
Towards Solving Hard Problems 
via Test-Time Training

Jonas Hübotter

July 10, 2025



Part 1: Test-time scaling



Agents

Setting:


• We have an agent, pre-trained on many tasks (“train-time”)


• At “test-time” the agent is given a specific task to solve


Previously: compute is scaled at train-time by scaling size of agent & number of 
training tasks


Now: how can we effectively scale compute at test-time?

3



Test-time scaling
• Test-time inference / search 

• e.g., Best of N, Majority Voting, Beam Search


• some, but often not significant improvements


• Train-time reinforcement learning (“reasoning”)


• e.g., DeepSeek-R1, etc.


• trains the model via RL to produce longer chains of thought


• Test-time training (TTT)


• model is updated (“learns”) at test-time


• towards specialization & deep exploration

4



Why does test-time training work?

• Until recently: focus on foundation models that generalize “zero-shot” to 
many tasks


• Many tasks (perception, simple factual knowledge, etc.) can be solved 🎉 

• Problem: model’s need to be scaled to obtain the ability to solve additional 
tasks.


• TTT: Specialization after Generalization 

• Allows models to specialize to an individual task

5



Transduction

6

(Vapnik; ’80s)

“When solving a problem of interest, do not solve 
a more general problem as an intermediate step. 
Try to get the answer that you really need but not 
a more general one.”



Test-time training vs “standard” post-training

all of natural 
language

all token 
sequences

pre-training post-training test-time training

“interesting” 
language

7



Test-time training

Different approaches to TTT:


• Imitation learning


• Reinforcement Learning


• Offline — based on existing experience


• Online — interaction with an environment

8



Which data should the agent collect?

Different approaches to TTT:


• Imitation learning


• Reinforcement Learning


• Offline — based on existing experience


• Online — interaction with an environment

9

Imitating (existing / new) data


Learning from existing experience


Collecting new experience

TTT Agents



Part 2: Test-time training agents



1. Imitating existing data

11

Selecting informative data for fine-tuning (SIFT): 
Select data that maximally reduces “uncertainty” 
about how to solve the task.

(H, Sukhija, Treven, As, Krause; NeurIPS ’24; H, Bongni, Hakimi, Krause; ICLR ’25)

1. given task , find local data  (from memory)


2. fine-tune pre-trained model  on local data  to get specialized model    


3. predict 

x Dx

f Dx fx
fx(x)



Evaluation: language modeling on the Pile

12

Pile dataset

0 20 40

Test-Time Iterations

0.8

1.0

1.2

1.4

1.6

B
its

pe
rB

yt
e

(→
be

tte
r)

SIFT (ours)

Nearest Neighbor
with duplication

Nearest Neighbor
without duplication

with GPT-2 Observations 

• larger relative gains with 
stronger base models


• larger relative gains with 
larger “memory”



13

New SOTA on the Pile benchmark

ours

https://paperswithcode.com/sota/language-modelling-on-the-pile

40x larger



2. Imitating data to be collected

14

(Bagatella, H, Martius, Krause; ICML ’25)

Query data that maximally reduces the agent’s 
uncertainty about the test-time task in expectation.



3. Learning from existing experience

15

(Bagatella*, Albaba*, H, Martius, Krause; ICML PUT workshop ’25)

• Experience is not from the optimal policy — should not be imitated directly.


• We need to infer the optimal policy from previous (suboptimal) experience.


• Instead of imitation learning (i.e., behavioral cloning / supervised learning) we 
do offline RL.



3. Learning from existing experience

16

(Bagatella*, Albaba*, H, Martius, Krause; ICML PUT workshop ’25)

• Specializes the agent to the current goal & current state

• We do this recursively every K steps



3. Learning from existing experience

17

(Bagatella*, Albaba*, H, Martius, Krause; ICML PUT workshop ’25)

• Specializes the agent to the current goal & current state

• We do this recursively every K steps



• Solving previously unsolved tasks requires the agent to obtain experience.


• i.e., online interaction with an environment — called TTRL


• How should the agent select which experience to collect?


• Commonly in online RL, the agent simply attempts the test-time task.


• But if this task is not currently achievable, the agent never observes a reward:

4. Collecting new experience

18



4. Collecting new experience

19

(Diaz-Bone*, Bagatella*, H*, Krause; ICML EXAIT workshop ’25)

DISCOVER: Select intermediate tasks that are not “too 
easy”, not “too hard”, and relevant to the target task.

with prior



Motivation: Going beyond short-term memory
• Train-time RL trains the model to produce longer chains of thought.


• This increases the context (“scratch memory”) needed to solve a problem.


• While this is useful, eventually deep exploration attains experience that does 
not fit (or is inefficient to fit) into scratch memory.


• Why did we pre-train in the first place? Precisely to compress large amounts 
of experience.


 To learn completely new skills at test-time, we need to update the model’s 
representations — simply expanding short-term memory is not enough!
⟹

20



Conclusion

21

• TTT is a method for specializing “foundation” 
models to individual tasks


• There are many open questions around TTT 
and TTT agents for hard tasks

Happy to discuss more

jonas.huebotter@inf.ethz.ch

mailto:jonas.huebotter@inf.ethz.ch

