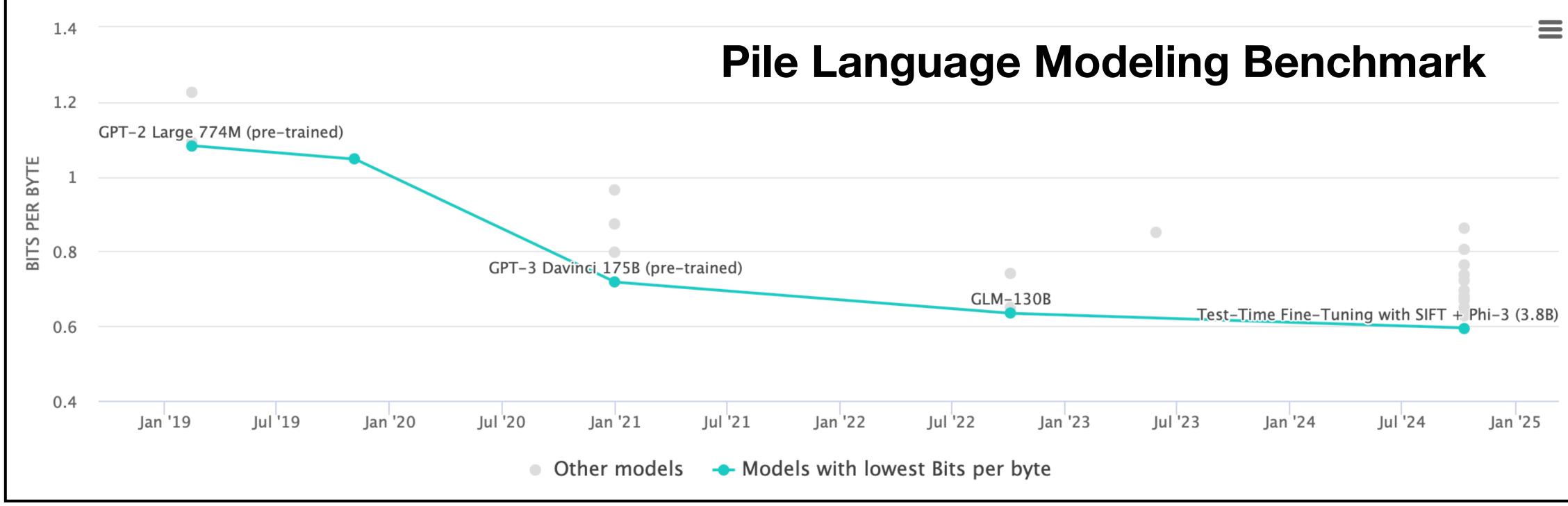
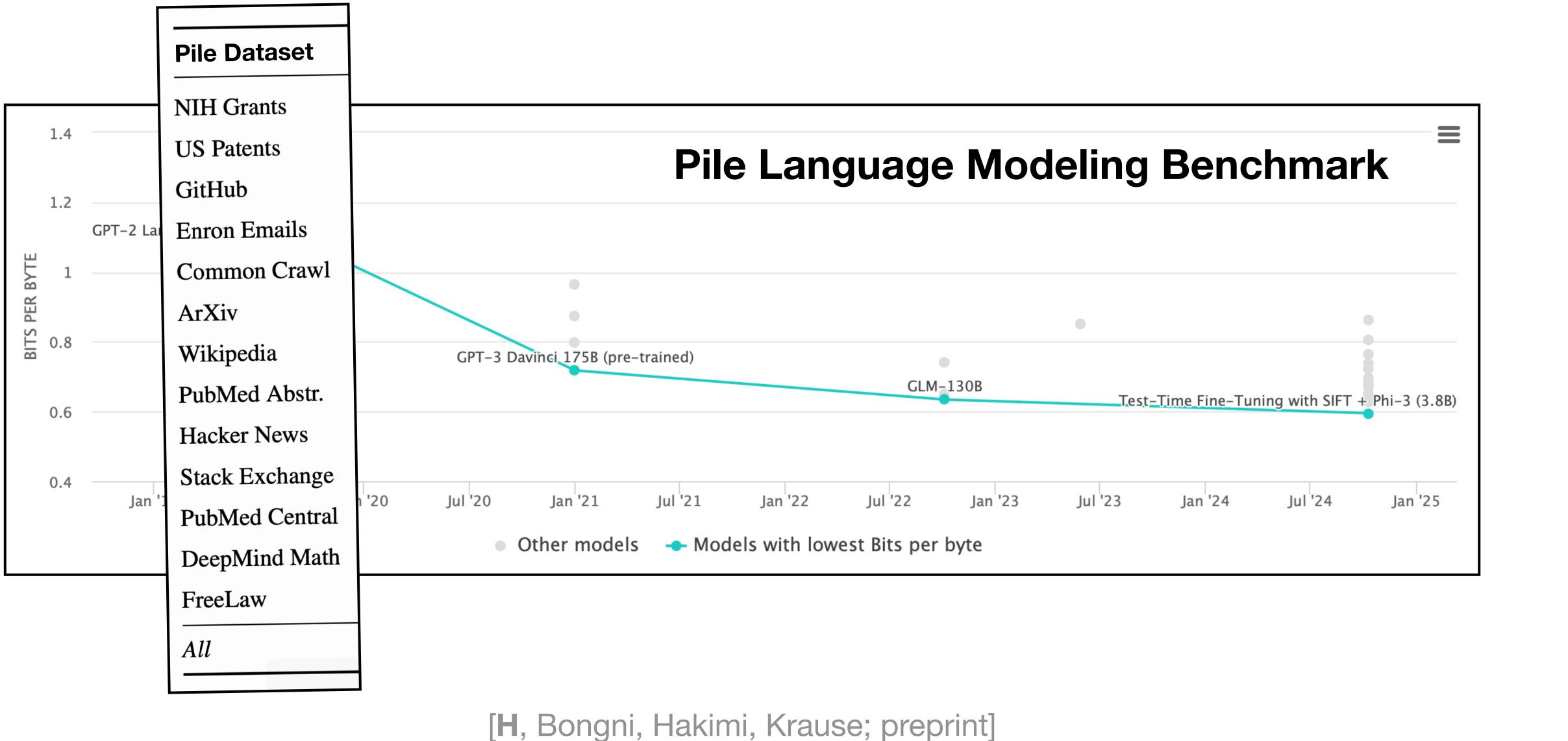
Efficiently Learning at Test-Time with LLMs

Jonas Hübotter

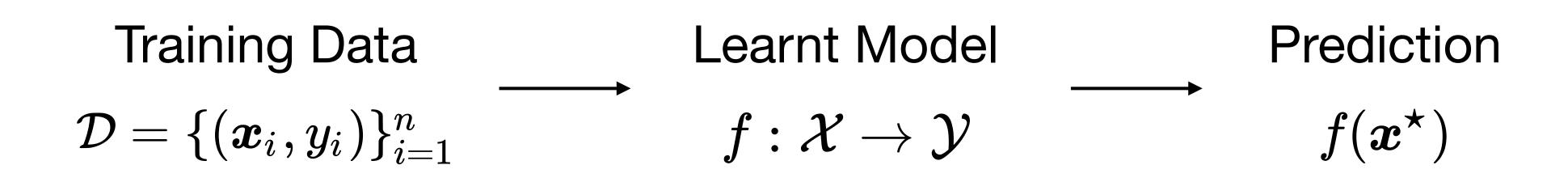
[H, Bongni, Hakimi, Krause; preprint]

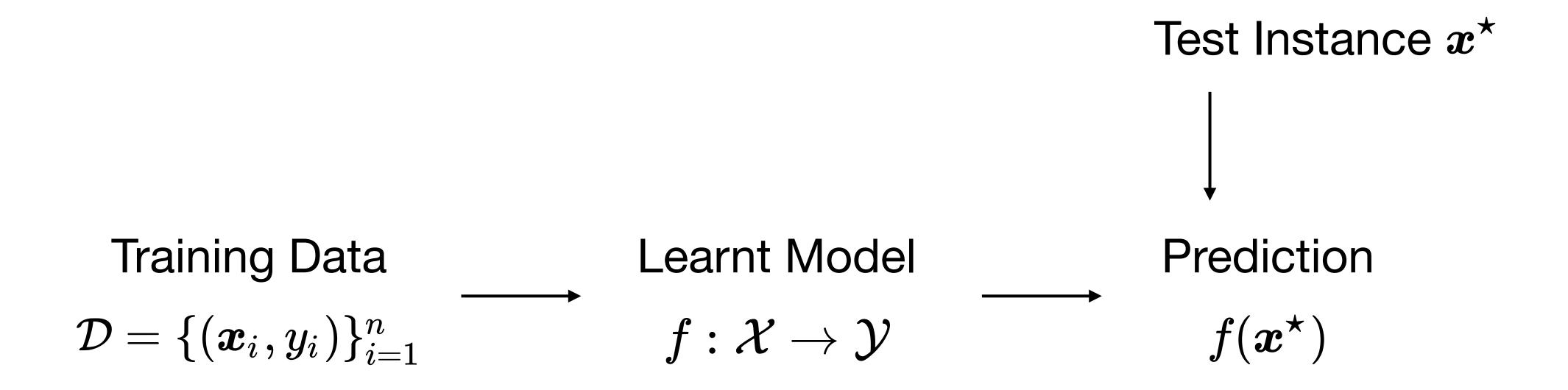


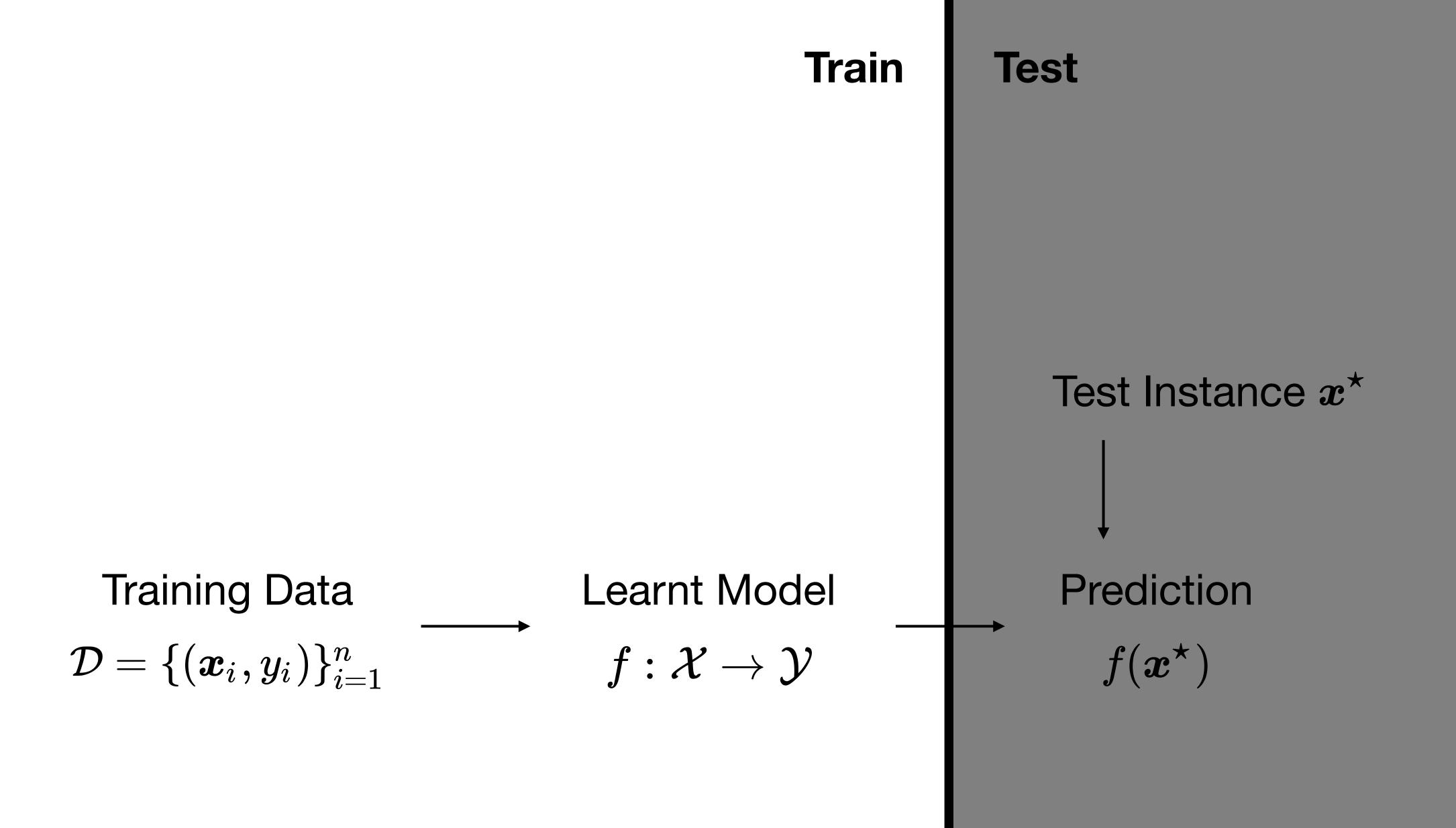
[H, Bongni, Hakimi, Krause; preprint]



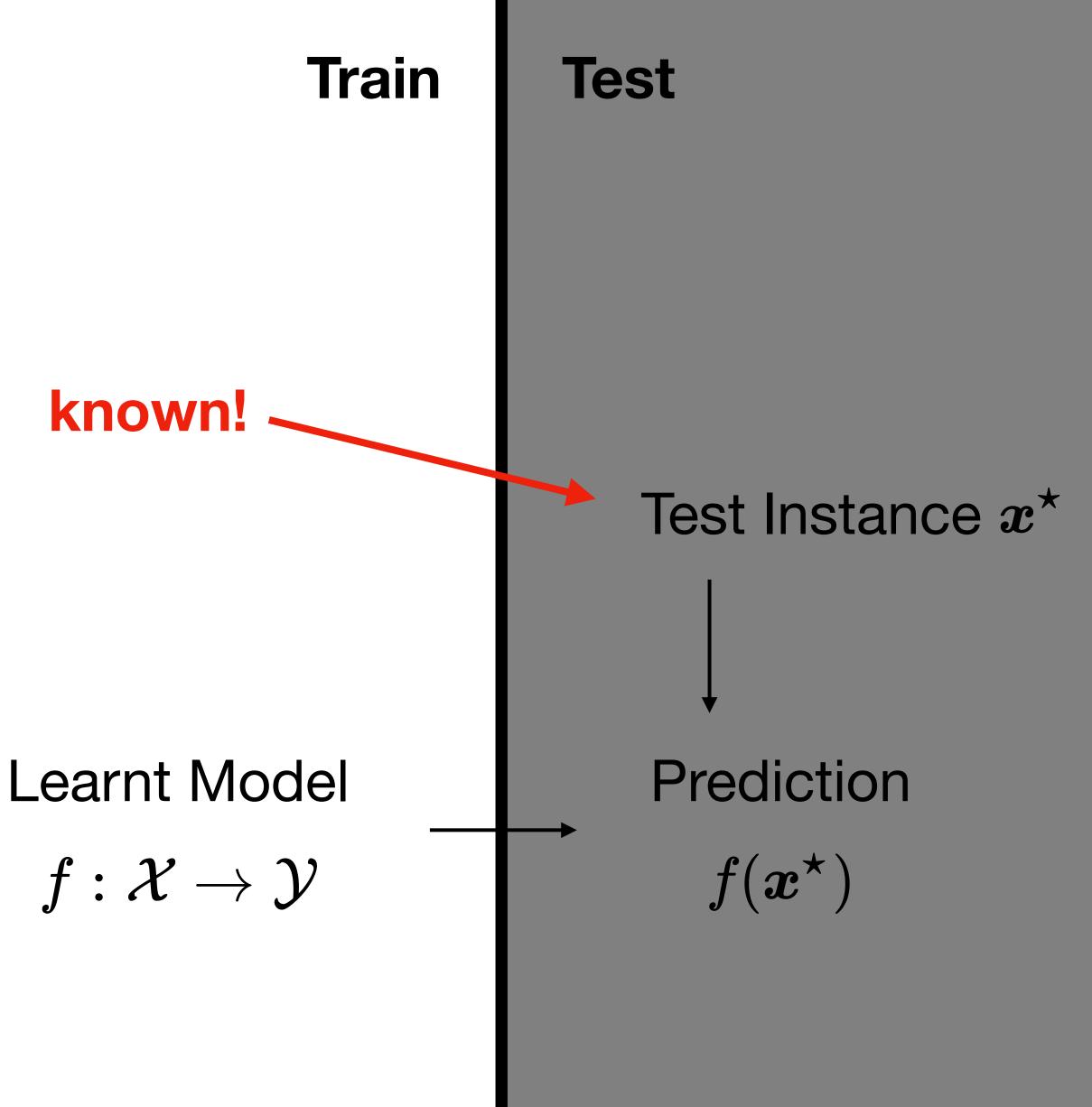
[H, Bongni, Hakimi, Krause; preprint]

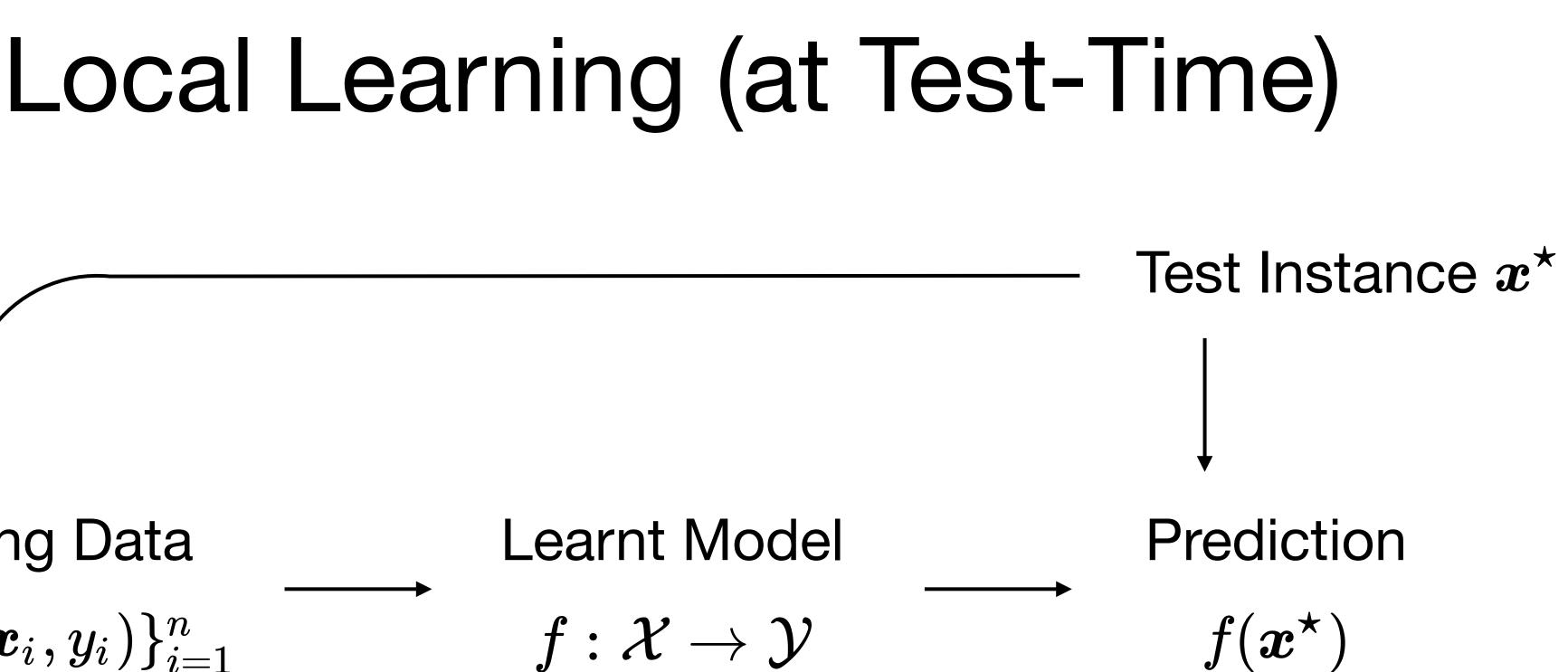


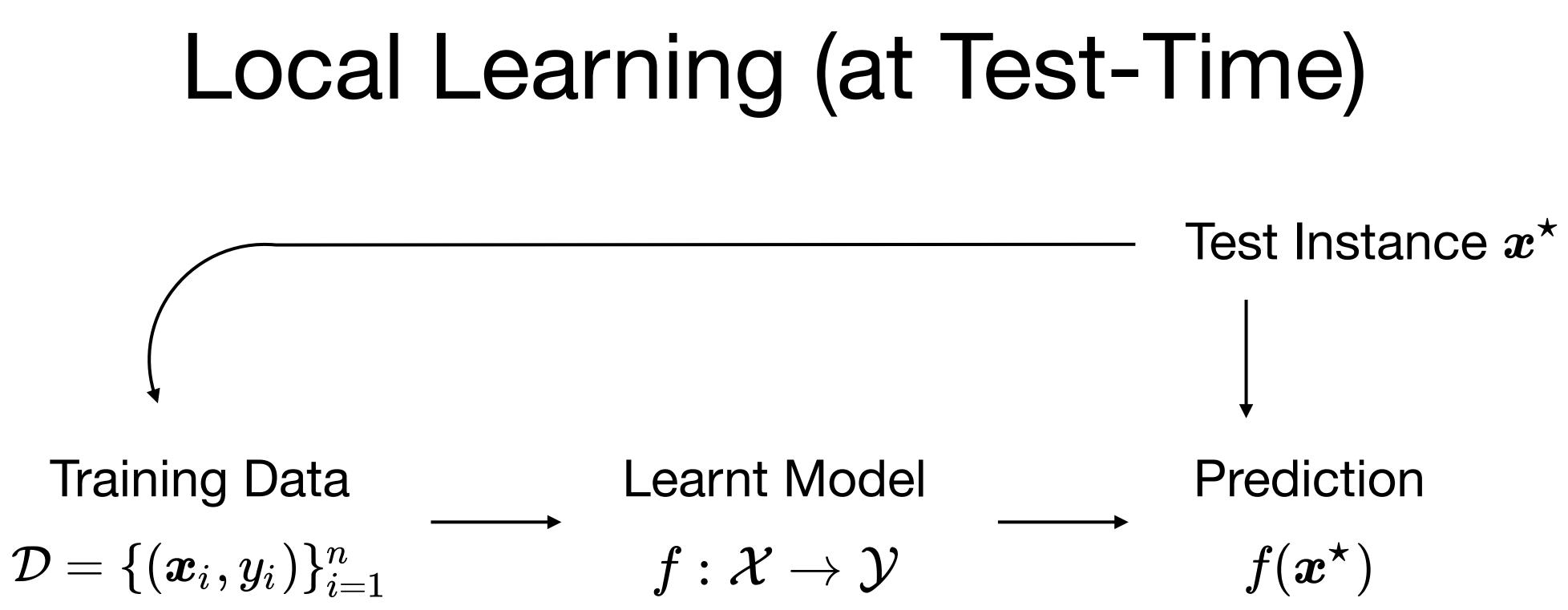




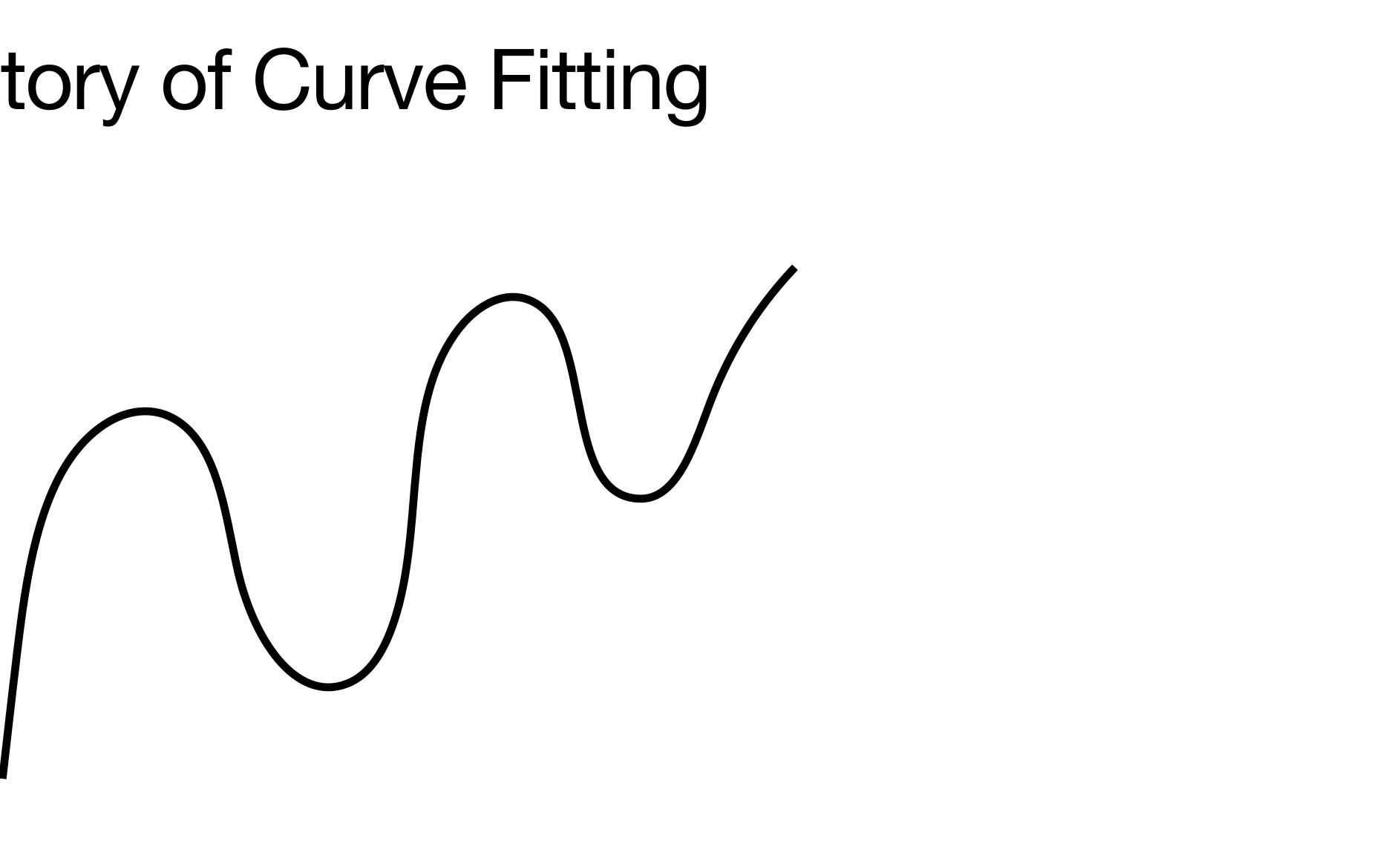
Training Data $\mathcal{D} = \{(oldsymbol{x}_i, y_i)\}_{i=1}^n$

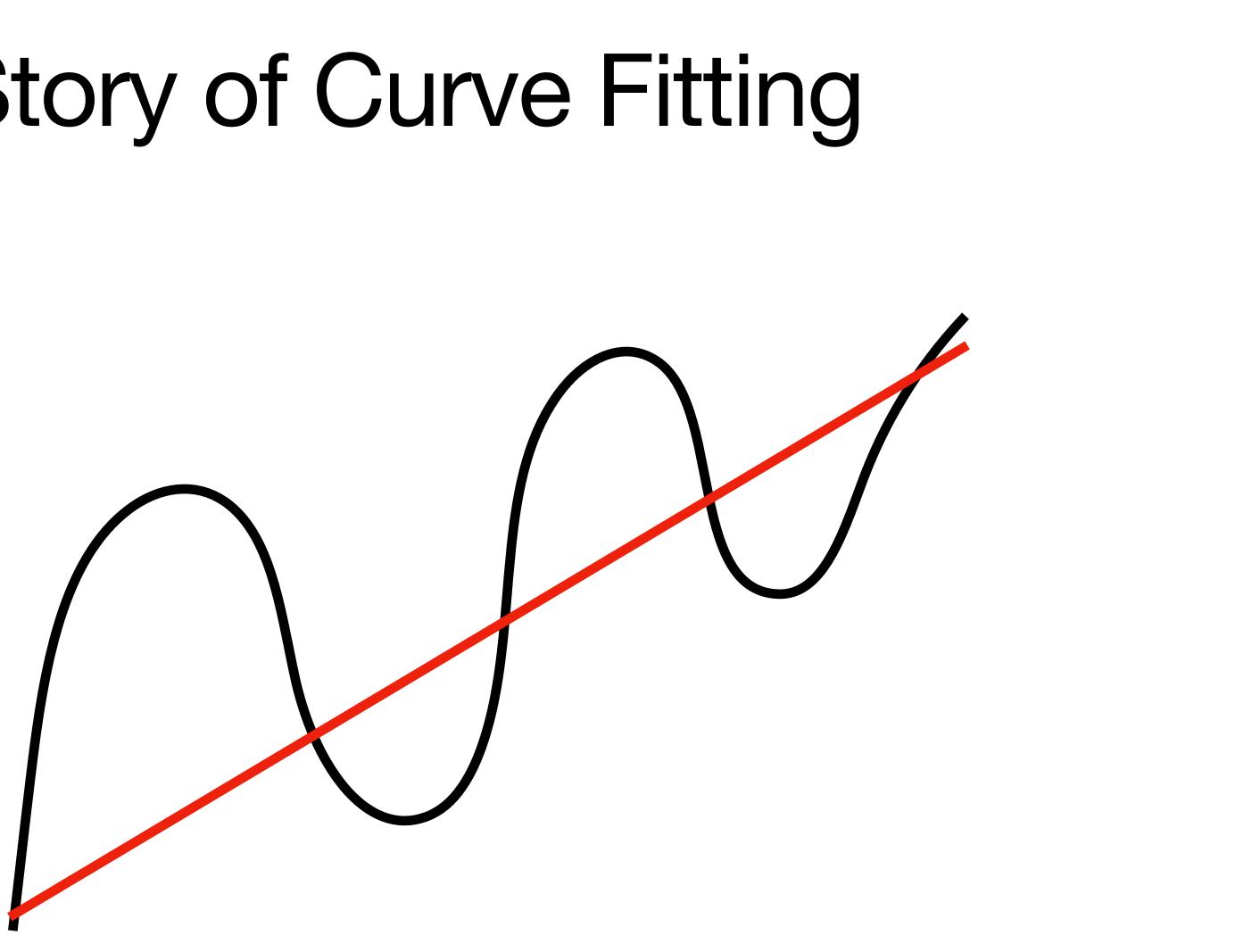


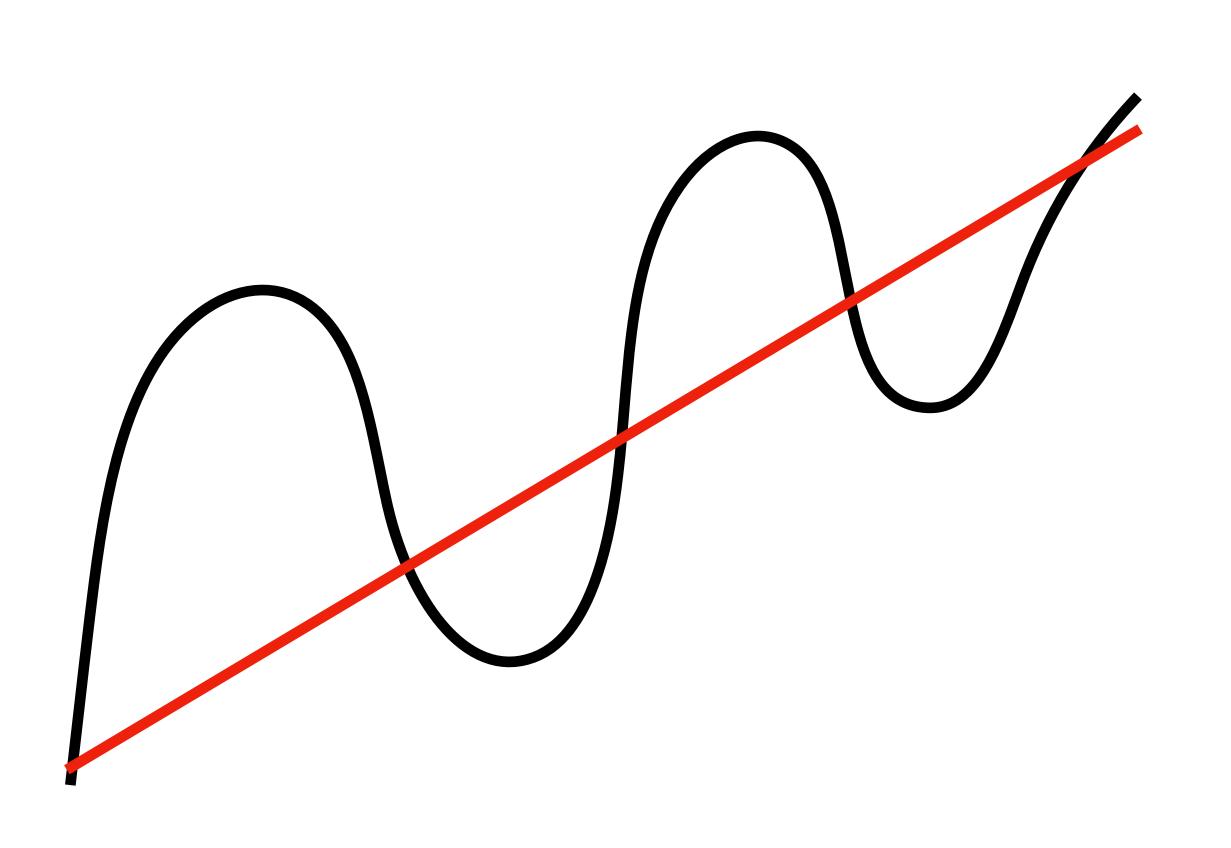




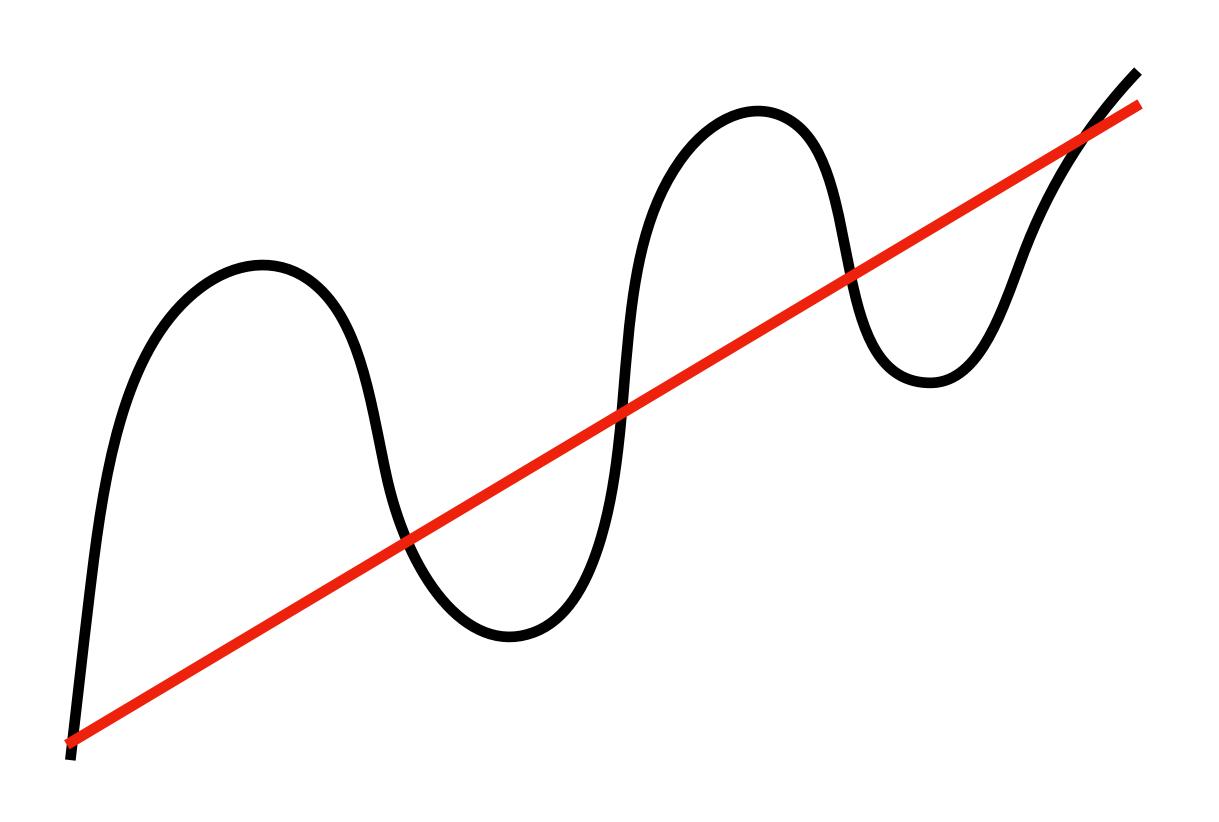
4





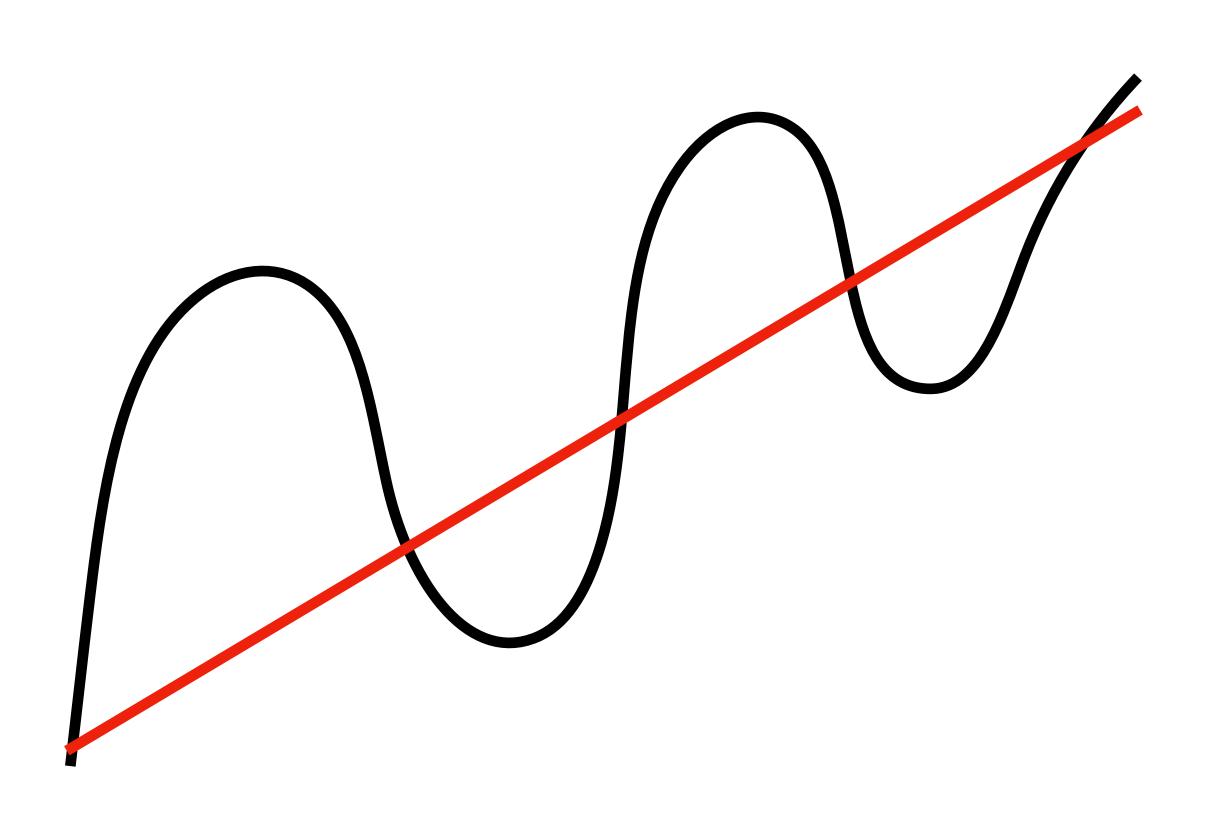


Remedies:



