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A Story of Curve Fitting

Local models have two components:

e Parametric “controller”
linear regression

 Non-parametric “memory”
k-nearest neighbor

— a small model class can fit a rich function class!

— one local model needs only little data!

— too good to be true?
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Viadimir Vapnik (in 1980s)

“When solving a problem of interest, do not solve a more

general problem as an intermediate step. Try to get the
answer that you really need but not a more general one.”
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Key Challenge: Which Data to Select?

Prompt: What 1s the age of Michael Jordan
and how many kids does he have?

Nearest Neighbor:
1. The age of Michael Jordan 1s 61 years.
2. Michael Jordan was born on February 17, 1963.

SIFT (ours):

1. The age of Michael Jordan 1s 61 years.
2. Michael Jordan has five children.
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Principle:
Select data that maximally reduces “uncertainty”
about how to respond to the prompit.

1. Estimate uncertainty

2. Minimize “posterior” uncertainty
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s¥0) =s(f () sPE) = s(WPE(x))  s,(x0) = s(W, (X))

“truth” pre-trained model fine-tuned model on n pieces of data

» Confidence sets: P(Vn> 1x € X : dpy(s,(x),s*(x)) < f.(6) 6,(x) >1-6

error scaling key object

— 0, (x) measures uncertainty about response to x!
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® Minimizing “Posterior” Uncertainty

 Choose data that minimizes uncertainty of the model after seeing this data:

— : *
X, 1 = arg;mn Ox Uix} (X 9— oo

 Convergence guarantee (in case of no synergies):

62(x*) — 62, (x*) < O(Alogn)/\/n

— predictions can be only as good as the data and the learned abstractions!
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Can we learn representations over time?

Strong representations can be bootstrapped!
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Summary

Local models
solve one problem at a time

Inductive models (most current SOTA models)
attempt to solve all possible problems at once

— local learning allows allocating compute where it is “interesting”!
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Model Bits per Byte Bits per Byte (without Wikipedia)
Jurassic-1 (178B, Licber et al., 2021) n/a 0.601
GLM (130B, Zeng et al., 2022) n/a 0.622
GPT-2 (124M, Radford et al., 2019) 1.241

GPT-2 (774M, Radford et al., 2019) 1.093

[Llama-3.2-Instruct (1B) 0.807

[Llama-3.2-Instruct 3B) 0.737

Gemma-2 (2B, Team et al., 2024) 0.721

[Llama-3.2 (1B) 0.697

Phi-3 (3.8B. Abdin et al., 2024) 0.679 0.678
Phi-3 (7B, Abdin et al., 2024) 0.678

Gemma-2 (9B, Team et al., 2024) 0.670

GPT-3 (175B. Brown et al., 2020) 0.666

Phi-3 (14B, Abdin et al., 2024) 0.651

[Llama-3.2 3B) 0.640

Gemma-2 (278, Team et al., 2024) 0.629

Test-Time FT with SIFT + GPT-2 (124m) 0.862

Test-Time FT with SIFT + GPT-2 (774m) 0.762

Test-Time FT with SIFT + Phi-3 (3.8B) 0.595 0.599

Table 2: Evaluation of state-of-the-art models on the Pile language modeling benchmark, without
copyrighted datasets. Results with GPT-3 are from Gao et al. (2020). Results with Jurassic-1 and GLM
are from Zeng et al. (2022) and do not report on the Wikipedia dataset. For a complete comparison,
we also evaluate our Phi-3 with test-time fine-tuning when excluding the Wikipedia dataset.



