

- Active learning is a powerful paradigm for data selection that commonly aims to learn f globally on \mathcal{X}
- In many real-world problems,
- *i* the

domain is so large that learning f globally is hopeless; or *ii* agents have limited information / access to \mathcal{X}

Can we solve tasks <u>efficiently</u> and <u>extrapolate</u> beyond limited information?

Transductive Active Learning

"only learn what is needed to solve a task" [Vapnik, adapted]

- Sample space $\mathcal{S} \subseteq \mathcal{X}$
- Target space $\mathcal{A} \subseteq \mathcal{X}$
- Unknown function f over \mathcal{X}

Goal: Learn f within \mathcal{A} by sampling from \mathcal{S}

Example: (Inductive) Active Learning *"learn everything"*

 \rightarrow TAL generalizes AL to goal-orientation (A) and extrapolation (S)

Probabilistic model of f:

- prior p(f)
- likelihood $p(D \mid f)$ of data D
- posterior $p(f \mid D) \propto p(f)p(D \mid f)$

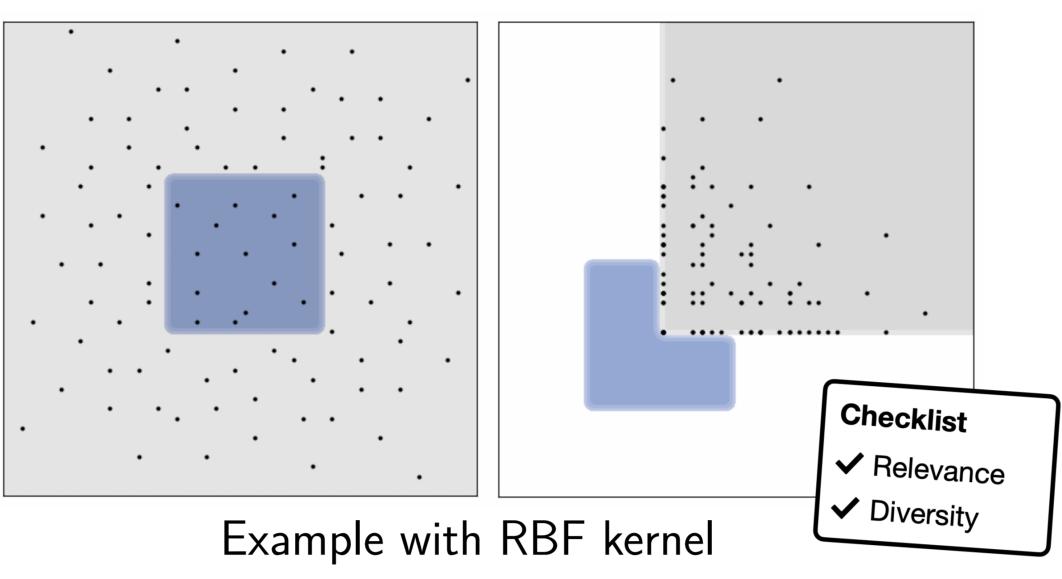
Algorithms [MacKay, 1992] Select data to minimize <u>posterior</u> uncertainty within \mathcal{A} → quantifying "uncertainty", e.g., by entropy:
 $oldsymbol{x}_n = rgmin_{oldsymbol{x}\in\mathcal{S}} \mathsf{H}(oldsymbol{f}(\mathcal{A}) \mid D_{n-1}, (oldsymbol{x}, f(oldsymbol{x}) + arepsilon))$ $= \underset{\boldsymbol{x} \in \mathcal{S}}{\operatorname{arg\,max}} \left[\left(\boldsymbol{f}(\mathcal{A}); (\boldsymbol{x}, f(\boldsymbol{x}) + \varepsilon \right) \mid D_{n-1} \right) \right]$

Transductive Active Learning: Theory and Applications

Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause

Tractable Transductive Active Learning

Key assumption: f is a Gaussian process



Theory: How much can be learned about \mathcal{A} from \mathcal{S} ?

Informally: For every $\mathbf{x} \in \mathcal{A}$: $Var(f(\mathbf{x}) \mid D_n) - Var(f(\mathbf{x}) \mid f(S)) \leq \frac{C\gamma_{\mathcal{A},S}(n)}{\sqrt{n}}$ $\rightarrow 0$ for many kernels irreducible uncertainty posterior uncertainty where $\gamma_{\mathcal{A},\mathcal{S}}(n) = \max_{X \subseteq \mathcal{S}} I(f(\mathcal{A}); y(X))$ |X|=n

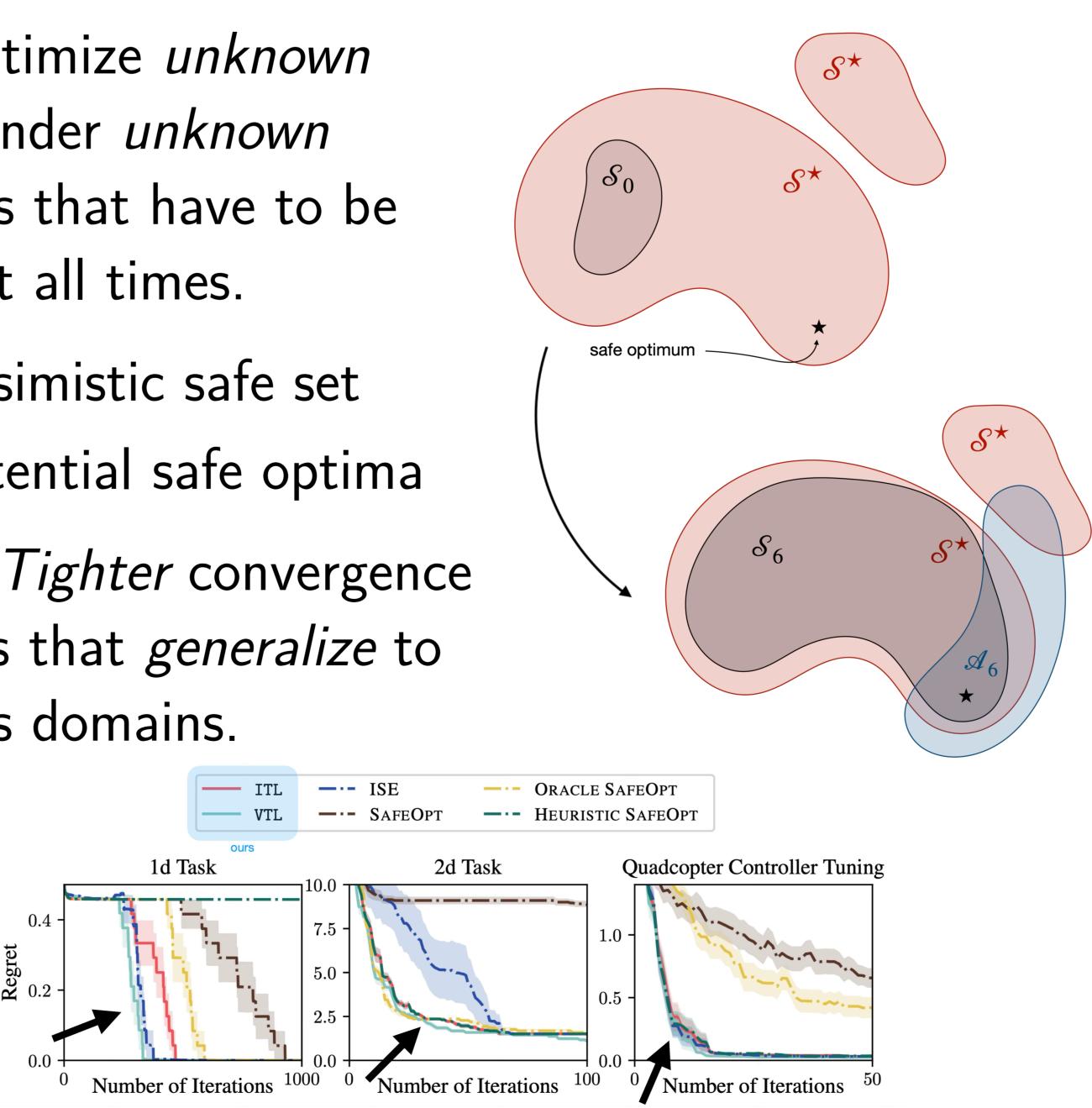
 \rightarrow implies agnostic error bound if f is in RKHS

