

Transductive Active Learning

with Application to Safe Bayesian Optimization

Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause

Background

Theory: Convergence Guarantees for ITL & VTL

- Active learning is a powerful paradigm for data selection that commonly aims to learn f globally on \mathcal{X}
- In many real-world problems,
 - *i* the domain is so large that learning *f* globally is hopeless; or
- ii agents have limited information / access to \mathcal{X}

How can we find agents that solve tasks efficiently by learning in a *directed* manner and *extrapolating* beyond their limited information?

Transductive Active Learning

=

 \mathcal{A}

How much can be learned about \mathcal{A} from \mathcal{S} ?

Generalization bound. For every $x \in A$:

$$\sigma_n^2(\mathbf{x}) \leq \underbrace{\operatorname{Var}[f(\mathbf{x}) \mid f(\mathcal{S})]}_{\text{irreducible}} + \underbrace{C \log(n) / \sqrt{n}}_{\text{reducible}}$$

Approximation error bound. If $f \in \mathcal{H}_k(\mathcal{X})$ then for every $\mathbf{x} \in \mathcal{A}$ with probability $1 - \delta$: $|f(\mathbf{x}) - \mu_n(\mathbf{x})|^2 \leq \beta_n^2(\delta)$ irreducible + $C \log(n) / \sqrt{n}$ where $\mu_n(\mathbf{x})$ is the prediction and $\beta_n(\delta)$ the CI width

"only learn what is needed"

- Sample space $\mathcal{S} \subseteq \mathcal{X}$
- Target space $\mathcal{A} \subseteq \mathcal{X}$
- Unknown function f over \mathcal{X}

Goal: Learn f within \mathcal{A} by sampling from \mathcal{S}

(Inductive) Active Learning "learn as much as you can"

 \rightarrow TAL generalizes AL to goal-orientation (A) and extrapolation (\mathcal{S})

- We model f by a Gaussian process
- The marginal variance $\sigma_n^2(\mathbf{x})$ of the GP after nsamples is a proxy for the approximation error at **x**

New goal: Reduce uncertainty $\sigma_n^2(\mathbf{x})$ at $\mathbf{x} \in \mathcal{A}$

An Algorithmic Framework for TAL

Example: Safe Bayesian Optimization

 \mathcal{S}_0

safe optimum

 \mathcal{S}_6

 \mathcal{S}^{\star}

 \mathcal{A}_n

Task: Under constraint c^* inducing *true* safe set $\mathcal{S}^{\star} = \{ \boldsymbol{x} \mid c^{\star}(\boldsymbol{x}) \geq 0 \},\$ find arg max $_{\boldsymbol{x} \in \mathcal{S}^{\star}} f^{\star}(\boldsymbol{x})$.

Calibrated model:

• $l_n^f(\mathbf{x}) \leq f^*(\mathbf{x}) \leq u_n^f(\mathbf{x})$ • $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$

Estimated safe sets: • $\mathcal{S}_n = \{ \boldsymbol{x} \mid I_n^c(\boldsymbol{x}) \geq 0 \}$ • $\widehat{\mathcal{S}}_n = \{ \boldsymbol{x} \mid u_n^c(\boldsymbol{x}) \geq 0 \}$ $\rightsquigarrow \mathcal{S}_n \subseteq \mathcal{S}^\star \subseteq \widehat{\mathcal{S}}_n$

Learn *potential maximizers* $\mathcal{A}_n = \{ \boldsymbol{x} \in \widehat{\mathcal{S}}_n \mid u_n^f(\boldsymbol{x}) \geq \max_{\boldsymbol{x'} \in \mathcal{S}_n} l_n^f(\boldsymbol{x'}) \}$

Applying TAL: If f^* , c^* are sufficiently regular, ITL & VTL find the safe reachable optimum.

--- ITL --- ISE --- SAFEOPT --- ORACLE SAFEOPT

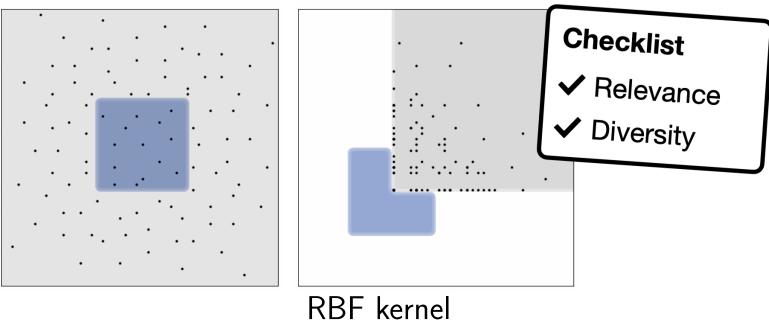
Proposal: Select samples to minimize posterior "uncertainty" within \mathcal{A}

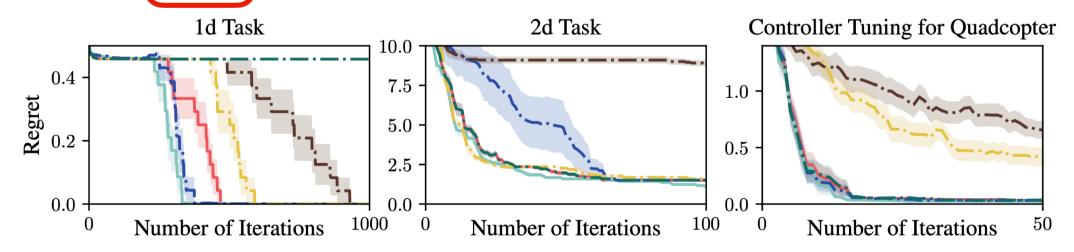
 \rightarrow Quantifying "uncertainty" by entropy yields **ITL**:

 $\mathbf{x}_n = \arg \min \mathsf{H}[\mathbf{f}(\mathcal{A}) \mid D_{n-1}, (\mathbf{x}, f(\mathbf{x}) + \varepsilon)]$ $\mathbf{x} \in \mathcal{S}$ $= \underset{\boldsymbol{x} \in \mathcal{S}}{\arg \max \left| \left(\boldsymbol{f}(\mathcal{A}); (\boldsymbol{x}, f(\boldsymbol{x}) + \varepsilon \right) \mid D_{n-1} \right) \right|}$

 \rightarrow Quantifying "uncertainty" by variance yields **VTL**:

 $\boldsymbol{x}_n = \arg\min \operatorname{tr} \operatorname{Var}[\boldsymbol{f}(\mathcal{A}) \mid D_{n-1}, (\boldsymbol{x}, f(\boldsymbol{x}) + \varepsilon)]$ $\mathbf{x} \in \mathcal{S}$





~ Framing Safe BO as TAL allows retrieving only the information that is needed to find the safe optimum

Key Takeaways

- Transductive Active Learning is a powerful paradigm for learning under resource constraints such as limited interaction time & limited access
- TAL is widely applicable beyond Safe BO, e.g., in active fine-tuning of large NNs:

