Active Fine-Tuning of Large Neural Networks

Jonas Hübotter

with Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause

What I will not talk about: How to use a small dataset for fine-tuning

What I aim to convince you of: Retrieving the **right** examples for fine-tuning can lead to substantial performance gains

What I will not talk about: How to use a small dataset for fine-tuning

pre-training

- $\mathcal{S} \subseteq \mathcal{X}$ sample space
- $\mathscr{A} \subseteq \mathscr{X}$ target space
- Unknown function f over ${\mathcal X}$

- $\mathcal{S} \subseteq \mathcal{X}$ sample space
- $\mathscr{A} \subseteq \mathscr{X}$ target space
- Unknown function f over ${\mathcal X}$

Goal: Learn *f* within \mathscr{A} by sampling from \mathscr{S}

- $\mathcal{S} \subseteq \mathcal{X}$ sample space
- $\mathscr{A} \subseteq \mathscr{X}$ target space
- Unknown function f over ${\mathcal X}$

Goal: Learn f within \mathscr{A} by sampling from \mathscr{S}

We call this **Transductive Active Learning**, generalizing classical Active Learning

- $\mathcal{S} \subseteq \mathcal{X}$ sample space
- $\mathscr{A} \subseteq \mathscr{X}$ target space
- Unknown function f over ${\mathcal X}$

Goal: Learn f within \mathscr{A} by sampling from \mathscr{S}

We call this **Transductive Active Learning**, generalizing classical Active Learning

Assume for us: \mathcal{S}, \mathcal{A} finite, and NN *f* is approximated by a Gaussian process \mathcal{I} with kernel $k(x, x') = \phi(x)^{\top} \phi(x')$ where $\phi(\cdot)$ are embeddings generated by the NN

5

what about the point x'?

$$\begin{split} &\sigma_n^2(\boldsymbol{x}') \xrightarrow{?} \eta_{\mathcal{S}}^2(\boldsymbol{x}') \text{ as } n \to \infty \\ &\text{where } \eta_{\mathcal{S}}^2(\boldsymbol{x}') = \operatorname{Var}[f(\boldsymbol{x}') \mid f(\mathcal{S})] \text{ is } \end{split}$$
the irreducible uncertainty

S

Proposal: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

Proposal: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

$\underset{x_n \in \mathcal{S}}{\operatorname{arg\,max}} \operatorname{I}(f(\mathcal{A}); y_n \mid D_{n-1}) = \underset{x_n \in \mathcal{S}}{\operatorname{arg\,min}} \operatorname{H}[f(\mathcal{A}) \mid D_{n-1}, (x_n, y_n)]$

Proposal: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

$\underset{x_n \in \mathcal{S}}{\operatorname{arg\,max}} \operatorname{I}(f(\mathcal{A}); y_n \mid D_{n-1}) = \underset{x_n \in \mathcal{S}}{\operatorname{arg\,min}} \operatorname{H}[f(\mathcal{A}) \mid D_{n-1}, (x_n, y_n)]$

MacKay, 1992

Proposal: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

$$\underset{x_n \in \mathcal{S}}{\operatorname{arg\,max}} \operatorname{I}(f(\mathcal{A}); y_n \mid D_{n-1})$$

Generalization bound for ITL (informal).

$$\sigma_n^2(\mathbf{x}') \le \eta_{\mathcal{S}}^2(\mathbf{x}')$$

 $= \underset{x_n \in \mathcal{S}}{\operatorname{arg\,min}} \operatorname{H}[f(\mathscr{A}) \mid D_{n-1}, (x_n, y_n)]$

mal). $\forall x' \in \mathscr{A}$: $f(x') + C \log n / \sqrt{n}$

(C is a constant)

Proposal: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

$$\underset{x_n \in \mathcal{S}}{\operatorname{arg\,max}} \operatorname{I}(f(\mathcal{A}); y_n \mid D_{n-1})$$

 $\forall x' \in \mathscr{A}$: **Generalization bound for ITL (informal).**

$$\sigma_n^2(\mathbf{x}') \le \eta_{\mathcal{S}}^2(\mathbf{x}')$$

irreducible reducible

 $= \arg\min H[f(\mathscr{A}) \mid D_{n-1}, (x_n, y_n)]$ $x_n \in \mathcal{S}$

 $(x') + C \log n / \sqrt{n}$

(*C* is a constant)

7

Fine-Tuning

pre-training

Goal: high accuracy on fresh examples from \mathscr{A}

Cosine Similarity: only relevance $(\phi(x'))$ arg max-*x*∈*S* $\measuredangle(\phi(x), \phi(x))$ \mathcal{A} $x' \in \mathscr{A}$ $Cor[f(x), f(x')|D_{n-1}]$

Cosine Similarity: only relevance

 $\measuredangle(\pmb{\phi}(\pmb{x}), \pmb{\phi}(\pmb{x}'))$ arg max-*x*∈*S* \mathcal{A} $x' \in \mathscr{A}$ $Cor[f(x), f(x')|D_{n-1}]$

Information Density:

only relevance

BADGE: only diversity

Cosine Similarity: only relevance

 $\measuredangle(\phi(x),\phi(x'))$ \mathcal{A} $x' \in \mathscr{A}$ $Cor[f(x), f(x')|D_{n-1}]$

Information Density: only relevance

BADGE: only diversity

ITL: relevance + diversity

10

ITL generalizes Cosine Similarity to query & batch sizes larger than 1!

Outlook

•••

from afsl import ActiveDataLoader

```
train_loader = ActiveDataLoader.initialize(dataset, target, batch_size=32)
```

```
while not converged:
    batch = dataset[train_loader.next(model)]
   model.step(batch)
```

Outlook

•••

```
from afsl import ActiveDataLoader
train_loader = ActiveDataLoader.initialize(dataset, target, batch_size=32)
while not converged:
    batch = dataset[train_loader.next(model)]
   model.step(batch)
```

- Fine-tuning in domains other than image classification on standard datasets
- Connection between learning and retrieval (in-context learning)
- Analyzing submodularity of retrieval / ITL
- Other applications of Transductive Active Learning (Safe BO, ... happy to chat!)

Bibliography

- 1. MacKay, D. J. Information-based objective functions for active data selection. Neural computation, 4(4), 1992.
- 2. Settles, B. and Craven, M. An analysis of active learning strategies for sequence labeling tasks. In EMNLP, 2008.
- 3. Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and Agarwal, A. Deep batch active learning by diverse, uncertain gradient lower bounds. ICLR, 2020.

Appendix

Embeddings

$\boldsymbol{\phi}(\boldsymbol{x}) = \nabla_{\boldsymbol{\theta}} \mathcal{E}(\boldsymbol{f}(\boldsymbol{x};\boldsymbol{\theta}), \hat{\boldsymbol{y}}(\boldsymbol{x})) \Big|_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}$

Without Pre-Training

MNIST

Additional Baselines

Allow Sampling from Target Set: $\mathscr{A} \subseteq \mathscr{S}$

Setting where the sample space is $\mathcal{S} \cup \mathcal{A}$, i.e., includes the target space. The dashed black line is the accuracy after training on \mathcal{A} only where $|\mathcal{A}| = 100$.

Batch Selection via Conditional Embeddings

Figure 8. Advantage of batch selection via conditional embeddings over top-b selection in the CIFAR-100 experiment.