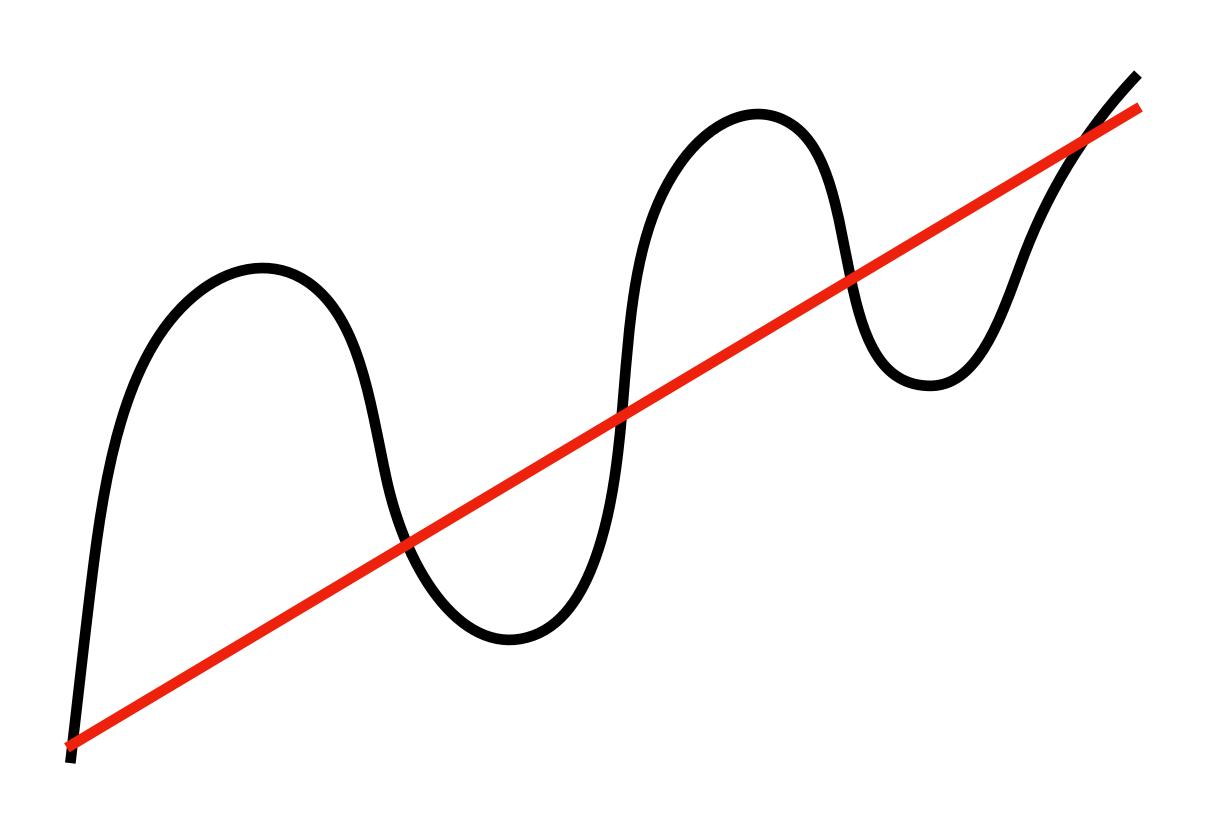
Remedies:

• Parametric models polynomial regression neural networks



Remedies:

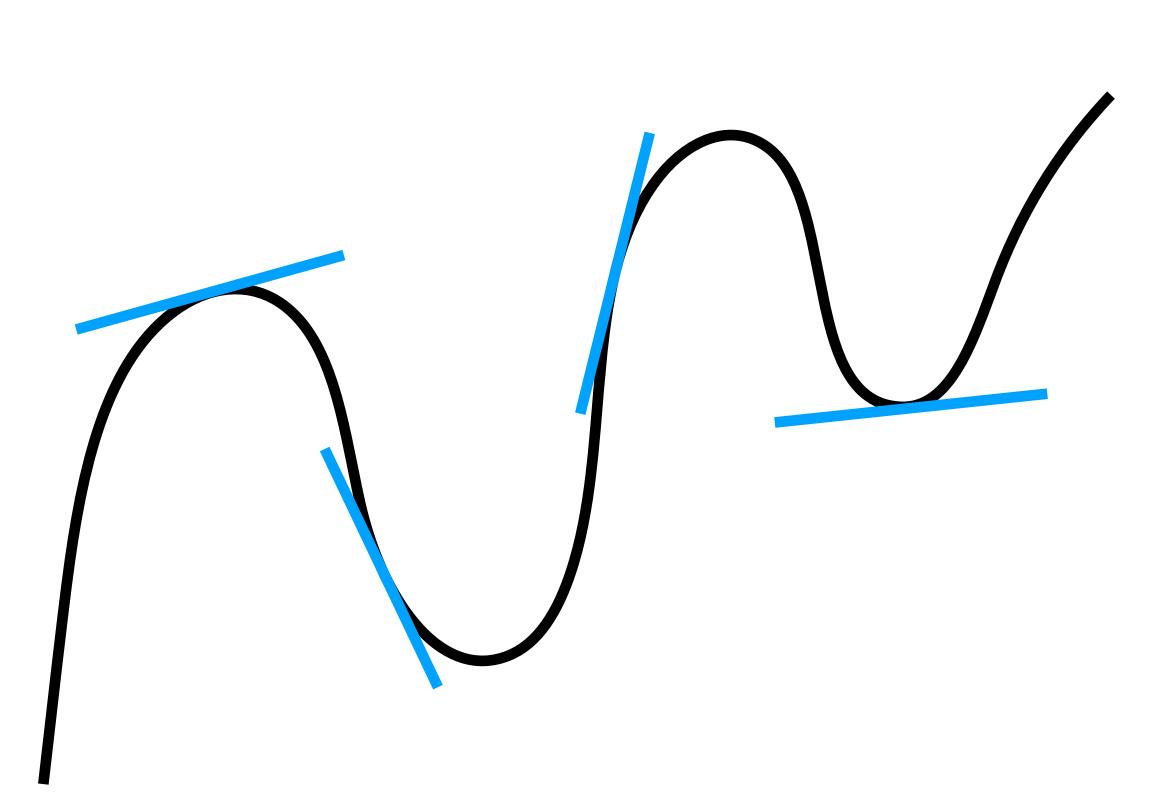
- Parametric models polynomial regression neural networks
- Non-parametric models kernel (ridge) regression k-nearest neighbor



Remedies:

- Parametric models polynomial regression neural networks
- Non-parametric models kernel (ridge) regression k-nearest neighbor
- Local models local linear regression

. . .



Remedies:

- Parametric models polynomial regression neural networks
- Non-parametric models kernel (ridge) regression k-nearest neighbor
- Local models local linear regression

. . .

A Story of Curve Fitting Local models have two components:

A Story of Curve Fitting Local models have two components: • Parametric "controller" linear regression . . .

A Story of Curve Fitting Local models have two components: • Parametric "controller" linear regression . . . • Non-parametric "memory" k-nearest neighbor . . .

Local models have two components:

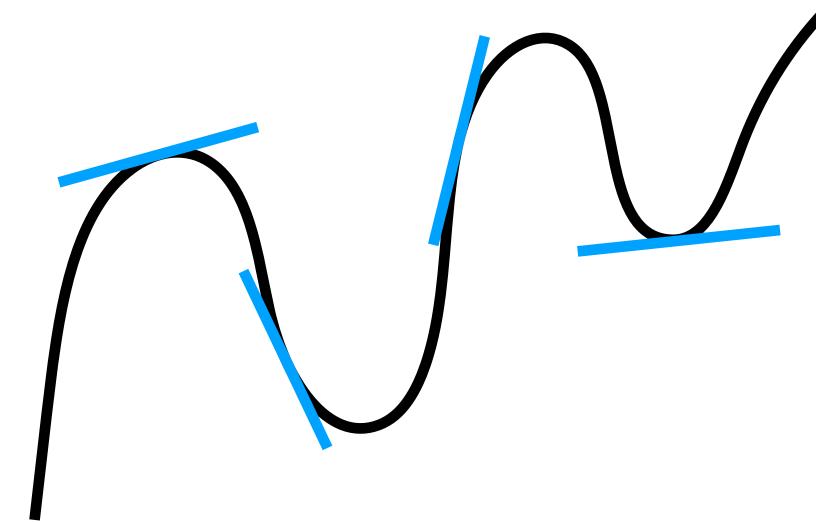
• Parametric "controller" linear regression

. . .

. . .

• Non-parametric "memory" k-nearest neighbor

 \rightarrow a small model class can fit a rich function class!



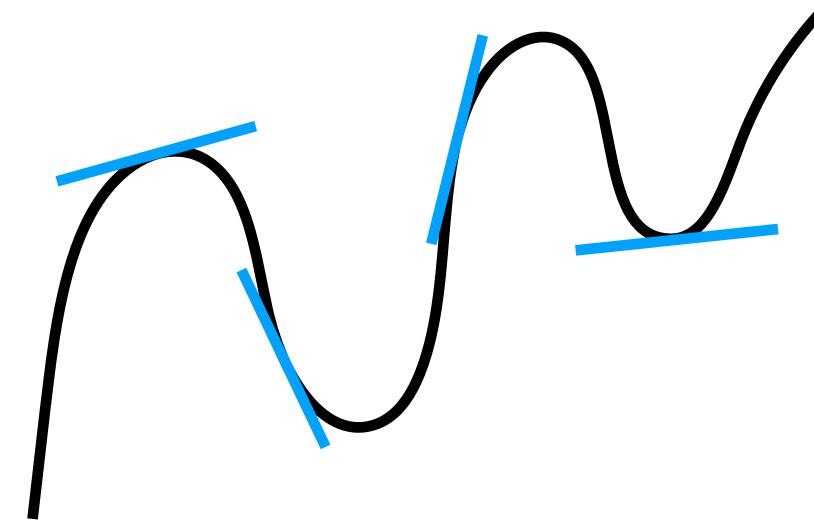
Local models have two components:

• Parametric "controller" linear regression

. . .

. . .

- Non-parametric "memory" k-nearest neighbor
- \rightarrow a small model class can fit a rich function class! \rightarrow <u>one</u> local model needs only little data!



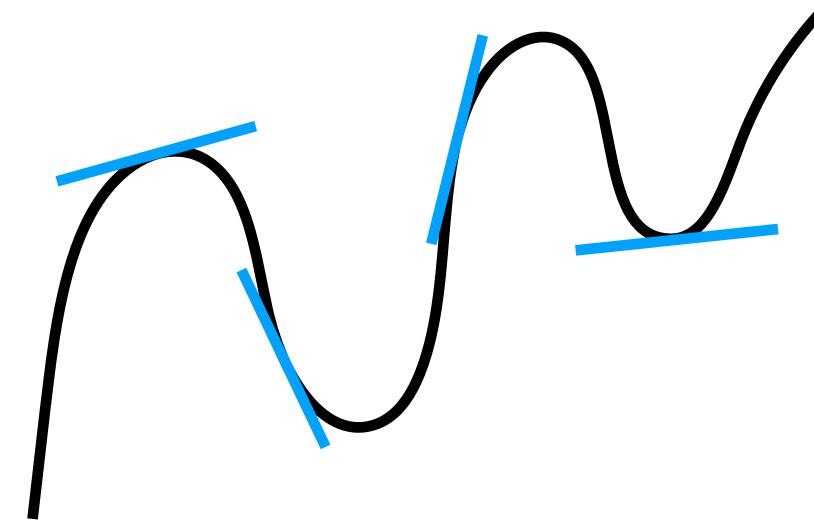
Local models have two components:

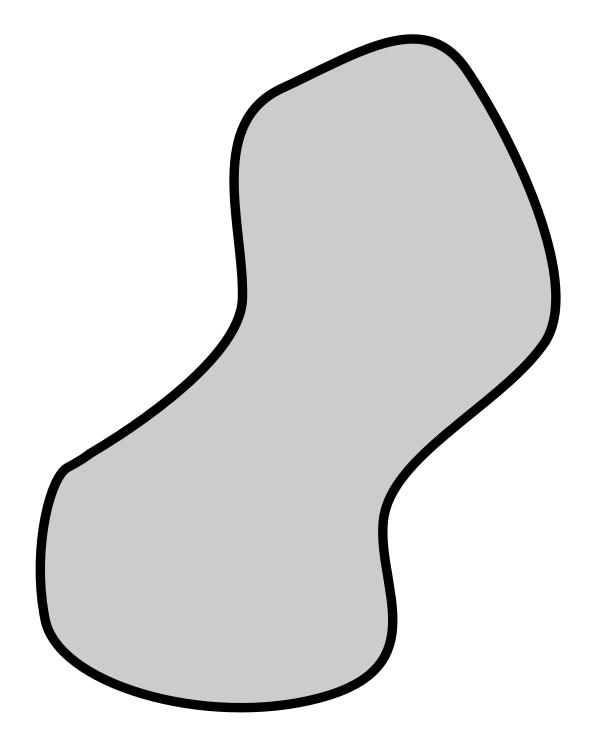
• Parametric "controller" linear regression

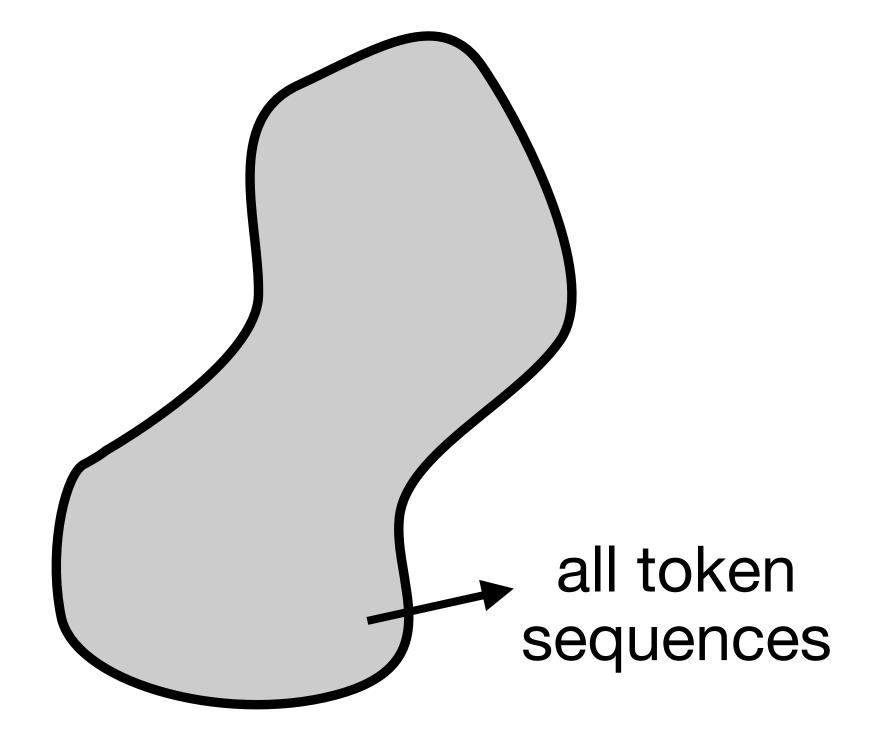
. . .

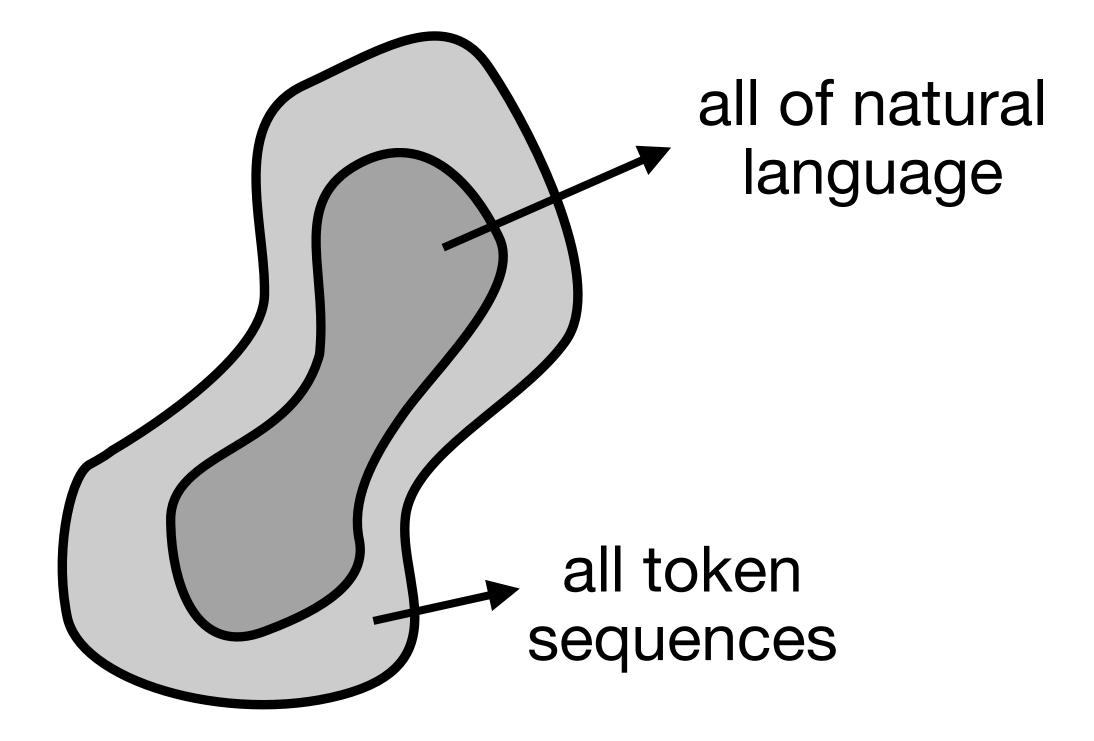
. . .

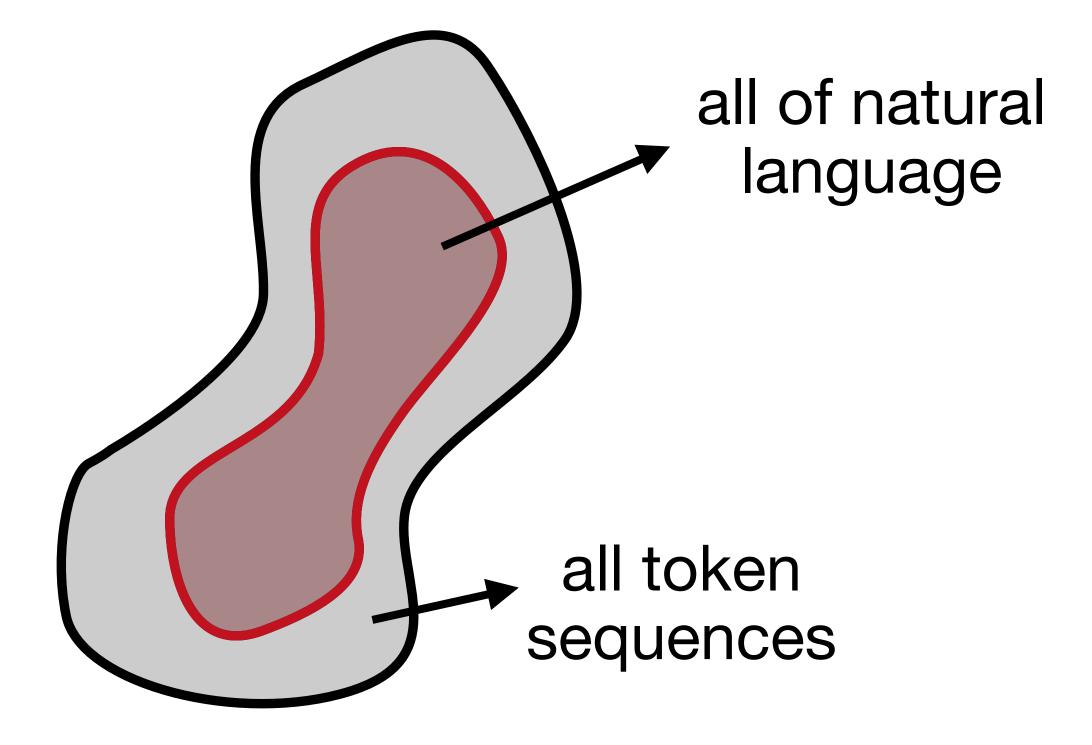
- Non-parametric "memory" k-nearest neighbor
- \rightarrow a small model class can fit a rich function class!
- \rightarrow <u>one</u> local model needs only little data!
- \rightarrow too good to be true?



