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Local Learning (at Test-Time)
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A Story of Curve Fitting
Local models have two components:

• Parametric “controller”

linear regression

…

• Non-parametric “memory”

k-nearest neighbor

…

 a small model class can fit a rich function class!→
 one local model needs only little data!→
 too good to be true?→
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Vladimir Vapnik (in 1980s) 
“When solving a problem of interest, do not solve a more 
general problem as an intermediate step. Try to get the 
answer that you really need but not a more general one.”
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Principle: 
Select data that maximally reduces “uncertainty” 
about how to respond to the prompt.

1. Estimate uncertainty

2. Minimize “posterior” uncertainty

[H, Bongni, Hakimi, Krause; preprint]
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 linear representation hypothesis [Park, Choe, Veitch; ICML ’24]→

unknown
known

s⋆(x) = s( f ⋆(x))
“truth”

spre(x) = s(Wpreϕ(x))
pre-trained model

sn(x) = s(Wn ϕ(x))
fine-tuned model on  pieces of datan

ℙ(∀n ≥ 1,x ∈ 𝒳 : dTV(sn(x), s⋆(x)) ≤ βn(δ) σn(x)) ≥ 1 − δ

  measures uncertainty about response to !→ σn(x) x
error scaling key object significance
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• Choose data that minimizes uncertainty of the model after seeing this data:

• Convergence guarantee (in case of no synergies):

❷ Minimizing “Posterior” Uncertainty

14

xn+1 = argmin σXn∪{x}(x⋆)
x prompt

σ2
n(x⋆) − σ2

∞(x⋆) ≤ O(λ log n)/ n
irreducible uncertainty

 predictions can be only as good as the data and the learned abstractions!→
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Local models 
solve one problem at a time

Inductive models (most current SOTA models)

attempt to solve all possible problems at once

 local learning allows allocating compute where it is “interesting”!→



• Transductive Active Learning: Theory and Applications 

NeurIPS ’24


• Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs 

NeurIPS ’24 Workshops


• Active Fine-Tuning of Generalist Policies


Preprint
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