Application: Safe Bayesian Optimization

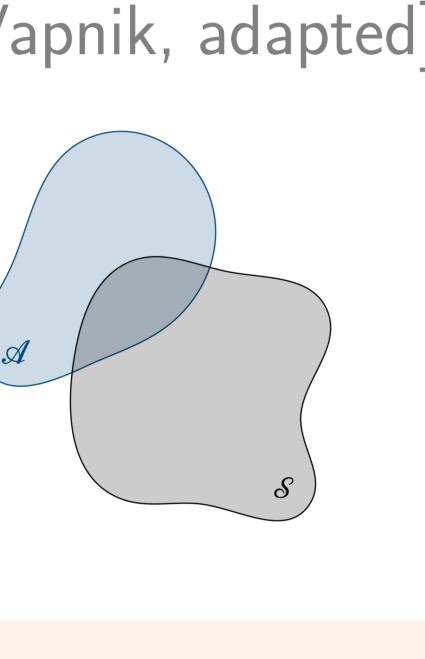
Task: Optimize *unknown* function under unknown constraints that have to be satisfied at all times.

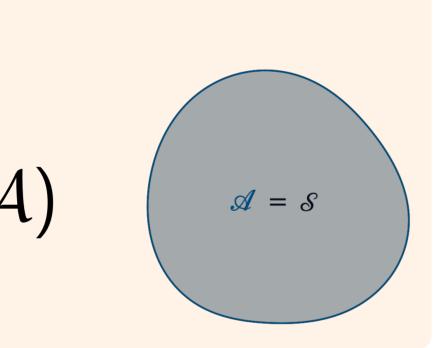
- S_n pessimistic safe set
- \mathcal{A}_n potential safe optima

Theory: *Tighter* convergence guarantees that generalize to continuous domains.



→ framing Safe BO as TAL samples only the information needed to find the safe optimum