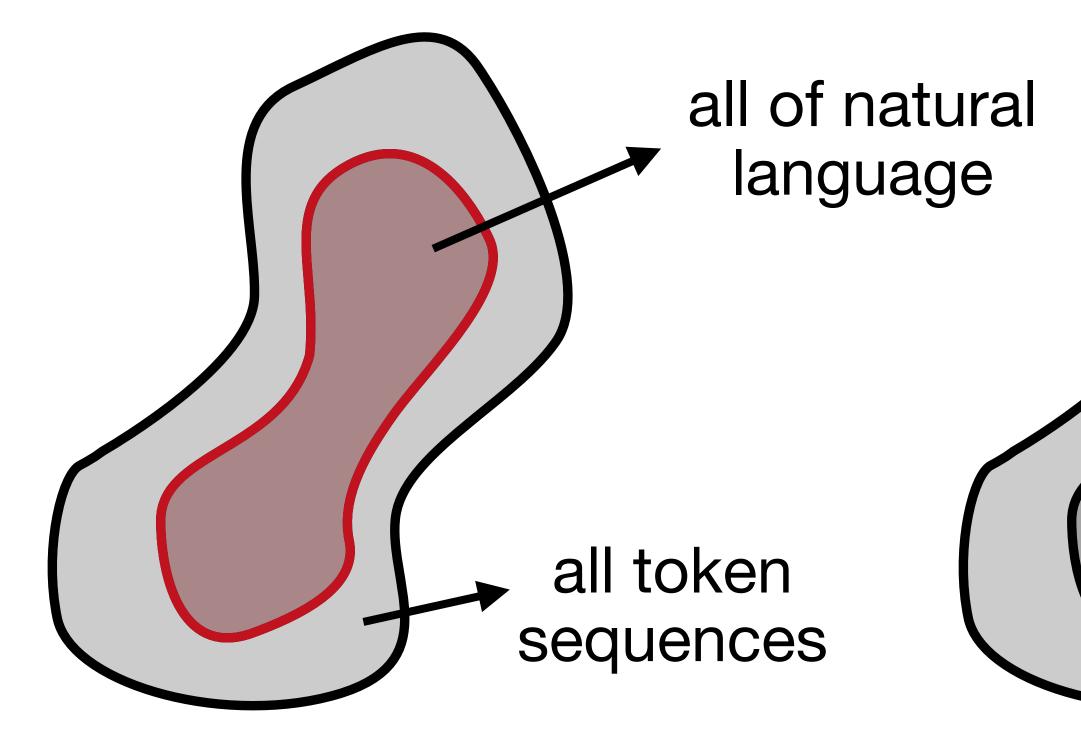




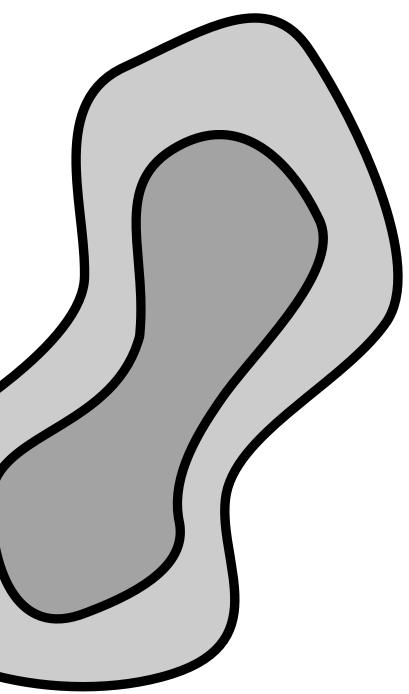


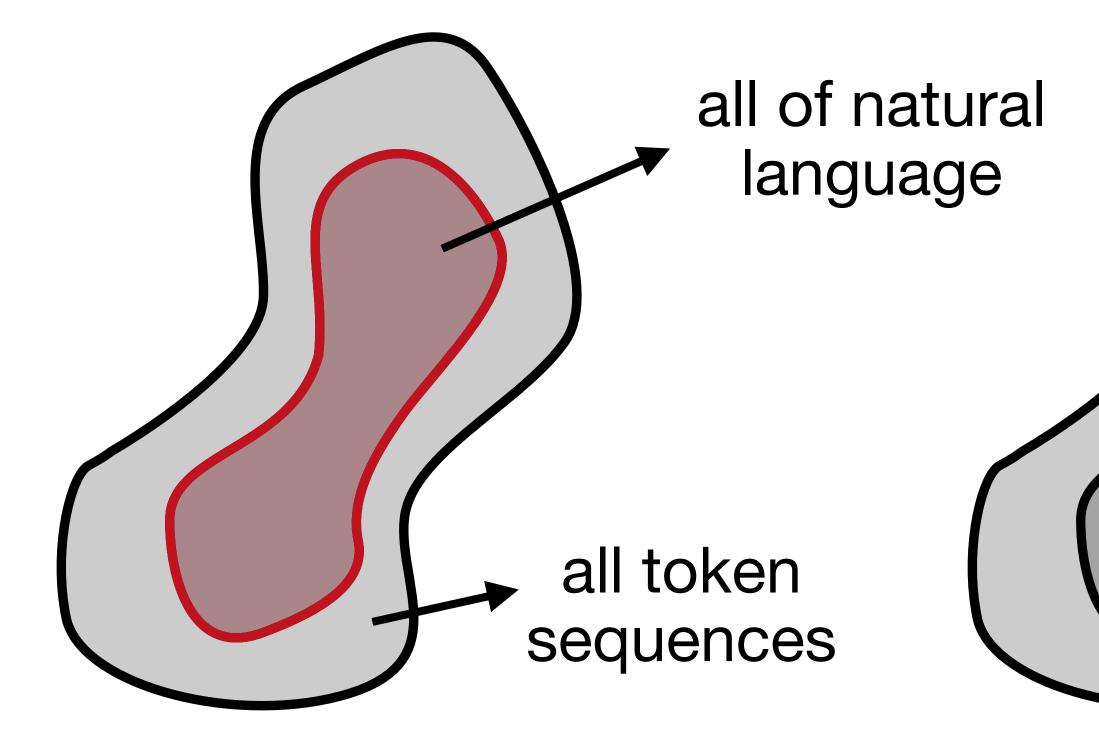


inductive learning

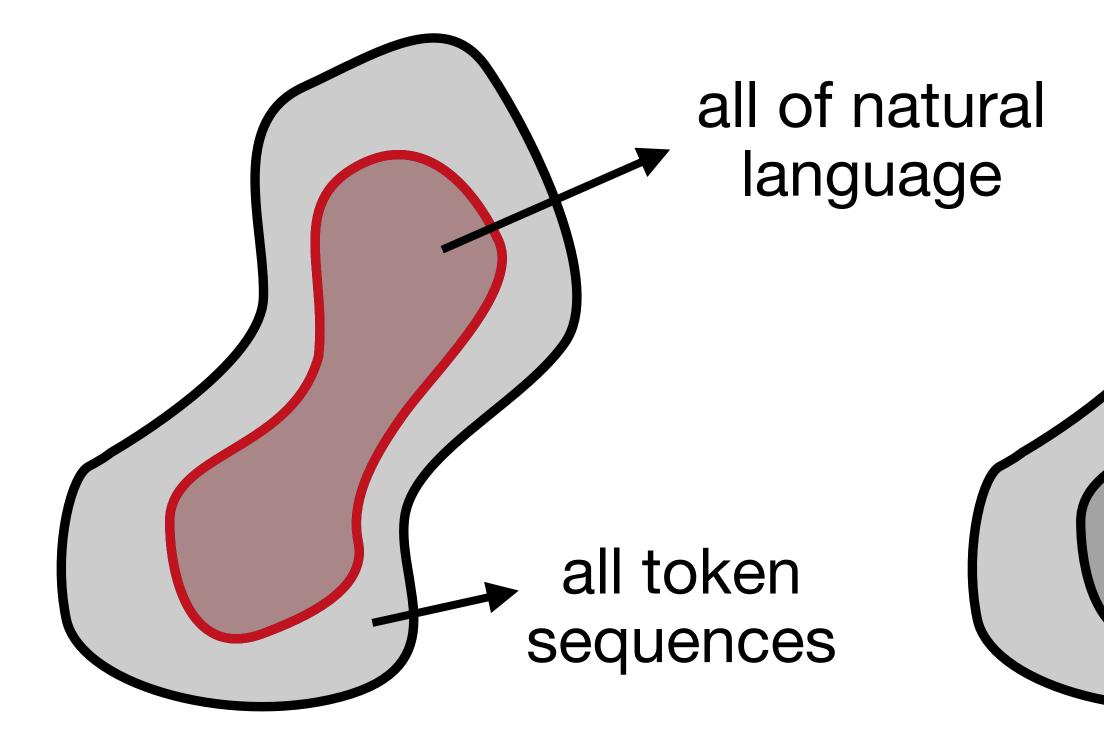


inductive learning

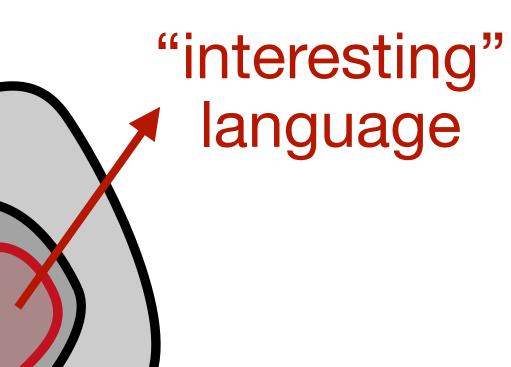




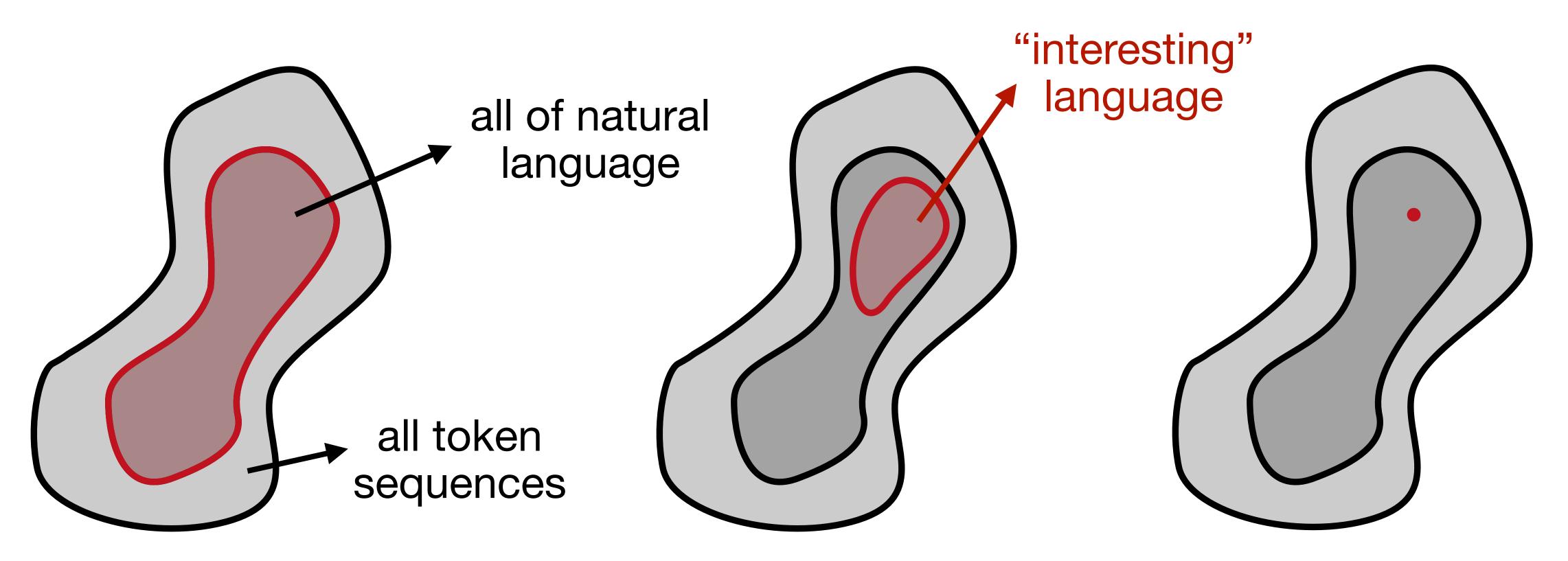
inductive learning



inductive learning



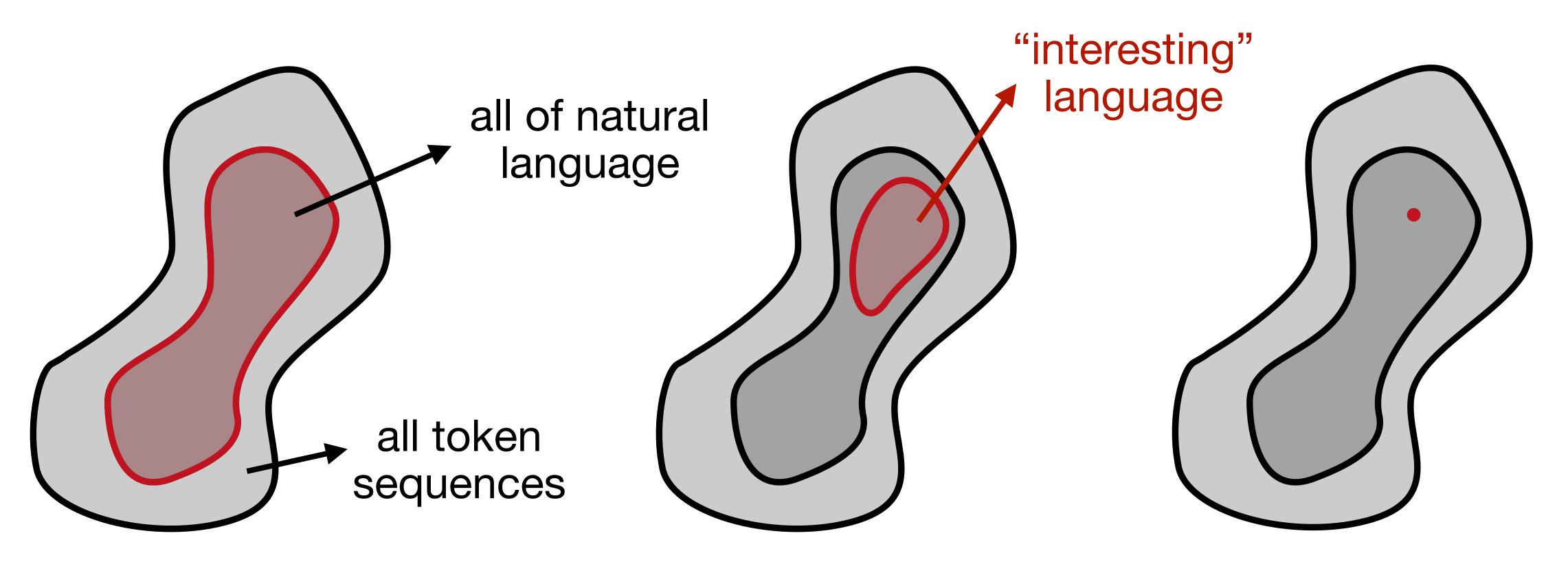
"fine-tuning"



inductive learning

"fine-tuning"

local learning



inductive learning

"fine-tuning"

local learning

Vladimir Vapnik (in 1980s)

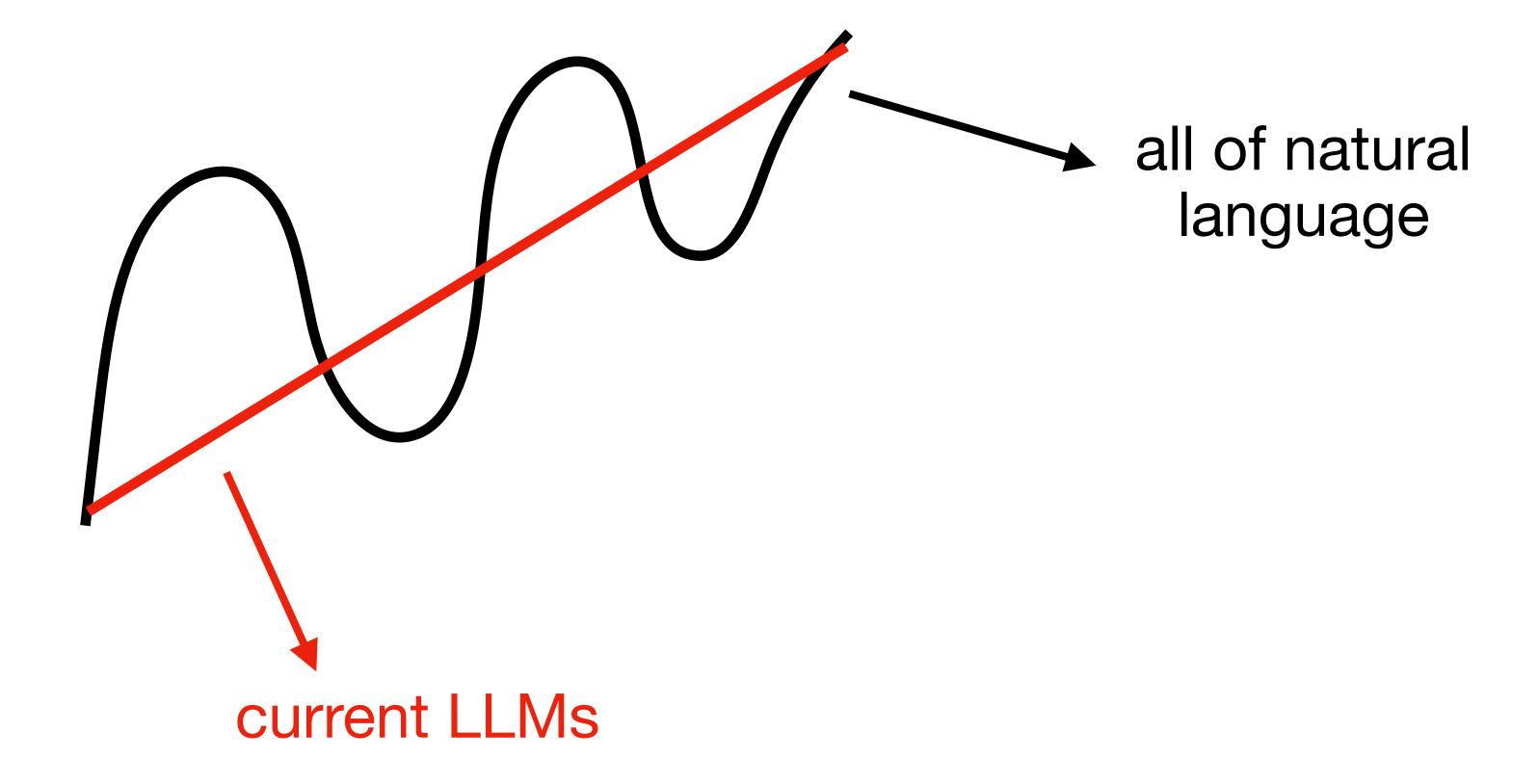
sequences

"When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really need but not a more general one."

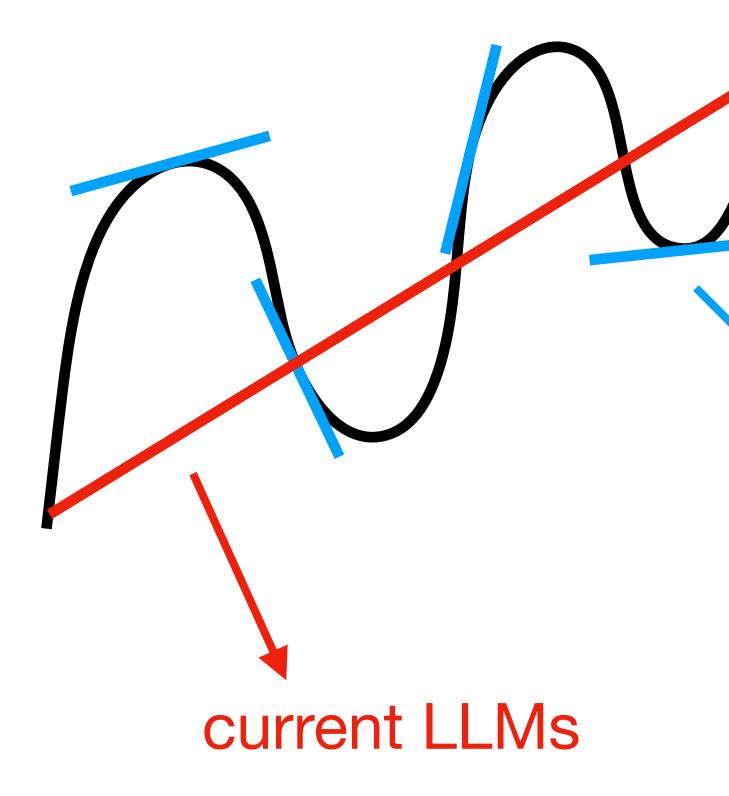
"fine-tuning"

local learning

Hypothesis for LLMs

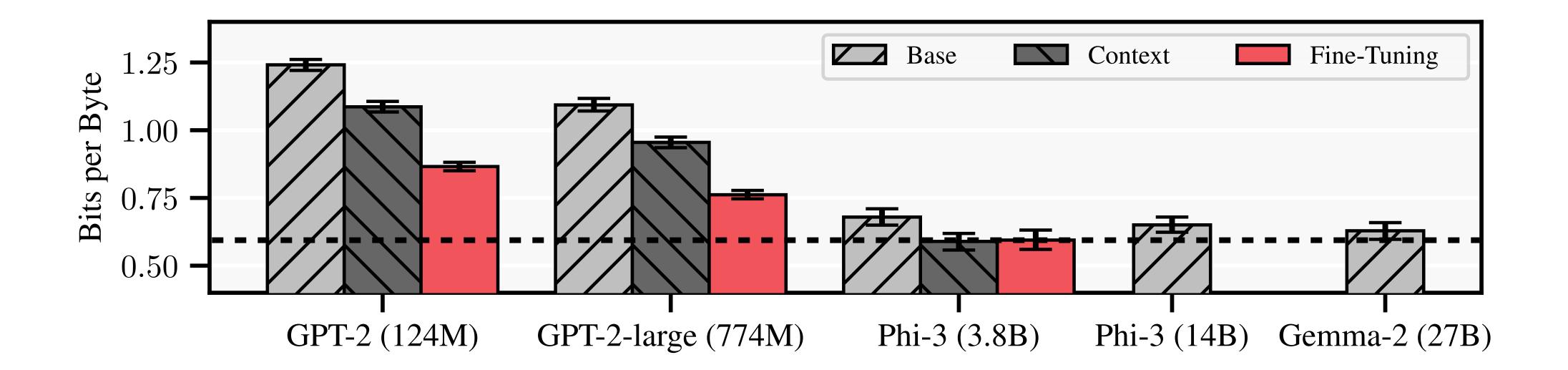


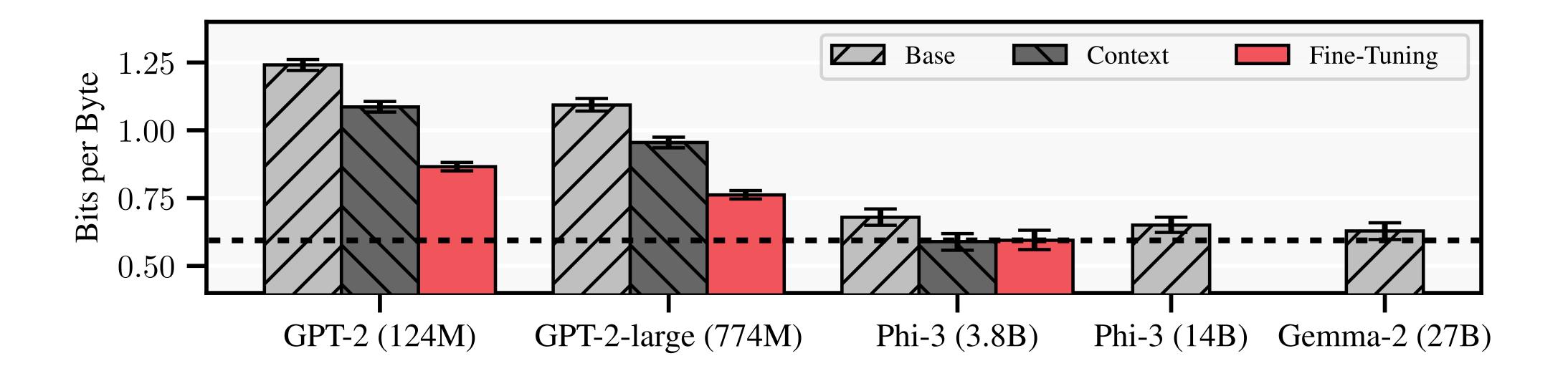
Hypothesis for LLMs



all of natural language

LLMs with test-time fine-tuning?



