Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs

ETHZürich

Jonas Hübotter, Sascha Bongni, Ido Hakimi, Andreas Krause

Test-time fine-tuning

(Bottou, Vapnik; '92 & Hardt, Sun; ICLR '24)

- 1. take pre-trained model f
- 2. given input x, find local data D_x from memory
- 3. fine-tune model f on local data D_{χ} to get **local model** f_{χ}
- 4. predict $f_{x}(x)$

Test-time fine-tuning vs "normal" fine-tuning

pre-training

fine-tuning

test-time fine-tuning

Transduction

(Vapnik; '80s)

"When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really need but not a more general one."

Which local data D_x to use?

- previous work used Nearest Neighbor (NN) retrieval in some metric space
- we show: NN is suboptimal!

SIFT: Selecting Informative data for Fine-Tuning

Principle:

Select data that maximally reduces "uncertainty" about how to respond to the prompt.

- 1. Estimate uncertainty
- 2. Minimize uncertainty

1) Estimating uncertainty

• Making this tractable...

Surrogate model: approximate model f as logit-linear model in a known representation space

- Error bound: $d_{TV}(f_n(x), f^*(x)) \le \beta(\delta) \sigma_n(x)$ (with prob. 1δ) error

 $\rightarrow \sigma_n(x)$ measures uncertainty about response to x!

\rightarrow linear representation hypothesis (e.g., Park et al; ICML '24)

scaling uncertainty

2) Minimizing uncertainty

• SIFT: minimize uncertainty about response to input x^{\star}

$$D_{x^*} = X_n \cup \{x_{n+1}\}$$
 with x_{n+1}

convergence of uncertainty is guaranteed!

$$\sigma_n(x^\star) \to \sigma_\infty(x^\star)$$

irreducible uncertainty

 \rightarrow predictions can only be as good as the data and the learned abstractions!

$= \underset{x}{\operatorname{argmin}} \sigma_{X_n \cup \{x\}}(x^{\star})$

Evaluation: language modeling on the Pile

Observations

- larger relative gains with stronger base models
- larger relative gains with larger "memory"

	US	NN	NN-F	SIFT	
NIH Grants	93.1 (1.1)	84.9 (2.1)	91.6 (16.7)	53.8 (8.9)	$\downarrow 3$
US Patents	85.6(1.5)	80.3 (1.9)	108.8 (6.6)	62.9 (3.5)	$\downarrow 1$
GitHub	45.6 (2.2)	42.1 (2.0)	53.2 (4.0)	30.0 (2.2)	$\downarrow 1$
Enron Emails	68.6 (9.8)	64.4 (10.1)	91.6 (20.6)	53.1 (11.4)	$\downarrow 1$
Wikipedia	67.5 (1.9)	66.3 (2.0)	121.2 (3.5)	62.7 (2.1)	\downarrow
Common Crawl	92.6 (0.4)	90.4 (0.5)	148.8 (1.5)	87.5 (0.7)	\downarrow
PubMed Abstr.	88.9 (0.3)	87.2 (0.4)	162.6 (1.3)	84.4 (0.6)	\downarrow
ArXiv	85.4 (1.2)	85.0 (1.6)	166.8 (6.4)	82.5 (1.4)	\downarrow
PubMed Central	81.7 (2.6)	81.7 (2.6)	155.6 (5.1)	79.5 (2.6)	\downarrow
Stack Exchange	78.6 (0.7)	78.2 (0.7)	141.9 (1.5)	76.7 (0.7)	\downarrow
Hacker News	80.4 (2.5)	79.2 (2.8)	133.1 (6.3)	78.4 (2.8)	\downarrow
FreeLaw	63.9 (4.1)	64.1 (4.0)	122.4 (7.1)	64.0 (4.1)	\uparrow
DeepMind Math	69.4 (2.1)	69.6 (2.1)	121.8 (3.1)	69.7 (2.1)	\uparrow
All	80.2 (0.5)	78.3 (0.5)	133.3 (1.2)	73.5 (0.6)	\downarrow

New SOTA on the Pile benchmark

https://paperswithcode.com/sota/language-modelling-on-the-pile

Conclusion

- SIFT selects more informative data than Nearest Neighbor retrieval
- Test-time fine-tuning is a promising paradigm to allocate compute to tasks we find interesting

Happy to discuss more jonas.huebotter@inf.ethz.ch