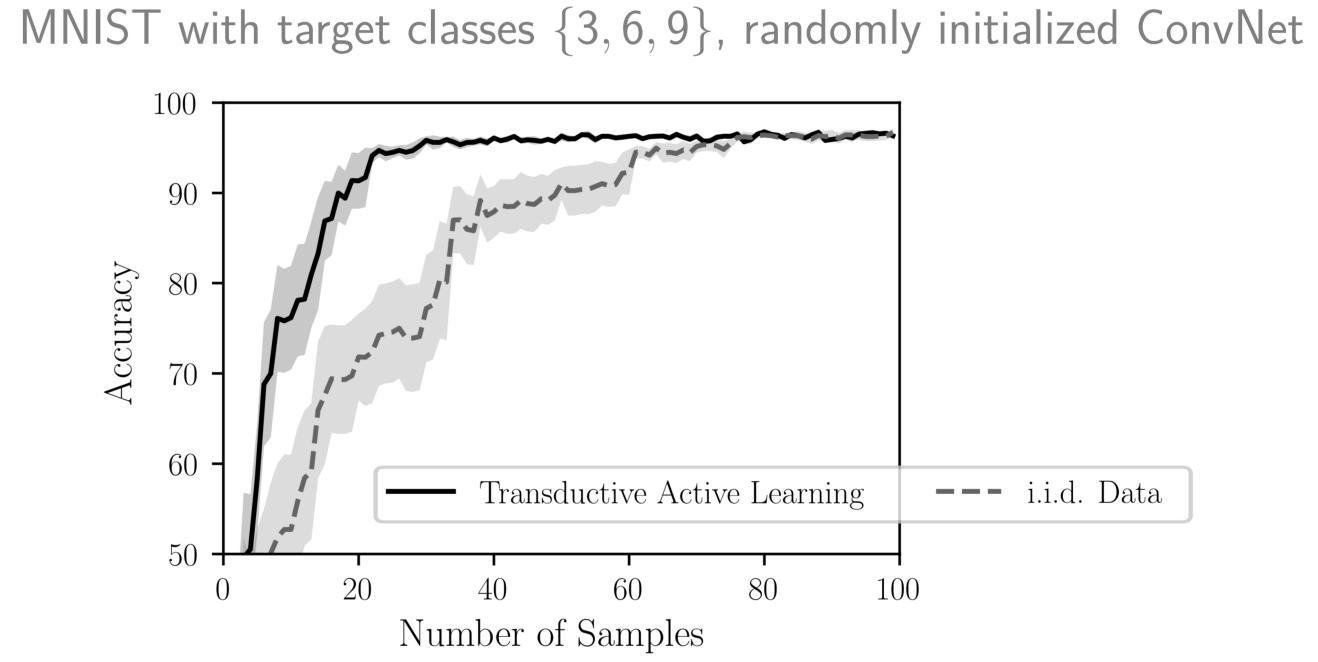




Application: Active Fine-Tuning

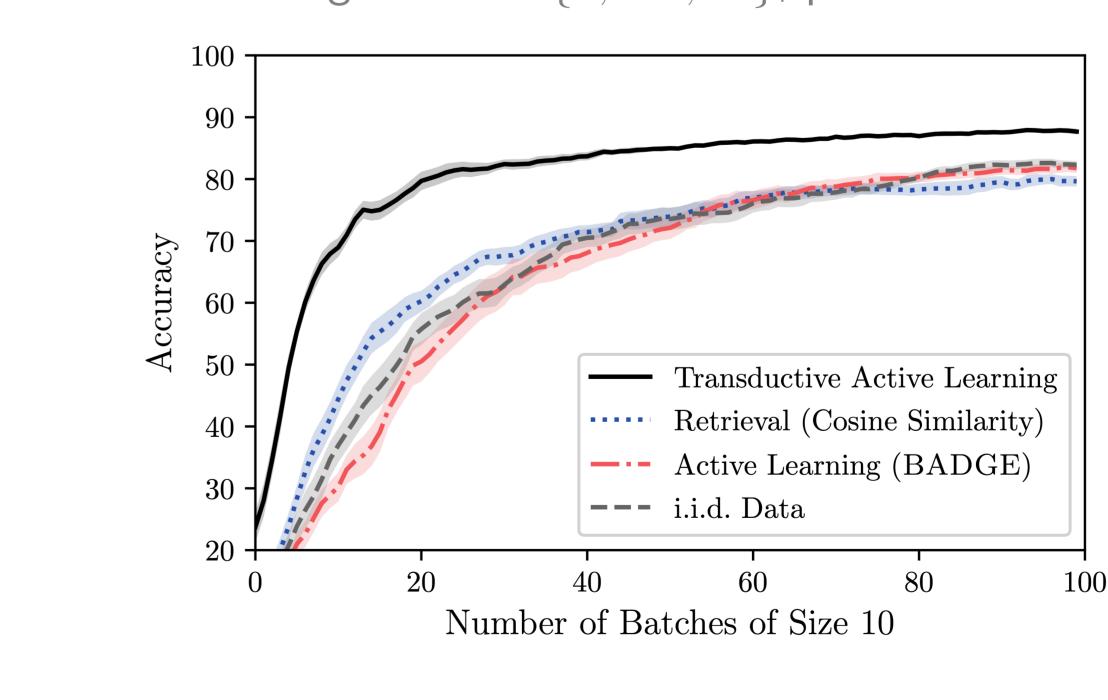
Motivating example: learning a good plant classifier for a user's local biome \mathcal{A} → Automatically find informative (that is, relevant & diverse) examples for ${\mathcal A}$ in dataset ${\mathcal S}$

Can we exploit the latent (unknown) structure?



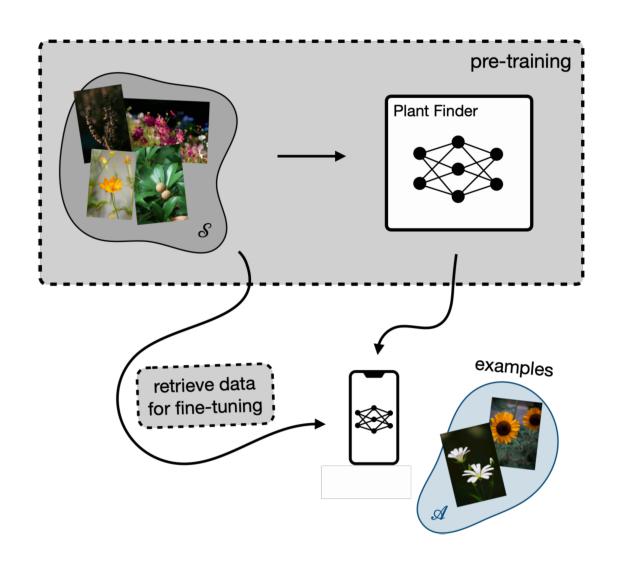
Fine-tuning: Unifying retrieval & active learning

CIFAR-100 with target classes {1, ..., 10}, pre-trained EfficientNet-B0



Transductive active learning is a promising paradigm for efficiently solving specific tasks under resource constraints.

FIRZURICH



• Inner loop (batch selection): Approximate NN as a logit-linear function of its (fixed) latent embeddings $\phi(\cdot)$ • Outer loop (model update): Train model on batch and improve latent embeddings

Pre-training: Can **bootstrap** strong representations!

Key Takeaway