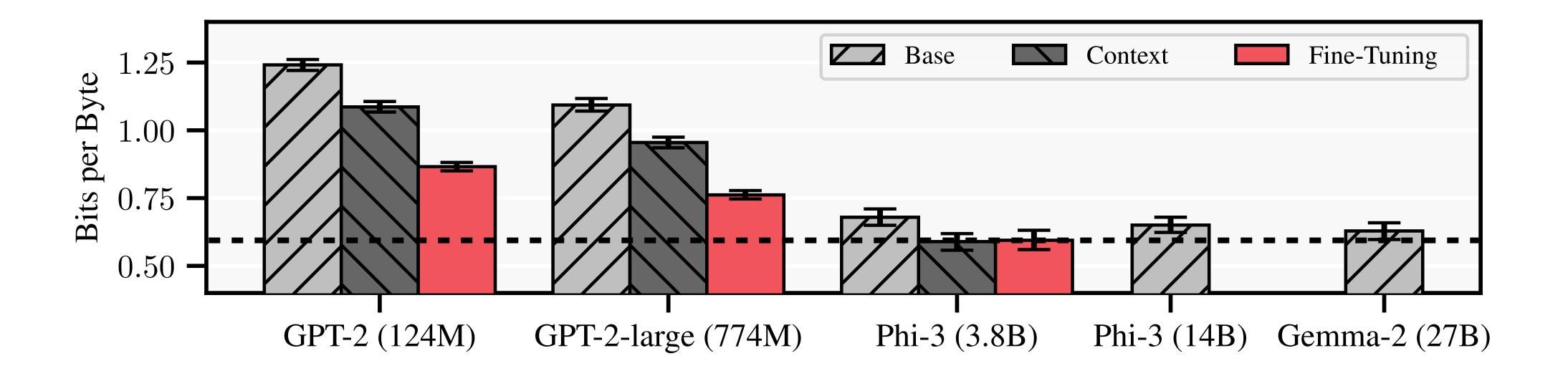


	Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ
GitHub	74.6 (2.5)	28.6 (2.2)	$\downarrow 56.0$	GitHub	74.6 (2.5)	31.0 (2.2)	$\downarrow 43.6$	DeepMind Math	100.8	75.3	$\downarrow 25.5$
DeepMind Math			$\downarrow 30.1$	DeepMind Math	100.2 (0.7)	74.2 (2.3)	$\downarrow 26.0$	GitHub	71.3	46.5	$\downarrow 24.8$
US Patents	87.4 (2.5)	62.2 (3.6)	$\downarrow 25.2$	US Patents	87.4 (2.5)	64.7 (3.8)	$\downarrow 22.7$	FreeLaw	78.2	67.2	↓11.0
FreeLaw	87.2 (3.6)	65.5 (4.2)	$\downarrow 21.7$	FreeLaw	87.2 (3.6)	68.3 (4.2)	$\downarrow 18.9$	ArXiv	101.0	94.3	$\downarrow 6.4$

GPT-2

GPT-2-large

Phi-3

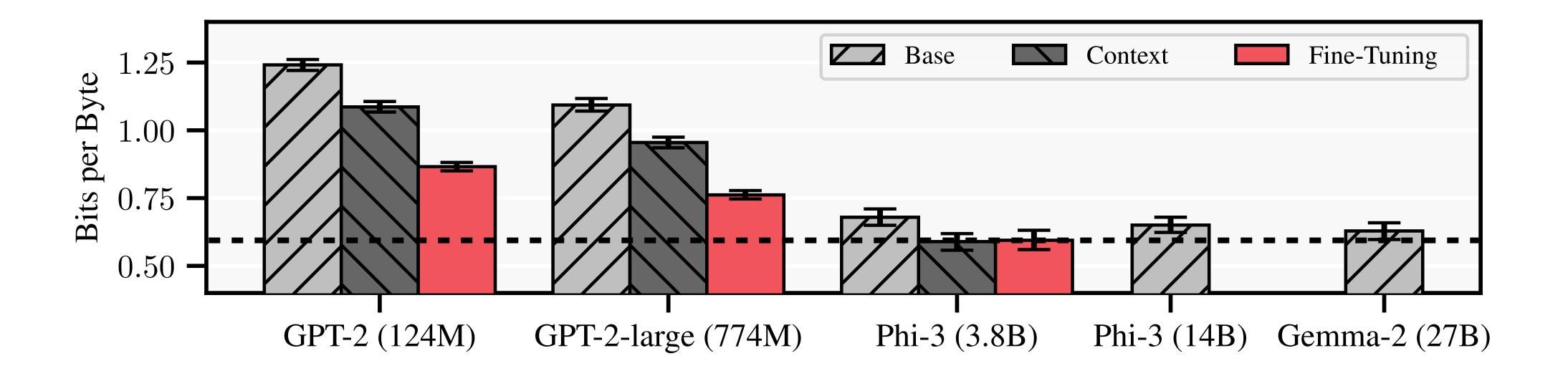


	Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ
GitHub	74.6 (2.5)	28.6 (2.2)	$\downarrow 56.0$	GitHub	74.6 (2.5)	31.0 (2.2)	$\downarrow 43.6$	DeepMind Math	100.8	75.3	$\downarrow 25.5$
DeepMind Math	100.2 (0.1)	70.1 (2.1)	\downarrow 30.1	DeepMind Math	100.2 (0.7)	74.2 (2.3)	$\downarrow 26.0$	GitHub	71.3	46.5	$\downarrow 24.8$
US Patents	87.4 (2.5)	62.2 (3.6)	$\downarrow 25.2$	US Patents	87.4 (2.5)	64.7 (3.8)	$\downarrow 22.7$	FreeLaw	78.2	67.2	$\downarrow 11.0$
FreeLaw	87.2 (3.6)	65.5 (4.2)	$\downarrow 21.7$	FreeLaw	87.2 (3.6)	68.3 (4.2)	$\downarrow 18.9$	ArXiv	101.0	94.3	$\downarrow 6.4$

GPT-2

GPT-2-large

Phi-3



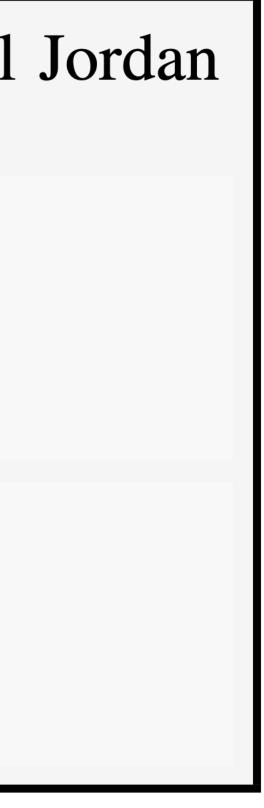
	Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ
GitHub	74.6 (2.5)	28.6 (2.2)	$\downarrow 56.0$	GitHub	74.6 (2.5)	31.0 (2.2)	$\downarrow 43.6$	DeepMind Math	100.8	75.3	$\downarrow 25.5$
DeepMind Math	100.2 (0.1)		\downarrow 30.1	DeepMind Math	100.2 (0.7)	74.2 (2.3)	$\downarrow 26.0$	GitHub	71.3	46.5	$\downarrow 24.8$
US Patents	87.4 (2.5)	62.2 (3.6)	$\downarrow 25.2$	US Patents	87.4 (2.5)	64.7 (3.8)	$\downarrow 22.7$	FreeLaw	78.2	67.2	↓11.0
FreeLaw	87.2 (3.6)	65.5 (4.2)	$\downarrow 21.7$	FreeLaw	87.2 (3.6)	68.3 (4.2)	$\downarrow 18.9$	ArXiv	101.0	94.3	$\downarrow 6.4$

GPT-2

GPT-2-large

Phi-3

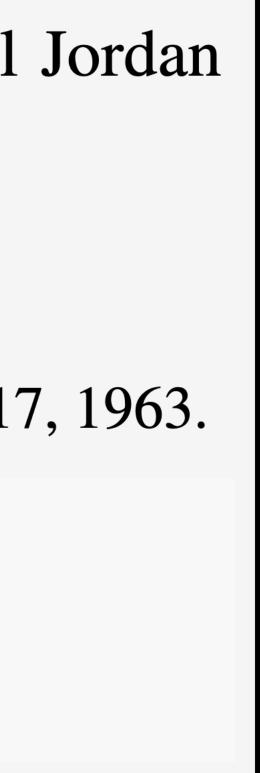
Prompt: What is the age of Michael Jordan and how many kids does he have?



Prompt: What is the age of Michael Jordan and how many kids does he have?

Nearest Neighbor:

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan was born on February 17, 1963.



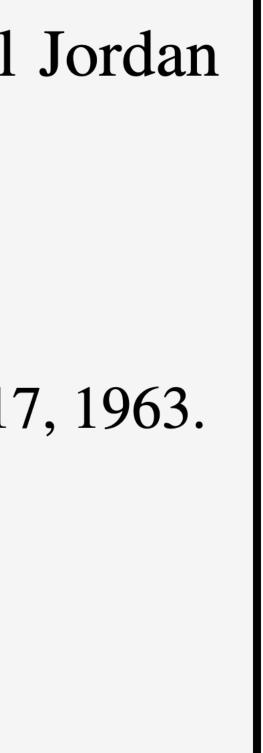
Prompt: What is the age of Michael Jordan and how many kids does he have?

Nearest Neighbor:

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan was born on February 17, 1963.

SIFT (ours):

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan has five children.



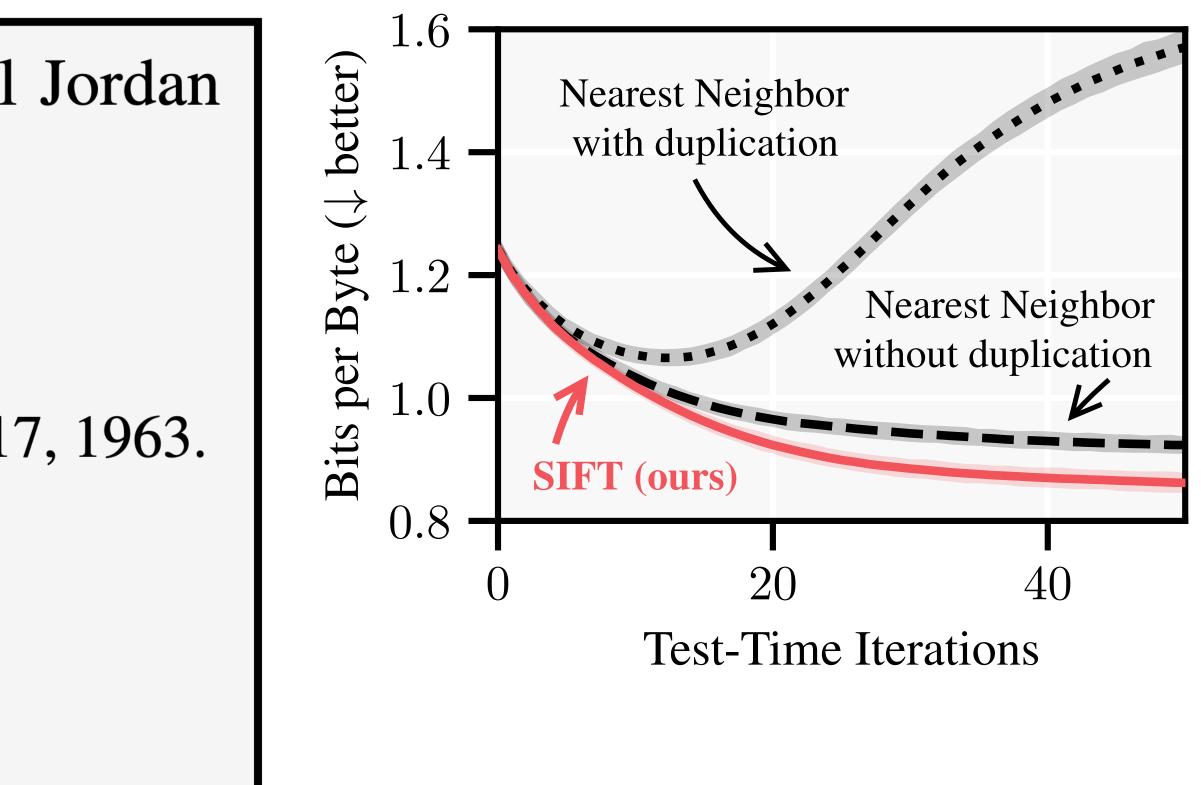
Prompt: What is the age of Michael Jordan and how many kids does he have?

Nearest Neighbor:

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan was born on February 17, 1963.

SIFT (ours):

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan has five children.



SIFT: Selecting Informative data for Fine-Tuning

Principle:

Select data that maximally reduces "uncertainty" about how to respond to the prompt.

[H, Bongni, Hakimi, Krause; preprint]

SIFT: Selecting Informative data for Fine-Tuning

Principle:

Select data that *maximally* reduces "uncertainty" about how to respond to the prompt.

- 1. Estimate uncertainty
- 2. Minimize "posterior" uncertainty

[H, Bongni, Hakimi, Krause; preprint]

Estimating Uncertainty

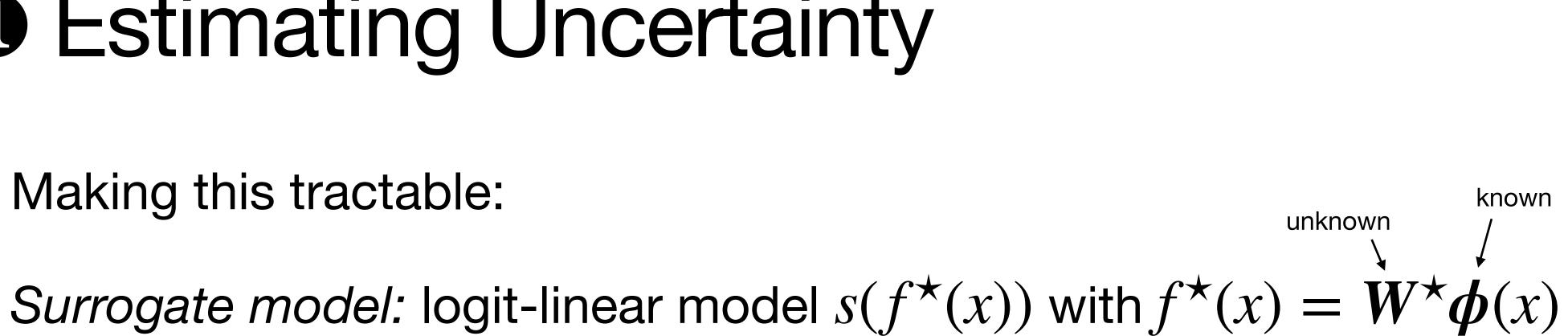
O Estimating Uncertainty

• Making this tractable:

Surrogate model: logit-linear model $s(f^{\star}(x))$ with $f^{\star}(x) = W^{\star}\phi(x)$

• Estimating Uncertainty

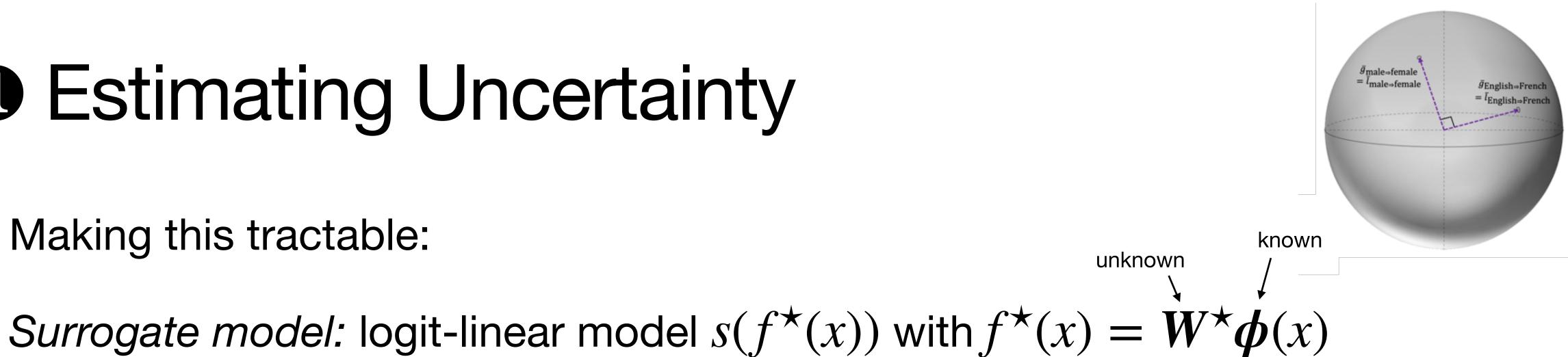
Making this tractable: •



• Estimating Uncertainty

Making this tractable:

 \rightarrow linear representation hypothesis [Park, Choe, Veitch; ICML '24]



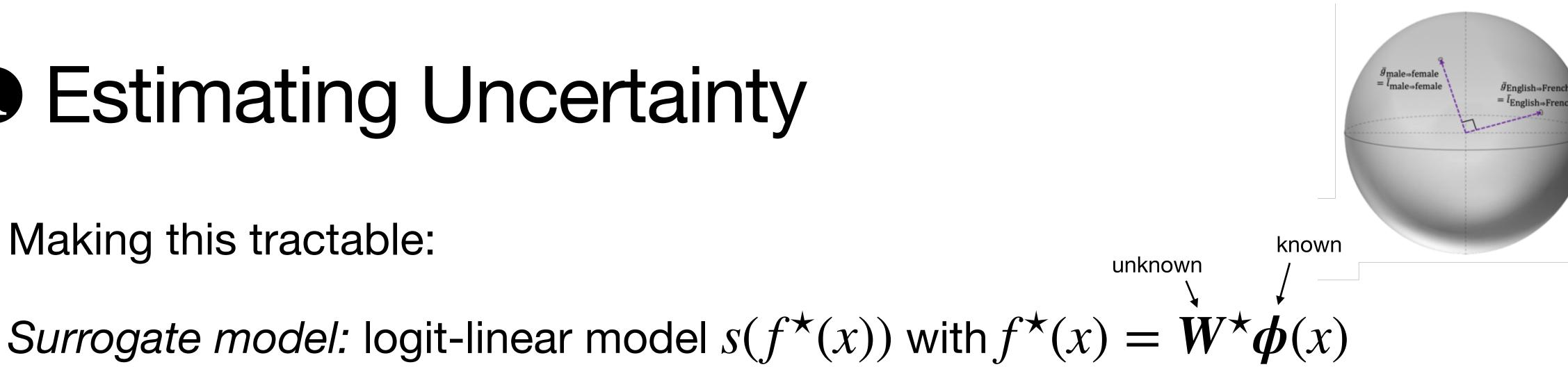
• Estimating Uncertainty

Making this tractable:

 \rightarrow linear representation hypothesis [Park, Choe, Veitch; ICML '24]

$$s^{\star}(x) = s(f^{\star}(x))$$
 $s^{\text{pre}}(x) =$

"truth"



