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What | will not talk about: How to use a small dataset for fine-tuning



What | will not talk about: How to use a small dataset for fine-tuning

What | aim to convince you of:

Retrieving the right examples for fine-tuning can lead to
substantial performance gains



A Motivating Example

- = = = = = = = = = = = = = =- =- =- = = = = =- = = S = - S S - S - S S =S = = = S =S = =— S = S = = S_- S- = - S =S S =S S =S =S =S = S = B EH B EEEEEEEEEEEBE BE BE B B B B Nnh

pre-training

Plant Finder

H = = H = = H H HEH E HE HEH H H HE = =H H =H =H = =H = = =H = = 3

~------------------------------------------------------------------------------------—



A Motivating Example

pre-training

Plant Finder

A E E E E H H B B B E B B BN BN BN B
GO E E E EE E E BE B BN BB BSBSDEBSBBS B ®



A Motivating Example

pre-training

Plant Finder

A E E E E H H B B B E B B BN BN BN B
GO E E E EE E E BE B BN BB BSBSDEBSBBS B ®




A Motivating Example

pre-training

Plant Finder

A E E E E H H B B B E B B BN BN BN B
GO E E E EE E E BE B BN BB BSBSDEBSBBS B ®




A Motivating Example

-------------------------------------------------------‘

pre-training !

Plant Finder

'---------

GO E E E EEEE NN ®BNBBNBNBBB

J




A Motivating Example

-------------------------------------------------------‘

pre-training !

Plant Finder

il B I I I = = = =N = =N = = =N = =

GO E E E EEEE NN ®BNBBNBNBBB

J




A Motivating Example

pre-training !

Plant Finder

Checklist
1 Relevance




A Motivating Example

pre-training

Plant Finder

Checklist
1 Relevance
O Diversity




A Motivating Example

pre-training

Plant Finder

Checklist
1 Relevance
O Diversity







Setting

e & C X -sample space
o of C X -target space

 Unknown function f over




Setting

e & C X -sample space
o of C X -target space

 Unknown function f over

Goal: Learn f within & by sampling from &




Setting

e & C X -sample space
o of C X -target space
 Unknown function f over

Goal: Learn f within & by sampling from &

We call this Transductive Active Learning,
generalizing classical Active Learning




Setting

e & C X -sample space

o of C X -target space of

 Unknown function f over

Goal: Learn f within &/ by sampling from & \\ e

We call this Transductive Active Learning,
generalizing classical Active Learning _

g

=y

Assume for us: &, & finite, and NN fis approximated by a Gaussian process / oo
with kernel k(x,x") = ¢p(x) '¢(x’) where ¢( - ) are embeddings generated by the NN
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?
o (x") — nc%)(x') as n — oo

where nc%)(x’) = Var[f(x") | f($)]is
the irreducible uncertainty
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Proposal: select the next sample to minimize posterior uncertainty within &/

argmax [(f(A);y, | D, ;) =argmin Hf(A) | D,_;,(x,,V,)]

X,ES X,ES

Generalization bound for ITL (informal). Vx' € <f:

ag(x’) < no%)(x') + Clog n/ﬁ (C is a constant)
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Flne-Tunlng on CIFAR-100

_________

-------------

' retrieve data
' for fine-tuning

-------------

Goal: high accuracy on
fresh examples from &/
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Fine-Tuning on CIFAR-100
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Outlook

from afsl import ActiveDataloader

train_loader = ActiveDataloader.initialize(dataset, target, batch_size=32)

while not converged:
batch = dataset[train_loader.next(model)]
model. step(batch)
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Outlook

from afsl import ActiveDataloader

train_loader = ActiveDataloader.initialize(dataset, target, batch_size=32)

while not converged:
batch = dataset[train loader.next(model) ]

model. step(batch)

* Fine-tuning in domains other than image classification on standard datasets
 Connection between learning and retrieval (in-context learning)

* Analyzing submodularity of retrieval / ITL

* Other applications of Transductive Active Learning (Safe BO, ...happy to chat!)
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Embeddings

b(x) = Vol (flx:0).5)|
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Additional Baselines
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Allow Sampling from Target Set: &/ C &
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Batch Selection via Conditional Embeddings
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Figure 8. Advantage of batch selection via conditional embeddings over top-b selection in the CIFAR-100 experiment.
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