ⊆ 𝒳

𝒜 ⊆ 𝒳

f 𝒳

Goal: Learn  within  by sampling from f 𝒜 𝒮

We call this Transductive Active Learning, 
generalizing classical Active Learning

Assume for us:  finite, and NN  is approximated by a Gaussian process

with kernel  where  are embeddings generated by the NN

𝒮, 𝒜 f
k(x, x′ ) = ϕ(x)⊤ϕ(x′ ) ϕ( ⋅ )
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how much can be learned 
about this point?

 as σ2
n(x) → 0 n → ∞

what about the point ?x′ 

 as σ2
n(x′ ) ?→ η2

𝒮(x′ ) n → ∞
where  is 

the irreducible uncertainty
η2

𝒮(x′ ) = Var[ f(x′ ) ∣ f(𝒮)]

variance of  at  
after  samples

f x
n

Goal: Reduce uncertainty  at σ2
n(x) x ∈ 𝒜
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Proposal: select the next sample to minimize posterior uncertainty within 𝒜

ITL: Information-directed Transductive Learning
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Fine-Tuning on CIFAR-100

examples
retrieve data 

for fine-tuning Goal: high accuracy on 
fresh examples from 𝒜
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ITL

Cosine Similarity
Information Density

BADGE

Random

Fine-Tuning on CIFAR-100

arg max
x∈𝒮

1
|𝒜 | ∑

x′ ∈𝒜

∡(ϕ(x), ϕ(x′ ))

Cor[ f(x), f(x′ )∣Dn−1]

Cosine Similarity: only relevance

Information Density: 
only relevance

BADGE: 
only diversity

ITL: 
relevance + diversity
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ITL

Cosine Similarity
Information Density

BADGE

Random

Fine-Tuning on CIFAR-100

ITL generalizes Cosine Similarity to query & batch sizes larger than 1!



Outlook

12



Outlook

• Fine-tuning in domains other than image classification on standard datasets


• Connection between learning and retrieval (in-context learning)


• Analyzing submodularity of retrieval / ITL


• Other applications of Transductive Active Learning (Safe BO, …happy to chat!)
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Embeddings
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ϕ(x) = ∇θℓ( f(x; θ), ̂y(x))
θ= ̂θ



Without Pre-Training
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Additional Baselines
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Allow Sampling from Target Set: 𝒜 ⊆ 𝒮
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Setting where the sample space is , i.e., includes the target space. The dashed black line 
is the accuracy after training on  only where .

𝒮 ∪ 𝒜
𝒜 |𝒜 | = 100



Batch Selection via Conditional Embeddings
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