 $= s(W^{\text{pre}}\phi(x))$ $s_n(x) = s(W_n\phi(x))$

pre-trained model

fine-tuned model on *n* pieces of data

• Estimating Uncertai

Making this tractable:

Surrogate model: logit-linear model

 \rightarrow linear representation hypothesis [Park, Choe, Veitch; ICML '24]

$$s^{\star}(x) = s(f^{\star}(x))$$
 $s^{\text{pre}}(x) =$

"truth"

pre-trained model

nty
unknown

$$s(f^{\star}(x))$$
 with $f^{\star}(x) = W^{\star}\phi(x)$

 $= s(W^{\text{pre}}\phi(x)) \qquad s_n(x) = s(W_n\phi(x))$

fine-tuned model on *n* pieces of data

Confidence sets: $\mathbb{P}(\forall n \ge 1, x \in \mathcal{X} : d_{TV}(s_n(x), s^*(x)) \le \beta_n(\delta) \sigma_n(x)) \ge 1 - \delta$

• Estimating Uncertai

Making this tractable:

Surrogate model: logit-linear model

 \rightarrow linear representation hypothesis [Park, Choe, Veitch; ICML '24]

$$s^{\star}(x) = s(f^{\star}(x))$$
 $s^{\text{pre}}(x) =$

"truth"

pre-trained model

nty
unknown

$$s(f^{\star}(x))$$
 with $f^{\star}(x) = W^{\star}\phi(x)$

 $= s(W^{\text{pre}}\phi(x)) \qquad s_n(x) = s(W_n\phi(x))$

fine-tuned model on n pieces of data

Confidence sets: $\mathbb{P}(\forall n \ge 1, x \in \mathcal{X} : d_{TV}(s_n(x), s^*(x)) \le \beta_n(\delta) \sigma_n(x)) \ge 1 - \delta$

significance

O Estimating Uncertai

Making this tractable:

Surrogate model: logit-linear model

 \rightarrow linear representation hypothesis [Park, Choe, Veitch; ICML '24]

$$s^{\star}(x) = s(f^{\star}(x))$$
 $s^{\text{pre}}(x) =$

"truth"

pre-trained model

nty
unknown

$$s(f^{\star}(x))$$
 with $f^{\star}(x) = W^{\star}\phi(x)$

 $= s(W^{\text{pre}}\phi(x)) \qquad s_n(x) = s(W_n\phi(x))$

fine-tuned model on n pieces of data

Confidence sets: $\mathbb{P}(\forall n \ge 1, x \in \mathcal{X} : d_{TV}(s_n(x), s^{\star}(x)) \le \beta_n(\delta) | \sigma_n(x)) \ge 1 - \delta$ significance scaling key object error

O Estimating Uncertai

Making this tractable:

Surrogate model: logit-linear model

 \rightarrow linear representation hypothesis [Park, Choe, Veitch; ICML '24]

$$s^{\star}(x) = s(f^{\star}(x))$$
 $s^{\text{pre}}(x) =$
"truth" $s^{\text{pre-fit}}(x)$

 $\rightarrow \sigma_n(x)$ measures uncertainty about response to x!

nty
unknown

$$s(f^{\star}(x))$$
 with $f^{\star}(x) = W^{\star}\phi(x)$

pre-trained model

 $= s(W^{\text{pre}}\boldsymbol{\phi}(x)) \qquad s_n(x) = s(W_n\boldsymbol{\phi}(x))$

fine-tuned model on *n* pieces of data

Confidence sets: $\mathbb{P}(\forall n \ge 1, x \in \mathcal{X} : d_{TV}(s_n(x), s^*(x)) \le \beta_n(\delta) | \sigma_n(x)) \ge 1 - \delta$ significance scaling key object error

$$x_{n+1} = \underset{x}{\operatorname{argmin}} \sigma_{X_n \cup \{x\}}(x^{\star}) \xrightarrow{}_{\operatorname{prompt}}$$

$$x_{n+1} = \underset{x}{\operatorname{argmin}} \sigma_{X_n \cup \{x\}}(x^{\star})_{\operatorname{prompt}}$$

Convergence guarantee (in case of no synergies):

 $\sigma_n^2(x^\star) - \sigma_\infty^2(x^\star) \le O(\lambda \log n) / \sqrt{n}$

irreducible uncertainty

$$x_{n+1} = \underset{x}{\operatorname{argmin}} \sigma_{X_n \cup \{x\}}(x^{\star}) \quad \text{prompt}$$

Convergence guarantee (in case of no synergies):

 $\sigma_n^2(x^\star) - \sigma_\infty^2(x^\star) \le O(\lambda \log n) / \sqrt{n}$

 \rightarrow predictions can be only as good as the data and the learned abstractions!

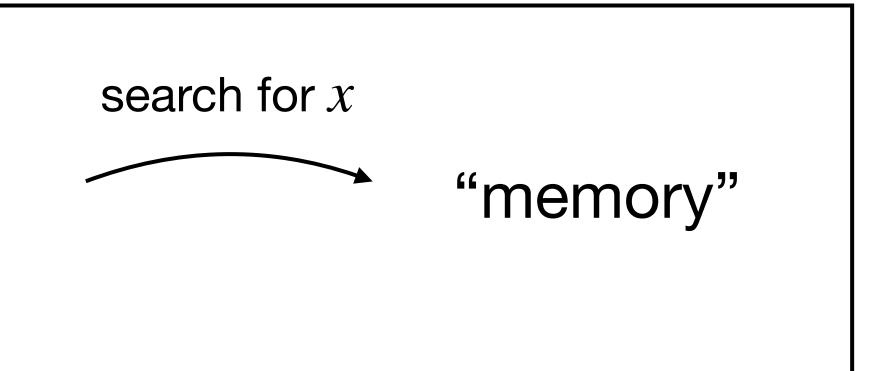
irreducible uncertainty

probabilistic model with **belief** about f ("controller")

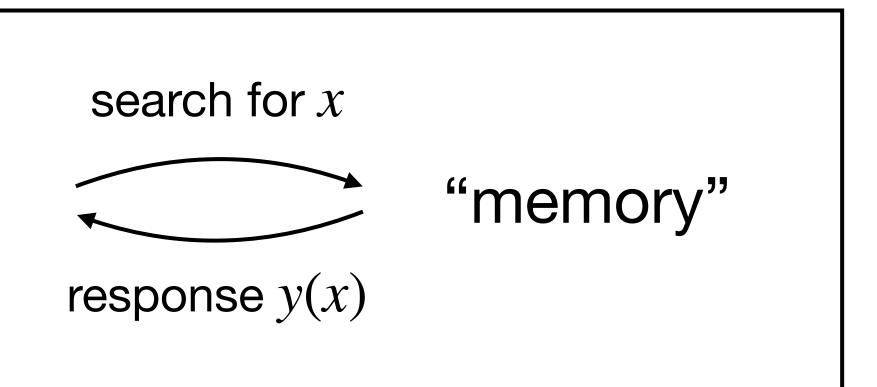
probabilistic model with **belief** about f ("controller")

"memory"

probabilistic model with **belief** about f ("controller")

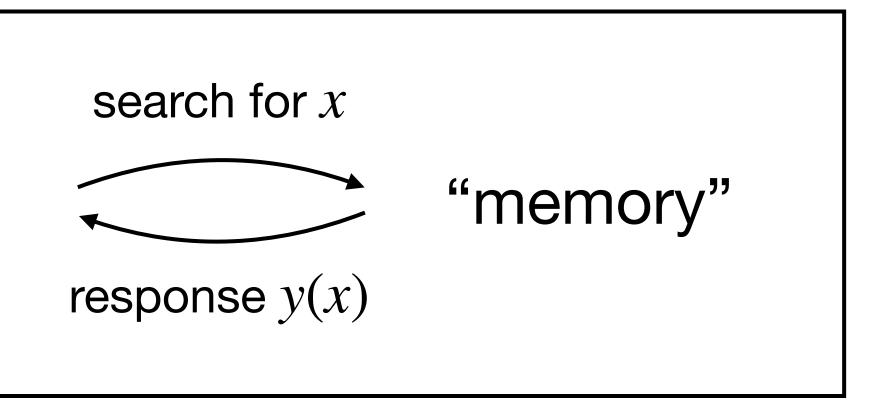


probabilistic model with **belief** about f ("controller")



probabilistic model with **belief** about f ("controller")

$$x_{n+1} = \underset{x}{\operatorname{argmax}} \operatorname{I}(f(x))$$

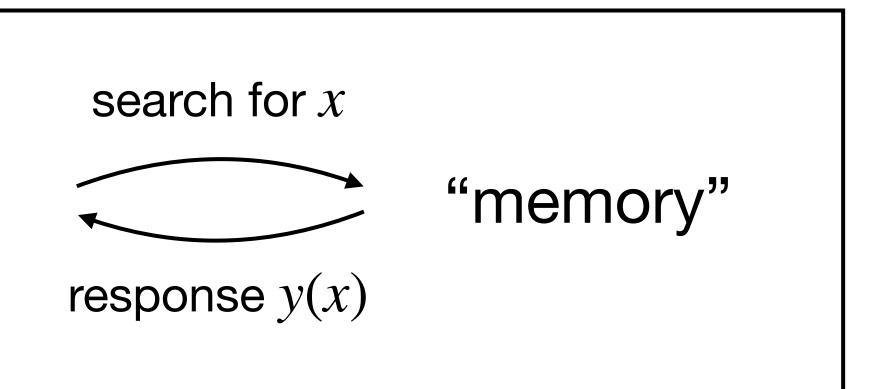


*); $y(x) | y_{1:n}$)

probabilistic model with **belief** about f ("controller")

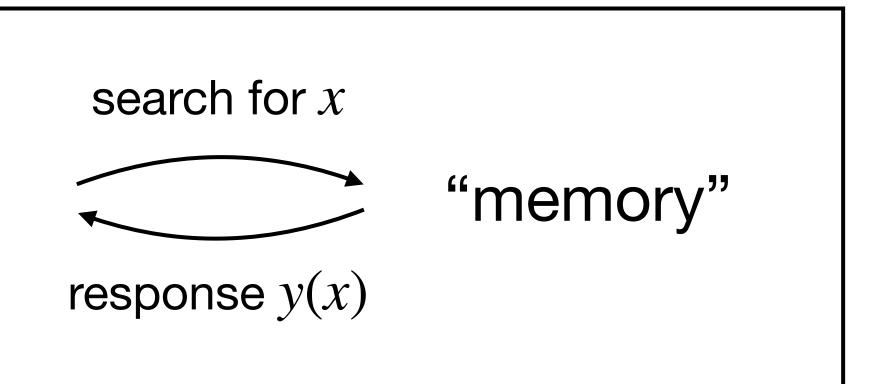
$$x_{n+1} = \underset{x}{\operatorname{argmax}} I(f(x^*); y(x) \mid y_{1:n})$$

= $\underset{x}{\operatorname{argmax}} I(f(x^*); y(x)) - I(f(x^*); y(x); y_{1:n})$



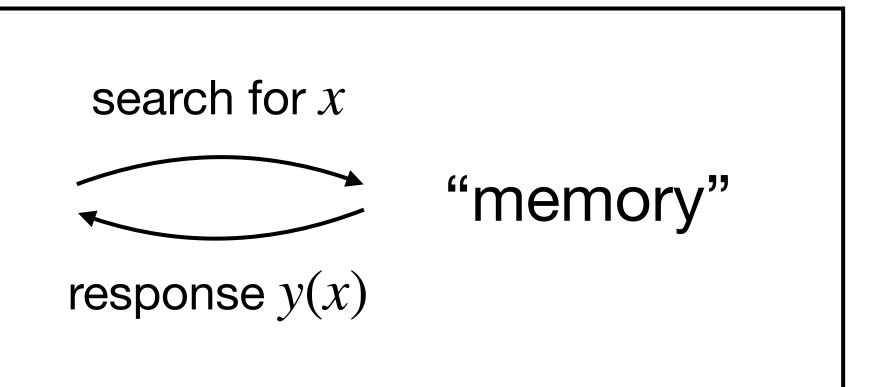
probabilistic model with **belief** about f("controller")

$$x_{n+1} = \underset{x}{\operatorname{argmax}} \operatorname{I}(f(x^{\star}); y(x) \mid y_{1:n})$$
$$= \underset{x}{\operatorname{argmax}} \operatorname{I}(f(x^{\star}); y(x)) - \operatorname{I}(f(x^{\star}); y(x); y_{1:n})$$
$$\underset{relevance}{\operatorname{relevance}}$$

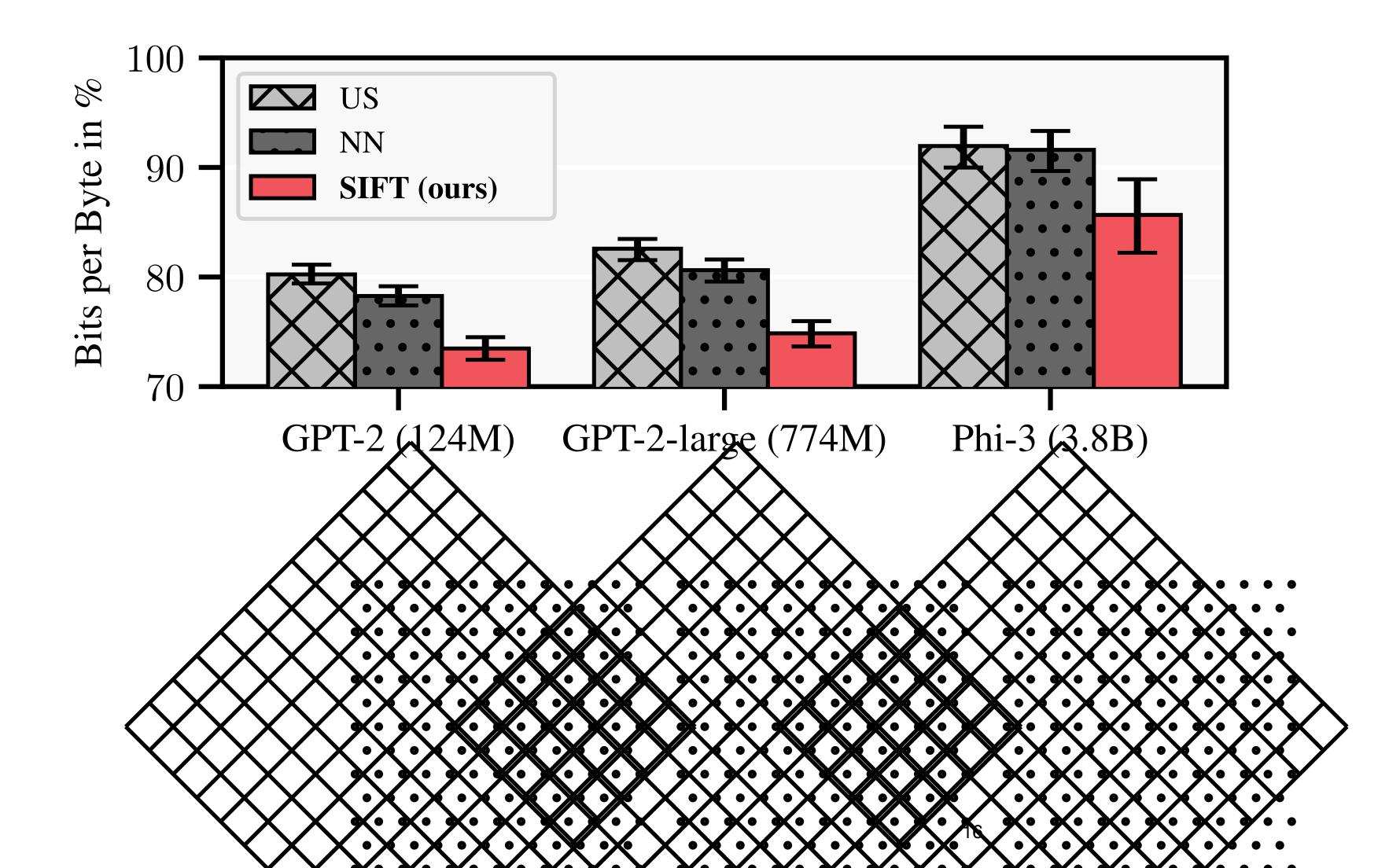


probabilistic model with **belief** about f("controller")

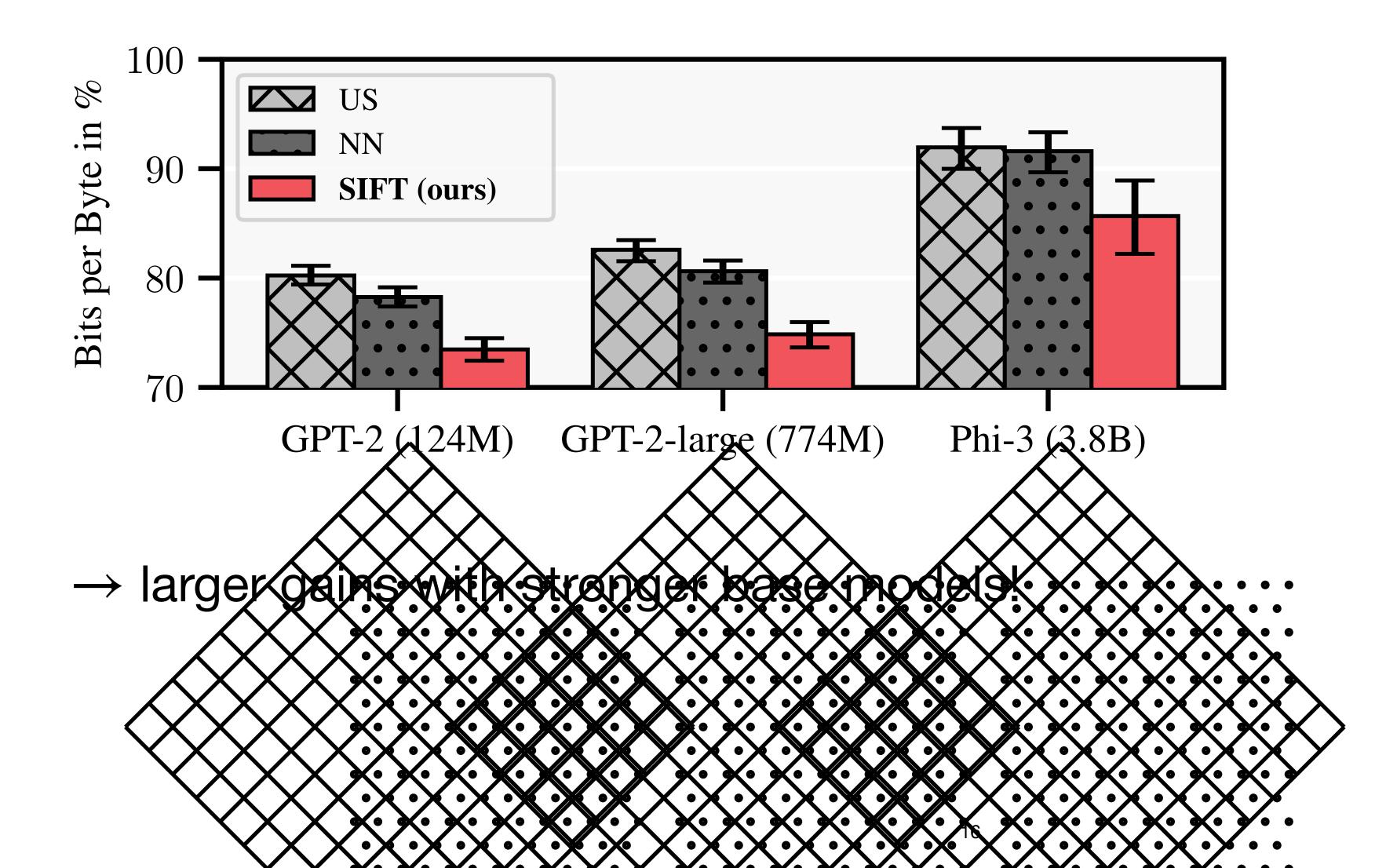
$$x_{n+1} = \underset{x}{\operatorname{argmax}} \operatorname{I}(f(x^{\star}); y(x) \mid y_{1:n})$$
$$= \underset{x}{\operatorname{argmax}} \operatorname{I}(f(x^{\star}); y(x)) - \operatorname{I}(f(x^{\star}); y(x); y_{1:n})$$
$$\underset{x}{\operatorname{relevance}} \operatorname{redundancy}$$



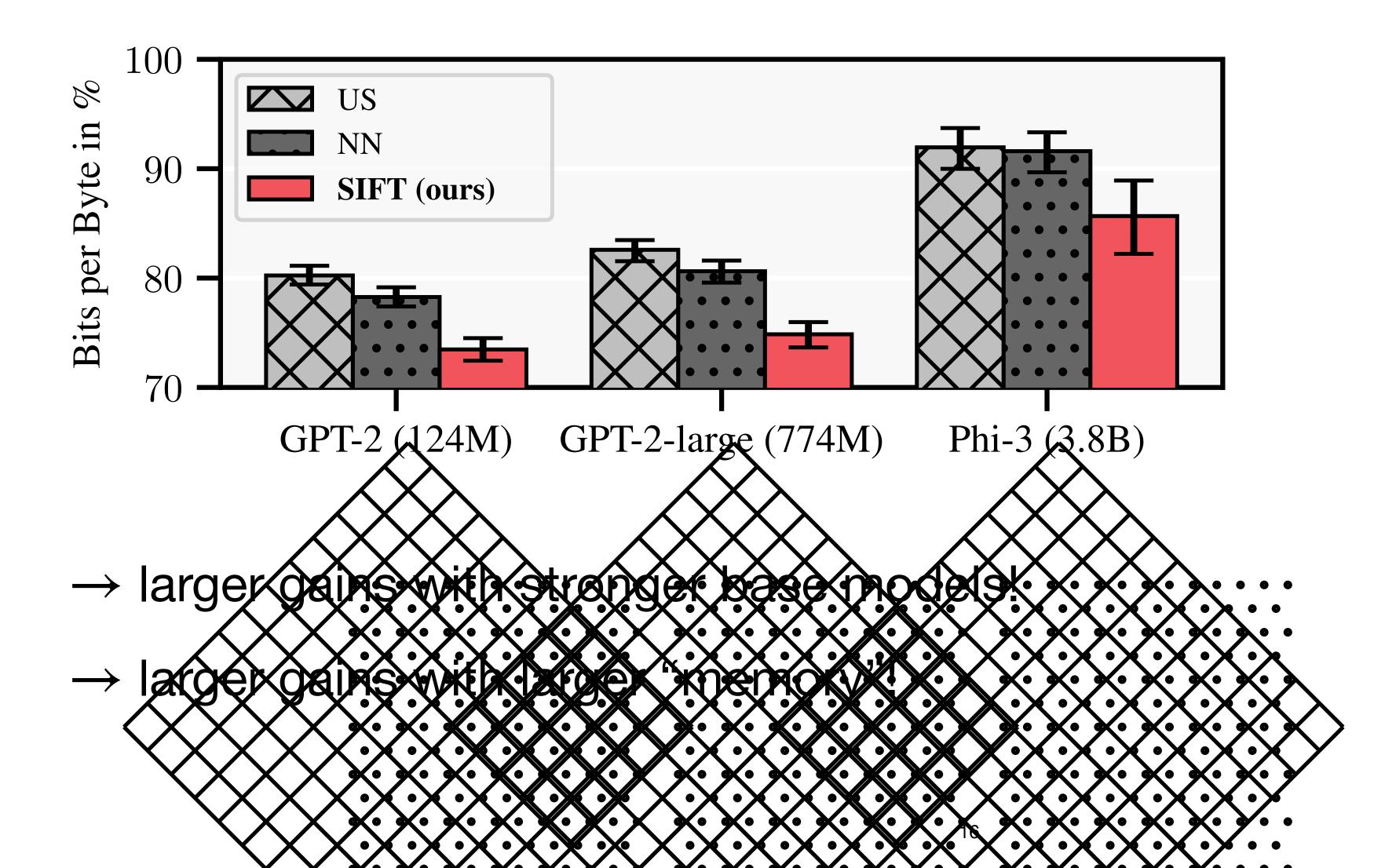
Does SIFT work?



