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Setting
•  - sample space 

•  - target space 

• Unknown function  over 

𝒮 ⊆ 𝒳

𝒜 ⊆ 𝒳

f 𝒳
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Goal: Learn  within  by sampling from f 𝒜 𝒮

We call this Transductive Active Learning

Assume for us:  finite, and we model  by a Gaussian process𝒮, 𝒜 f
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Transductive Active Learning 
“only learn what is needed to solve a given task”

=

𝒜
(Inductive) Active Learning 
“learn as much as you can”

studied in most prior works



 is the 
irreducible uncertainty:

η2
𝒮(x′￼) = Var[ f(x′￼) ∣ f(𝒮)]

𝒮

𝒜
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e.g., by repeatedly 
sampling x

 as σ2
n(x) → 0 n → ∞

what about the point ?x′￼

 as σ2
n(x′￼) ?→ η2

𝒮(x′￼) n → ∞

variance of  at  
after  samples

f x
n

Goal: Reduce uncertainty  at σ2
n(x) x ∈ 𝒜



            (  is a constant)σ2
n(x′￼) ≤ η2

𝒮(x′￼) + C log n/ n C

irreducible reducible

Generalization bound for VTL (informal).    :∀x′￼ ∈ 𝒜
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Proposal: select the next sample to minimize posterior uncertainty within 𝒜

MacKay, 1992; Seo et al., 2000; Yu et al., 2006

An Algorithmic Framework for TAL

   xn = arg min
xn∈𝒮 ∑

x∈𝒜

Var[ f(x) ∣ Dn−1, (xn, f(xn) + ε)]VTL:



      (  is a constant)| f(x′￼) − 𝔼[ f(x′￼) ∣ Dn] |2 ≤ β2
n(δ)[η2

𝒮(x′￼) + C log n/ n] C

irreducible reducibleprediction

Agnostic error bound for VTL (informal).    If , then  wp :f ∈ ℋk(𝒳) ∀x′￼ ∈ 𝒜 1 − δ

   xn = arg min
xn∈𝒮 ∑

x∈𝒜

Var[ f(x) ∣ Dn−1, (xn, f(xn) + ε)]
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Proposal: select the next sample to minimize posterior uncertainty within 𝒜

An Algorithmic Framework for TAL

VTL:



Example: Safe Bayesian Optimization

Tuning legged locomotion controllers via safe bayesian optimization (Widmer et al.; 2023)
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Under constraint  inducing true safe set , 
find 


Assumption: well-calibrated model 


• ,

 


•    pessimistic


   optimistic

c⋆ 𝒮⋆ = {x ∣ c⋆(x) ≥ 0}
arg max x∈𝒮⋆ f ⋆(x) .

f

lf
n(x) ≤ f ⋆(x) ≤ uf

n(x)
lc
n(x) ≤ c⋆(x) ≤ uc

n(x)

𝒮n = {x ∣ lc
n(x) ≥ 0}

𝒮o
n = {x ∣ uc

n(x) ≥ 0}

Example: Safe Bayesian Optimization
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safe optimum

𝒮0

→ 𝒮n ⊆ 𝒮⋆ ⊆ 𝒮o
n
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Example: Safe Bayesian Optimization

𝒮5

Under constraint  inducing true safe set , 
find 


Assumption: well-calibrated model 


• ,

 


•    pessimistic


   optimistic

c⋆ 𝒮⋆ = {x ∣ c⋆(x) ≥ 0}
arg max x∈𝒮⋆ f ⋆(x) .

f

lf
n(x) ≤ f ⋆(x) ≤ uf

n(x)
lc
n(x) ≤ c⋆(x) ≤ uc

n(x)

𝒮n = {x ∣ lc
n(x) ≥ 0}

𝒮o
n = {x ∣ uc

n(x) ≥ 0}
→ 𝒮n ⊆ 𝒮⋆ ⊆ 𝒮o

n



𝒮6 𝒮⋆

𝒮⋆

16

Example: Safe Bayesian Optimization

Expansion-Exploration Dilemma

Under constraint  inducing true safe set , 
find 
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• ,
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Theorem (informal): 

If  are sufficiently regular, VTL 
finds the safe reachable optimum.

f ⋆, c⋆

Learn potential maximizers:
𝒜n = {x ∈ 𝒮o

n ∣ uf
n(x) ≥ max

x′￼∈𝒮n

lf
n(x′￼)}

where  is the “optimistic” safe set𝒮o
n

Example: Safe Bayesian Optimization

Our results are tighter than those of 
prior works and generalize to 
continuous state spaces.

can jump over local “unsafe barrier”

𝒜6



• VTL improves upon the sample efficiency of prior work


• Why? Framing Safe BO as TAL allows retrieving only the information that 
is needed to find the safe optimum



Transductive Active Learning (“only learn what is needed”) is a ubiquitous 
problem, generalizing classical active learning (“learn as much as you can”)

TAL has advantages over AL when


• the search space is large


• interaction time is limited


• access to parts of the search space is restricted

Summary

Safe Bayesian Optimization is just one such problem!



   xn = arg min
xn∈𝒮 ∑

x∈𝒜

Var[ f(x) ∣ Dn−1, (xn, yn)]

𝒜

𝒮
𝒮⋆

𝒮⋆

safe optimum

𝒮0

Transductive Active Learning

• sample space 

• target space 


TAL generalizes classical 
“inductive” active learning

𝒮
𝒜

Algorithmic Framework for TAL
Proposal: minimize posterior uncertainty in 𝒜

We prove novel convergence (& generalization) guarantees

(VTL)

Example: Safe BO

• target space are the 
potential (safe) 
maximizers

Paper: Code:
“only learn what is needed”

Outlook:

Active Fine-Tuning of NNs


