Transductive Active Learning with Application to Safe Bayesian Optimization

Jonas Hübotter

with Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause

should we add to collection?

evaluating existing collection

should we add to collection?

Setting

- $\mathcal{S} \subseteq \mathcal{X}$ sample space
- $\mathscr{A} \subseteq \mathscr{X}$ target space
- Unknown function f over ${\mathcal X}$

Goal: Learn f within \mathscr{A} by sampling from \mathscr{S}

We call this Transductive Active Learning

Assume for us: \mathcal{S}, \mathcal{A} finite, and we model f by a Gaussian process \mathcal{A}

Transductive Active Learning "only learn what is needed to solve a given task"

(Inductive) Active Learning "learn as much as you can"

studied in most prior works

what about the point x'?

 $\eta_{\mathcal{S}}^2(\mathbf{x}') = \operatorname{Var}[f(\mathbf{x}') \mid f(\mathcal{S})]$ is the irreducible uncertainty:

$$\sigma_n^2(\mathbf{x'}) \stackrel{?}{\to} \eta_{\mathcal{S}}^2(\mathbf{x'}) \text{ as } n \to \infty$$

S

An Algorithmic Framework for TAL

Proposal: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

VTL:
$$x_n = \arg \min_{x_n \in \mathcal{S}} \sum_{x \in \mathcal{A}} x_n$$

Generalization bound for VTL (informal). $\forall x' \in \mathscr{A}$: MacKay, 1992; Seo et al., 2000; Yu et al., 2006 $(x') + C \log n / \sqrt{n}$ (*C* is a constant)

$$\sigma_n^2(\mathbf{x}') \le \eta_{\mathcal{S}}^2(\mathbf{x}')$$

 $\sum_{n \in I} \operatorname{Var}[f(\mathbf{x}) \mid D_{n-1}, (\mathbf{x}_n, f(\mathbf{x}_n) + \varepsilon)]$

An Algorithmic Framework for TAL

Proposal: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

VTL:
$$x_n = \underset{x_n \in \mathcal{S}}{\operatorname{arg\,min}} \sum_{x \in \mathcal{A}} \operatorname{Var}[f(x) \mid D_{n-1}, (x_n, f(x_n) + \varepsilon)]$$

<u>Agnostic</u> error bound for VTL (informal). If $f \in \mathcal{H}_k(\mathcal{X})$, then $\forall x' \in \mathcal{A}$ wp $1 - \delta$: $v_{\mathcal{S}}^2(\mathbf{x}') + C \log n / \sqrt{n}$ (*C* is a constant)

$$|f(\mathbf{x}') - \mathbb{E}[f(\mathbf{x}') \mid D_n]|^2 \le \beta_n^2(\delta) [\eta]$$

prediction

irreducible

reducible

Push test

Hand-tuned gains

Tuning legged locomotion controllers via safe bayesian optimization (Widmer et al.; 2023)

Auto-tuned gains

Under constraint c^* inducing *true* safe set $S^* = \{x \mid c^*(x) \ge 0\}$, find arg max $x \in S^* f^*(x)$.

- $l_n^f(\mathbf{x}) \leq f^{\star}(\mathbf{x}) \leq u_n^f(\mathbf{x}),$ $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$
- $\mathcal{S}_n = \{ x \mid l_n^c(x) \ge 0 \}$ pessimistic $\mathcal{S}_n^o = \{ x \mid u_n^c(x) \ge 0 \}$ optimistic $\rightarrow \mathcal{S}_n \subseteq \mathcal{S}^* \subseteq \mathcal{S}_n^o$

Under constraint c^* inducing *true* safe set $\mathcal{S}^* = \{x \mid c^*(x) \ge 0\}$, find arg max $x \in \mathcal{S}^* f^*(x)$.

- $l_n^f(\mathbf{x}) \leq f^{\star}(\mathbf{x}) \leq u_n^f(\mathbf{x}),$ $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$
- $\mathcal{S}_n = \{ x \mid l_n^c(x) \ge 0 \}$ pessimistic $\mathcal{S}_n^o = \{ x \mid u_n^c(x) \ge 0 \}$ optimistic $\rightarrow \mathcal{S}_n \subseteq \mathcal{S}^* \subseteq \mathcal{S}_n^o$

Under constraint c^* inducing *true* safe set $\mathcal{S}^* = \{x \mid c^*(x) \ge 0\}$, find arg max $x \in \mathcal{S}^* f^*(x)$.