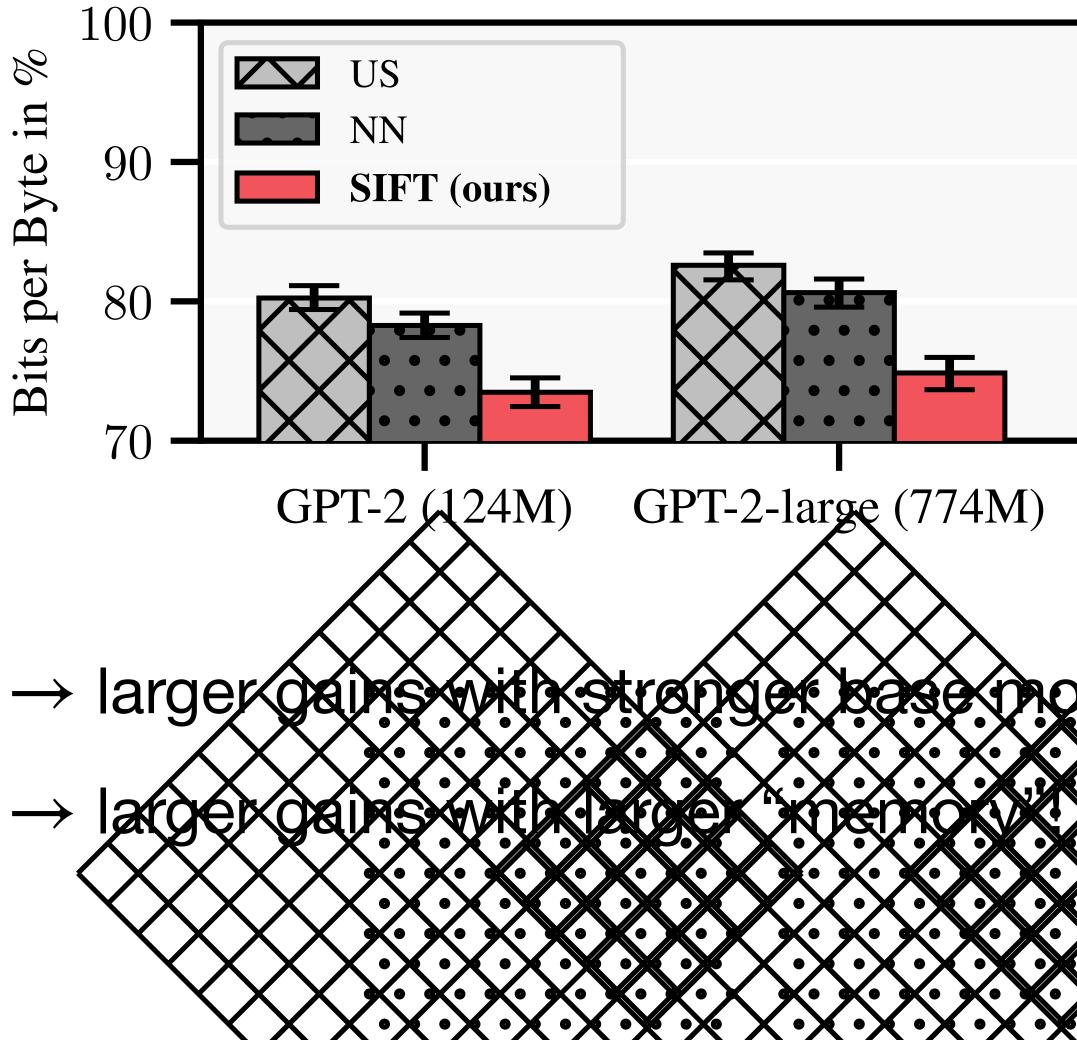
Does SIFT work?



Does SIFT work?

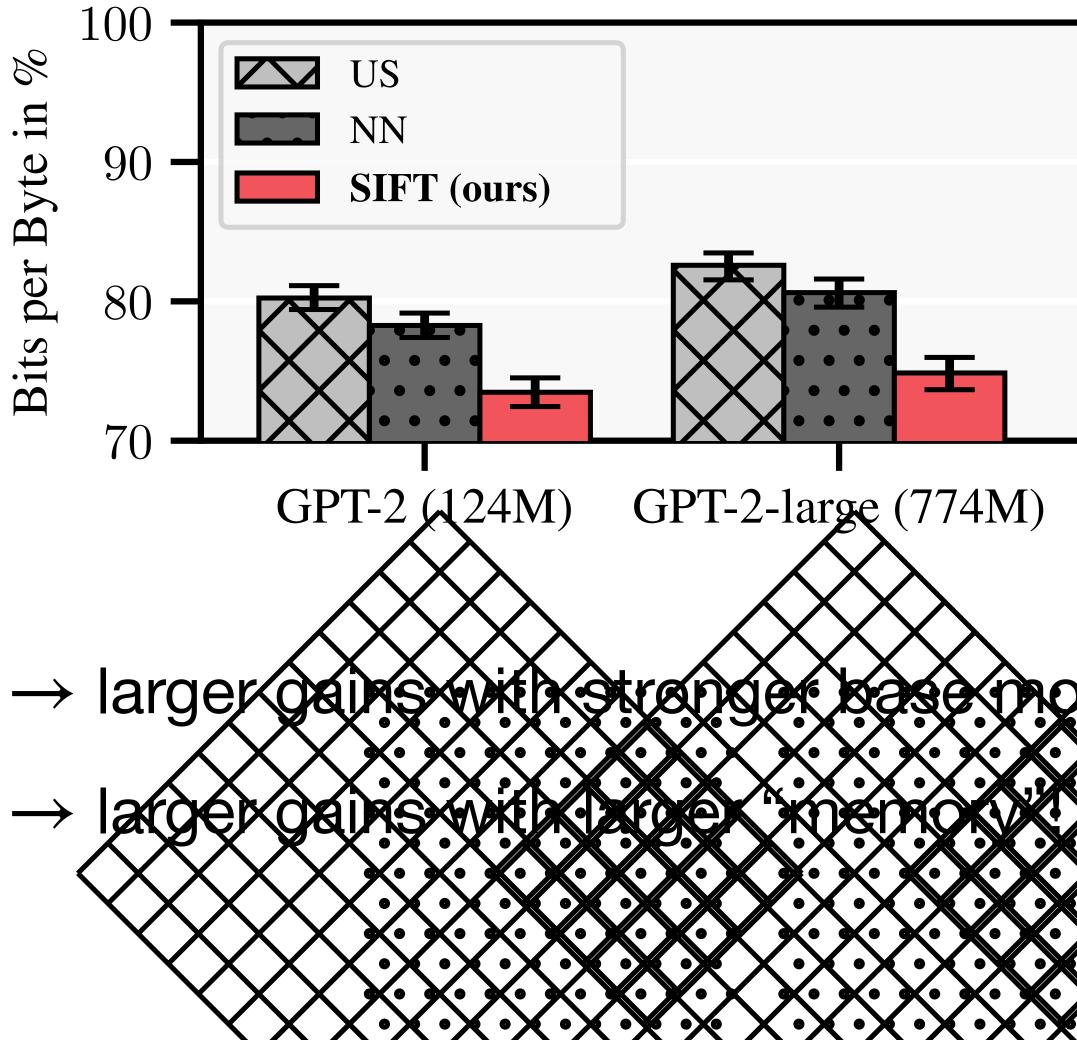


Does SIFT work?

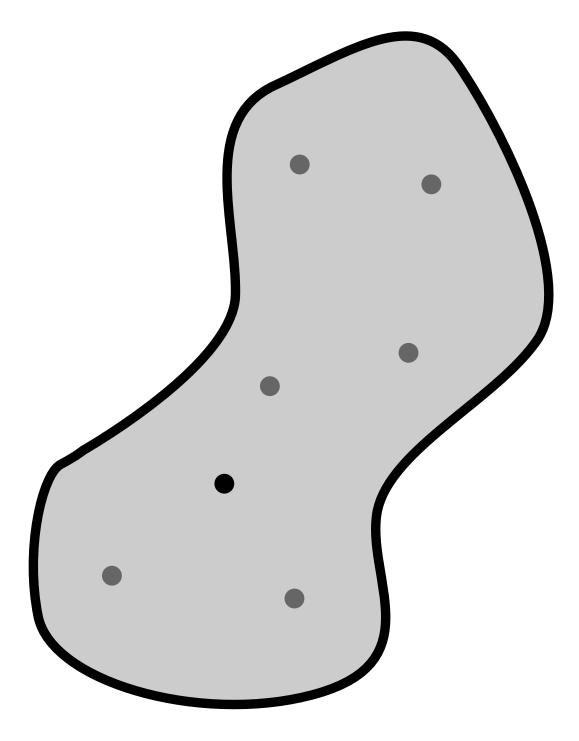


		US	NN	NN-F	SIFT
NI	H Grants	93.1 (1.1)	84.9 (2.1)	91.6 (16.7)	53.8 (8.9)
US	S Patents	85.6 (1.5)	80.3 (1.9)	108.8 (6.6)	62.9 (3.5)
Gi	tHub	45.6 (2.2)	42.1 (2.0)	53.2 (4.0)	30.0 (2.2)
En	ron Emails	68.6 (9.8)	64.4 (10.1)	91.6 (20.6)	53.1 (11.4)
Wi	ikipedia	67.5 (1.9)	66.3 (2.0)	121.2 (3.5)	62.7 (2.1)
Co	ommon Crawl	92.6 (0.4)	90.4 (0.5)	148.8 (1.5)	87.5 (0.7)
Pu	ıbMed Abstr.	88.9 (0.3)	87.2 (0.4)	162.6 (1.3)	84.4 (0.6)
Ar	:Xiv	85.4 (1.2)	85.0 (1.6)	166.8 (6.4)	82.5 (1.4)
Pu	bMed Central	81.7 (2.6)	81.7 (2.6)	155.6 (5.1)	79.5 (2.6)
Sta	ack Exchange	78.6 (0.7)	78.2 (0.7)	141.9 (1.5)	76.7 (0.7)
Ha	acker News	80.4 (2.5)	79.2 (2.8)	133.1 (6.3)	78.4 (2.8)
Fre	eeLaw	63.9 (4.1)	64.1 (4.0)	122.4 (7.1)	64.0 (4.1)
De	eepMind Math	69.4 (2.1)	69.6 (2.1)	121.8 (3.1)	69.7 (2.1)
	l	80.2 (0.5)	78.3 (0.5)	133.3 (1.2)	73.5 (0.6)
	•				
• •					
	•				
$\mathbf{X} \cdot \mathbf{X}$	(λ)				
X •	\mathbf{X}				
	\checkmark				

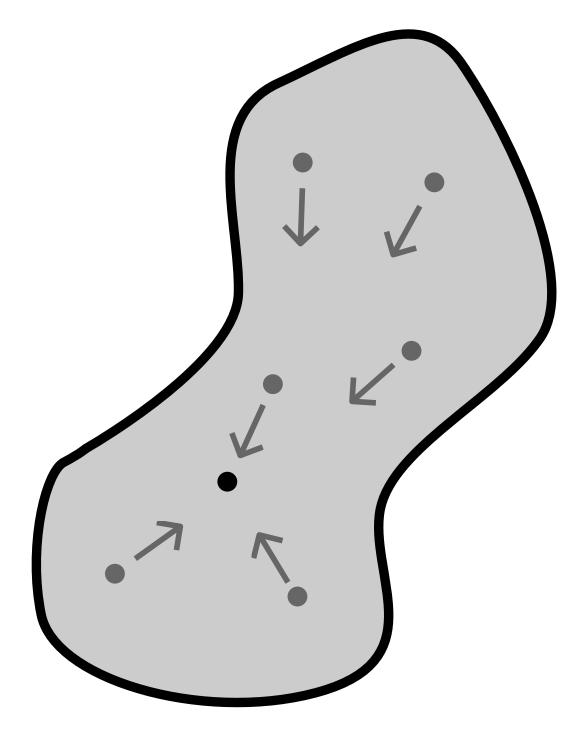
Does SIFT work?



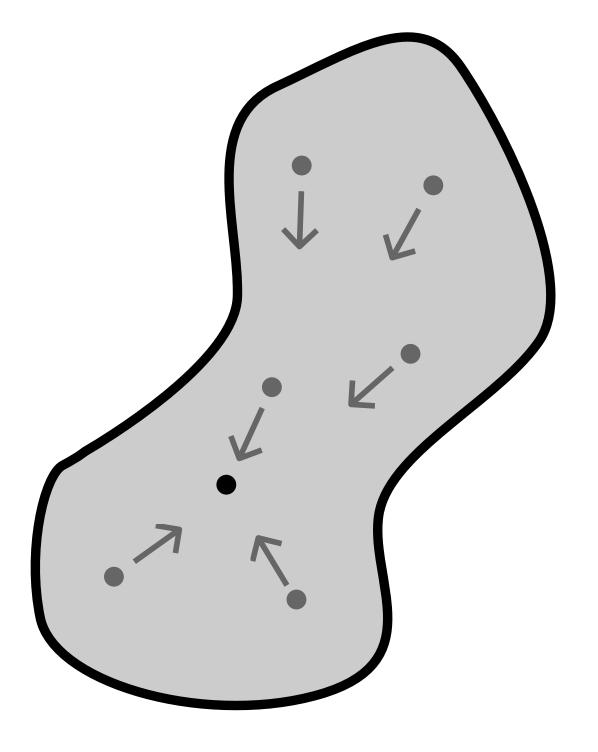
US Patents 85.6 (1.5) GitHub 45.6 (2.2) Enron Emails 68.6 (9.8) Wikipedia 67.5 (1.9) Common Crawl 92.6 (0.4) PubMed Abstr. 88.9 (0.3)	80.3 (1.9) 42.1 (2.0) 64.4 (10.1) 66.3 (2.0) 90.4 (0.5)	91.6 (16.7) 108.8 (6.6) 53.2 (4.0) 91.6 (20.6) 121.2 (3.5) 148.8 (1.5)	62.9 (3.5) 30.0 (2.2) 53.1 (11.4) 62.7 (2.1)
GitHub 45.6 (2.2) Enron Emails 68.6 (9.8) Wikipedia 67.5 (1.9) Common Crawl 92.6 (0.4) PubMed Abstr. 88.9 (0.3)	42.1 (2.0) 64.4 (10.1) 66.3 (2.0) 90.4 (0.5)	53.2 (4.0) 91.6 (20.6) 121.2 (3.5)	30.0 (2.2) 53.1 (11.4) 62.7 (2.1)
Enron Emails 68.6 (9.8) Wikipedia 67.5 (1.9) Common Crawl 92.6 (0.4) PubMed Abstr. 88.9 (0.3)	64.4 (10.1) 66.3 (2.0) 90.4 (0.5)	91.6 (20.6) 121.2 (3.5)	53.1 (11.4) 62.7 (2.1)
Wikipedia 67.5 (1.9) Common Crawl 92.6 (0.4) PubMed Abstr. 88.9 (0.3)	66.3 (2.0) 90.4 (0.5)	121.2 (3.5)	62.7 (2.1)
Common Crawl 92.6 (0.4) PubMed Abstr. 88.9 (0.3)	90.4 (0.5)		
PubMed Abstr. 88.9 (0.3)		148.8 (1.5)	87 5 (0.7)
	87.2(0.4)		01.0(0.7)
ArXiv 854(12)	$(0, \tau)$	162.6 (1.3)	84.4 (0.6)
AIAIV 0.0.7(1.2)	85.0 (1.6)	166.8 (6.4)	82.5 (1.4)
PubMed Central 81.7 (2.6)	81.7 (2.6)	155.6 (5.1)	79.5 (2.6)
Stack Exchange 78.6 (0.7)	78.2 (0.7)	141.9 (1.5)	76.7 (0.7)
Hacker News 80.4 (2.5)	79.2 (2.8)	133.1 (6.3)	78.4 (2.8)
FreeLaw 63.9 (4.1)	64.1 (4.0)	122.4 (7.1)	64.0 (4.1)
DeepMind Math 69.4 (2.1)	69.6 (2.1)	121.8 (3.1)	69.7 (2.1)
$\overline{All} \qquad 80.2 (0.5)$	78.3 (0.5)	133.3 (1.2)	73.5 (0.6)

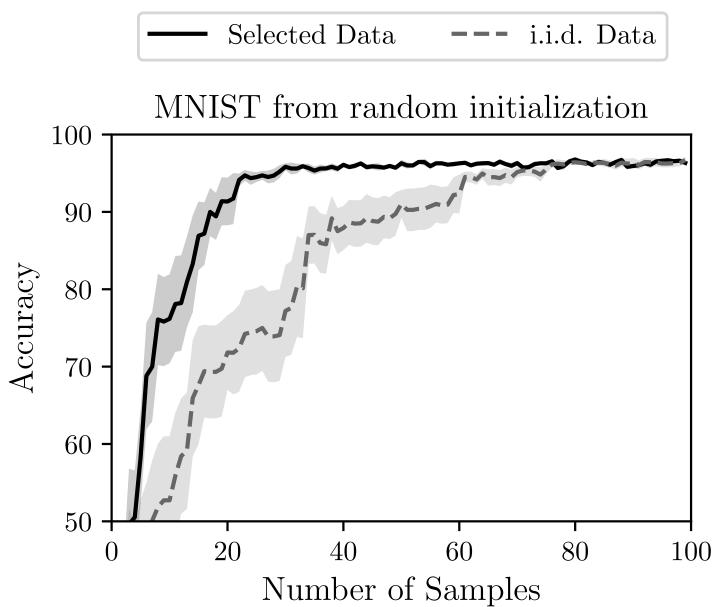


representations



representations

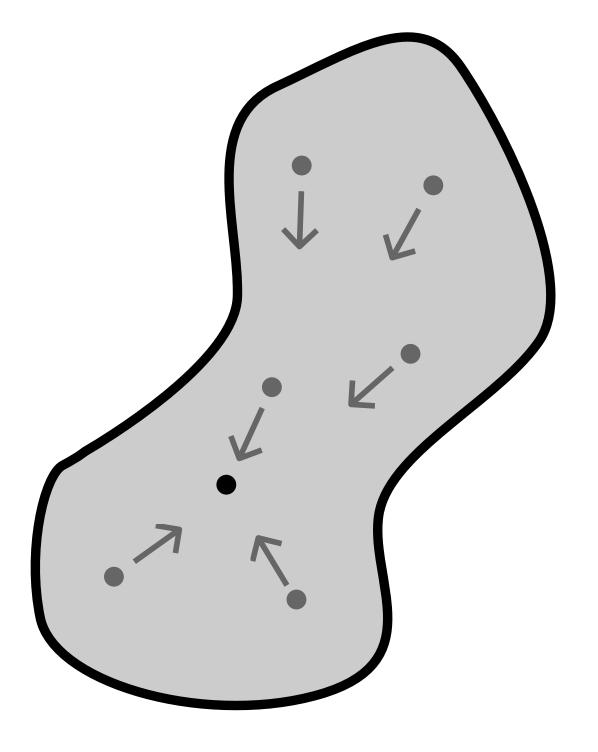


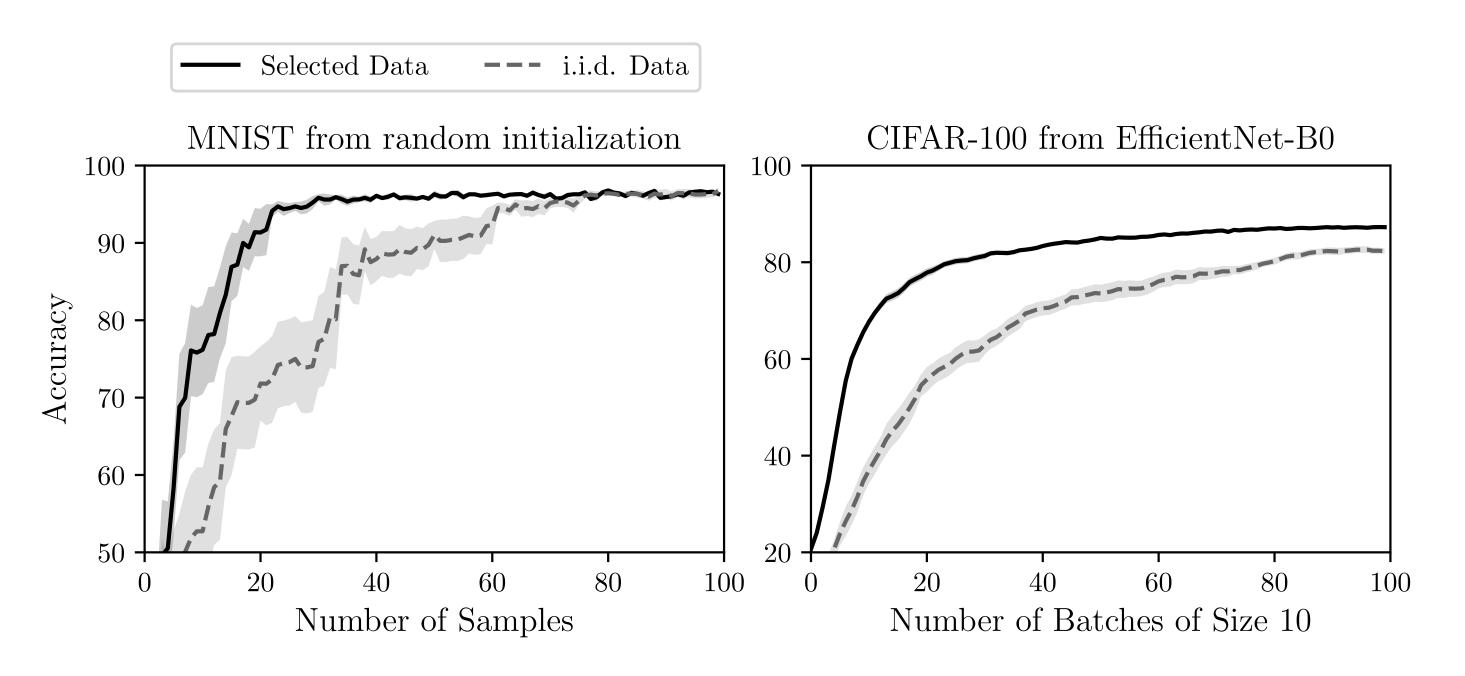


representations

Strong representations can be bootstrapped!

[H, Sukhija, Treven, As, Krause; NeurIPS '24]





representations

Strong representations can be bootstrapped! [H, Sukhija, Treven, As, Krause; NeurIPS '24]

Local models solve one problem at a time

Local models solve one problem at a time

Inductive models (most current SOTA models) attempt to solve all possible problems at once

Local models solve one problem at a time

Inductive models (most current SOTA models) attempt to solve all possible problems at once

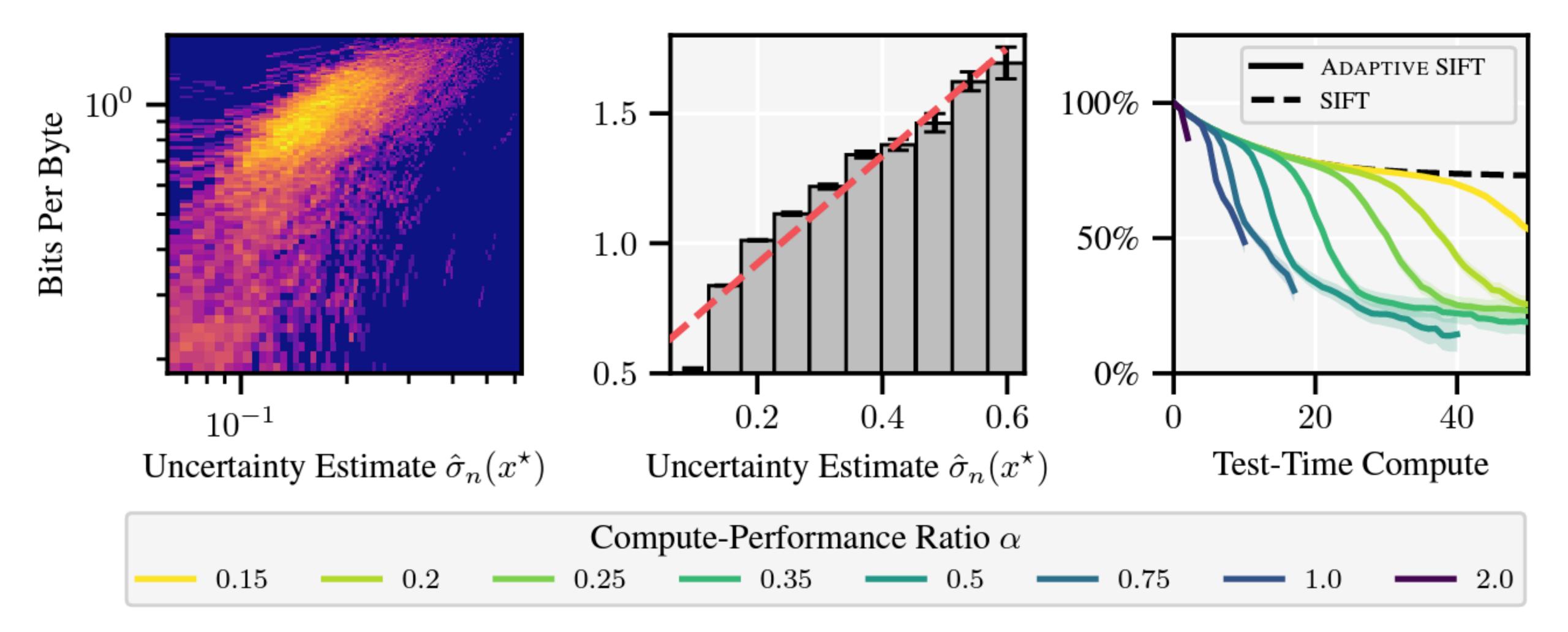
 \rightarrow local learning allows allocating compute where it is "interesting"!

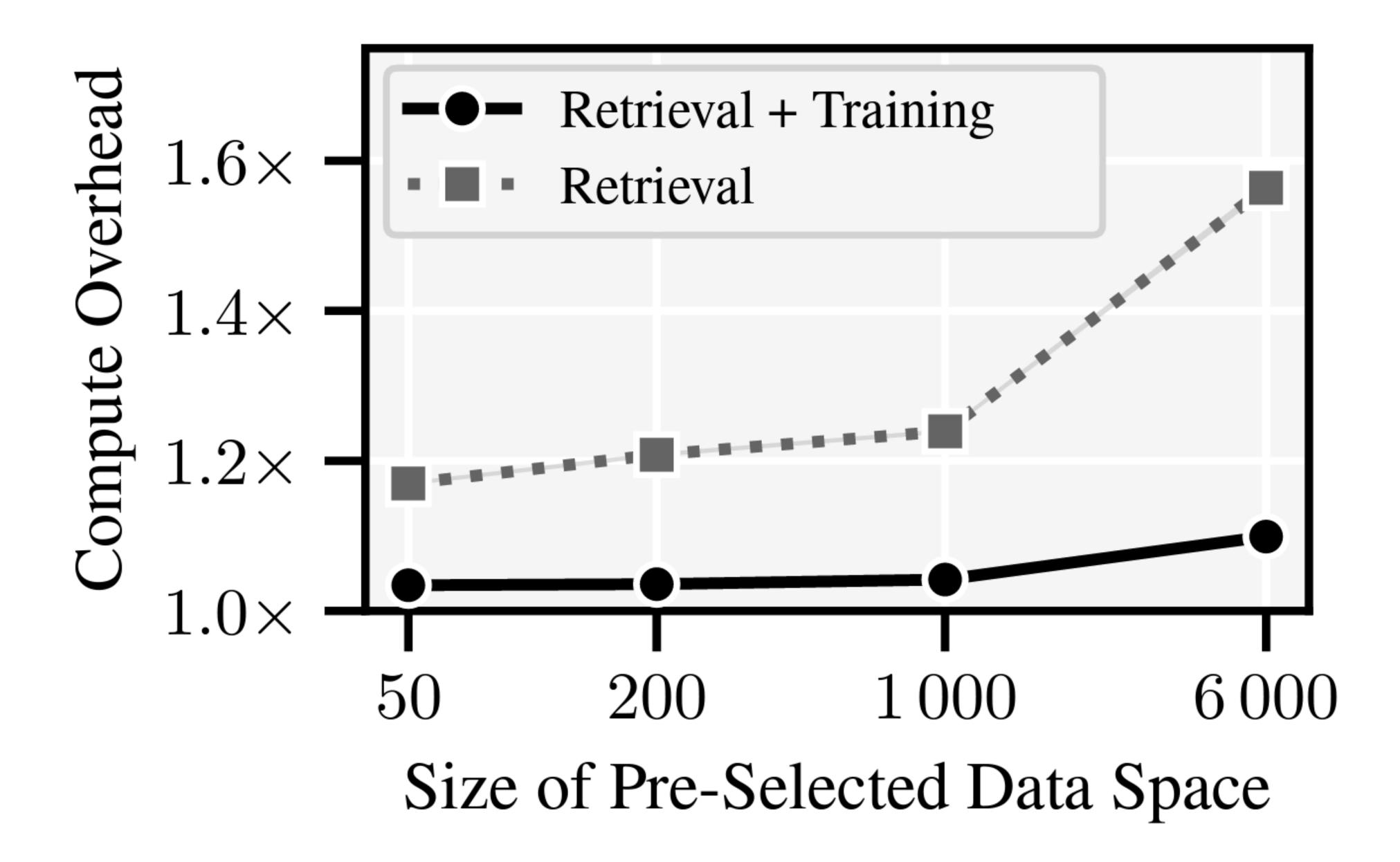
 Transductive Active Learning: Theory and Applications NeurIPS '24

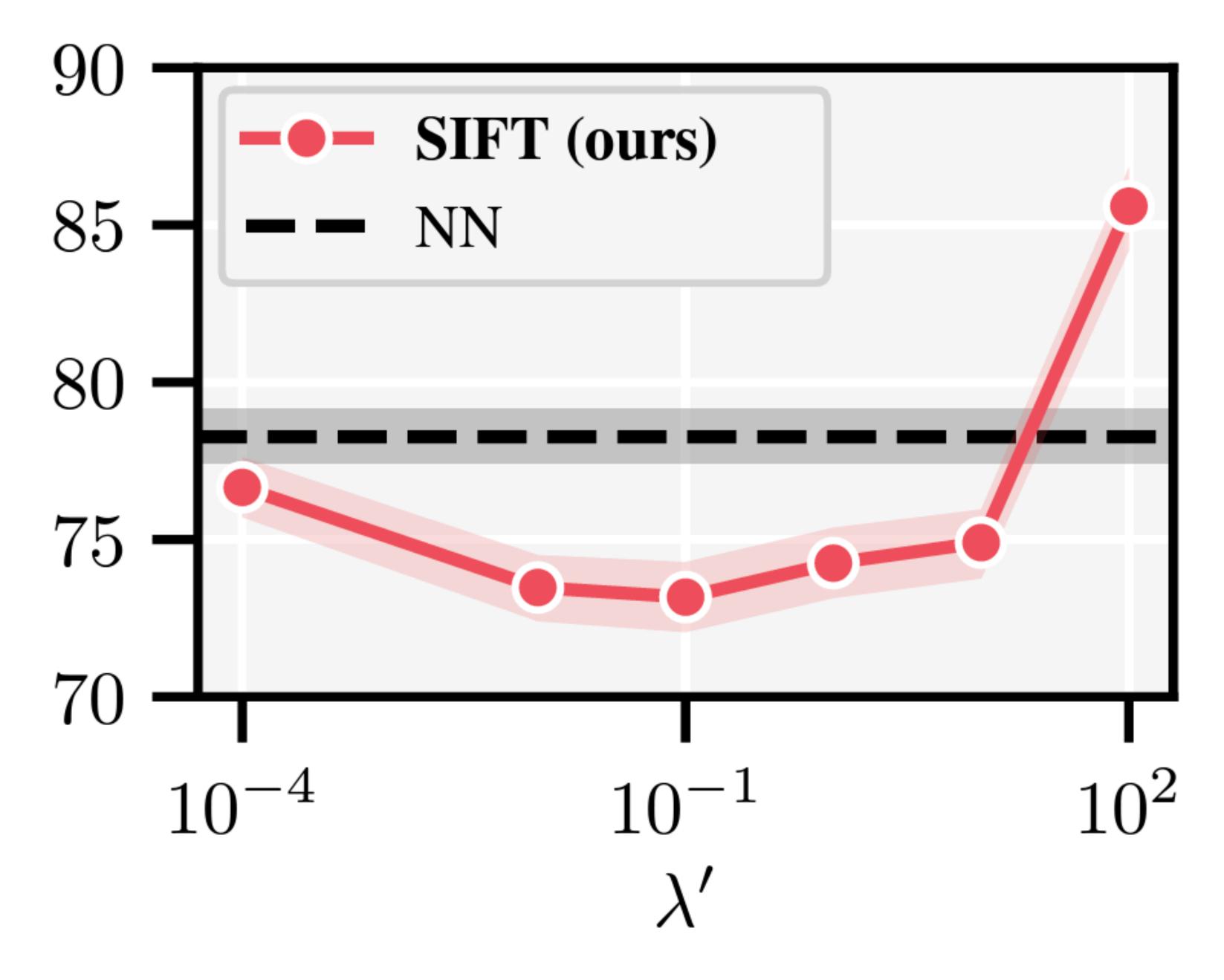
NeurIPS '24 Workshops

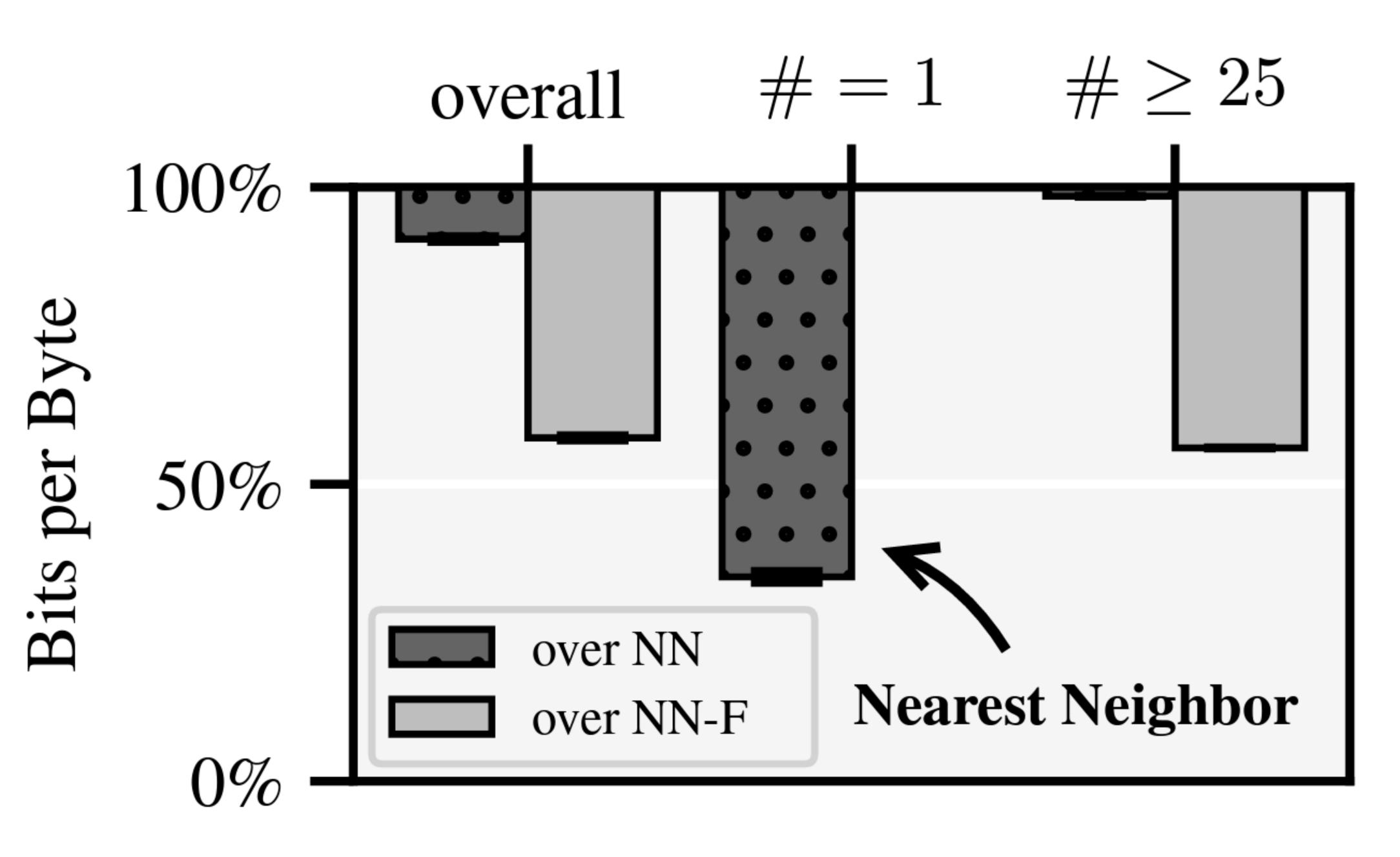
 Active Fine-Tuning of Generalist Policies Preprint

Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs









Model

Jurassic-1 (178B, Lieber et al., 2021) GLM (130B, Zeng et al., 2022) GPT-2 (124M, Radford et al., 2019) GPT-2 (774M, Radford et al., 2019) Llama-3.2-Instruct (1B) Llama-3.2-Instruct (3B) Gemma-2 (2B, Team et al., 2024) Llama-3.2 (1B) Phi-3 (3.8B, Abdin et al., 2024) Phi-3 (7B, Abdin et al., 2024) Gemma-2 (9B, Team et al., 2024) GPT-3 (175B, Brown et al., 2020) Phi-3 (14B, Abdin et al., 2024) Llama-3.2 (3B) Gemma-2 (27B, Team et al., 2024)

Test-Time FT with SIFT + GPT-2 (124M) *Test-Time FT with* SIFT + GPT-2 (774M) *Test-Time FT with* SIFT + Phi-3 (3.8B)

Table 2: Evaluation of state-of-the-art models on the Pile language modeling benchmark, without copyrighted datasets. Results with GPT-3 are from Gao et al. (2020). Results with Jurassic-1 and GLM are from Zeng et al. (2022) and do not report on the Wikipedia dataset. For a complete comparison, we also evaluate our Phi-3 with test-time fine-tuning when excluding the Wikipedia dataset.

Bits per Byte	Bits per Byte (without Wikipedia)
n/a	0.601
n/a	0.622
1.241	
1.093	
0.807	
0.737	
0.721	
0.697	
0.679	0.678
0.678	
0.670	
0.666	
0.651	
0.640	
0.629	
0.862	
0.762	
0.595	0.599