- $l_n^f(\mathbf{x}) \leq f^{\star}(\mathbf{x}) \leq u_n^f(\mathbf{x}),$ $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$
- $\mathcal{S}_n = \{ \mathbf{x} \mid l_n^c(\mathbf{x}) \ge 0 \}$ pessimistic $\mathcal{S}_n^o = \{ \mathbf{x} \mid u_n^c(\mathbf{x}) \ge 0 \}$ optimistic $\rightarrow \mathcal{S}_n \subseteq \mathcal{S}^* \subseteq \mathcal{S}_n^o$

Under constraint c^* inducing *true* safe set $\mathcal{S}^* = \{x \mid c^*(x) \ge 0\}$, find arg max $x \in \mathcal{S}^* f^*(x)$.

- $l_n^f(\mathbf{x}) \leq f^{\star}(\mathbf{x}) \leq u_n^f(\mathbf{x}),$ $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$
- $\mathcal{S}_n = \{ \mathbf{x} \mid l_n^c(\mathbf{x}) \ge 0 \}$ pessimistic $\mathcal{S}_n^o = \{ \mathbf{x} \mid u_n^c(\mathbf{x}) \ge 0 \}$ optimistic $\rightarrow \mathcal{S}_n \subseteq \mathcal{S}^* \subseteq \mathcal{S}_n^o$

Under constraint c^* inducing *true* safe set $\mathcal{S}^* = \{x \mid c^*(x) \ge 0\}$, find arg max $x \in \mathcal{S}^* f^*(x)$.

- $l_n^f(\mathbf{x}) \leq f^{\star}(\mathbf{x}) \leq u_n^f(\mathbf{x}),$ $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$
- $\mathcal{S}_n = \{ x \mid l_n^c(x) \ge 0 \}$ pessimistic $\mathcal{S}_n^o = \{ x \mid u_n^c(x) \ge 0 \}$ optimistic $\rightarrow \mathcal{S}_n \subseteq \mathcal{S}^* \subseteq \mathcal{S}_n^o$

Under constraint c^* inducing *true* safe set $\mathcal{S}^* = \{x \mid c^*(x) \ge 0\}$, find arg max $x \in \mathcal{S}^* f^*(x)$.

- $l_n^f(\mathbf{x}) \leq f^{\star}(\mathbf{x}) \leq u_n^f(\mathbf{x}),$ $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$
- $\mathcal{S}_n = \{ x \mid l_n^c(x) \ge 0 \}$ pessimistic $\mathcal{S}_n^o = \{ x \mid u_n^c(x) \ge 0 \}$ optimistic $\rightarrow \mathcal{S}_n \subseteq \mathcal{S}^* \subseteq \mathcal{S}_n^o$

Under constraint c^* inducing *true* safe set $\mathcal{S}^* = \{x \mid c^*(x) \ge 0\}$, find arg max $x \in \mathcal{S}^* f^*(x)$.

- $l_n^f(\mathbf{x}) \leq f^{\star}(\mathbf{x}) \leq u_n^f(\mathbf{x}),$ $l_n^c(\mathbf{x}) \leq c^{\star}(\mathbf{x}) \leq u_n^c(\mathbf{x})$
- $\mathcal{S}_n = \{ \mathbf{x} \mid l_n^c(\mathbf{x}) \ge 0 \}$ pessimistic $\mathcal{S}_n^o = \{ \mathbf{x} \mid u_n^c(\mathbf{x}) \ge 0 \}$ optimistic $\rightarrow \mathcal{S}_n \subseteq \mathcal{S}^* \subseteq \mathcal{S}_n^o$

Learn potential maximizers:

 $\mathscr{A}_n = \{ \mathbf{x} \in \mathscr{S}_n^o \mid u_n^f(\mathbf{x}) \ge \max_{\mathbf{x}' \in \mathscr{S}_n} l_n^f(\mathbf{x}') \}$

where \mathcal{S}_n^o is the "optimistic" safe set

Theorem (informal):

If f^* , c^* are sufficiently regular, VTL finds the safe reachable optimum.

Our results are *tighter* than those of prior works and *generalize* to continuous state spaces.

- VTL improves upon the sample efficiency of prior work
- Why? Framing Safe BO as TAL allows retrieving only the information that is needed to find the safe optimum

Summary

Transductive Active Learning ("only learn what is needed") is a ubiquitous

TAL has advantages over AL when

- the search space is large
- interaction time is limited
- access to parts of the search space is restricted

Safe Bayesian Optimization is just one such problem!

problem, generalizing classical active learning ("learn as much as you can")

