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Part 1: Test-time scaling



Agents

Setting:
* We have an agent, pre-trained on many tasks (“train-time”)

o At “test-time” the agent is given a specific task to solve

Previously: compute is scaled at train-time by scaling size of agent & number of
training tasks

Now: how can we effectively scale compute at test-time?



lest-time scaling

 Test-time inference / search
* e.g., Best of N, Majority Voting, Beam Search
e some, but often not significant improvements

* Train-time reinforcement learning (“reasoning”)

e e.g., DeepSeek-R1, etc.

 trains the model via RL to produce longer chains of thought
 Test-time training (TTT)

 model is updated (“learns”) at test-time

» towards specialization & deep exploration



Why does test-time training work??

* Until recently: focus on foundation models that generalize “zero-shot” to
many tasks

» Many tasks (perception, simple factual knowledge, etc.) can be solved £+

* Problem: model’s need to be scaled to obtain the ability to solve additional
tasks.

« TTT: Specialization after Generalization

* Allows models to specialize to an individual task



Transduction

“When solving a problem of interest, do not solve
a more general problem as an intermediate step.
Try to get the answer that you really need but not

a more general one.”



Test-time training vs “standard”™ post-training

“Interesting”
all of natural language
language
all token
seqguences

pre-training post-training test-time training



lest-time training

Different approaches to TTT:
* |mitation learning
* Reinforcement Learning
e Offline — based on existing experience

e Online — interaction with an environment



Which data should the agent collect?

Different approaches to TTT:
* |Imitation learning Imitating (existing / new) data
* Reinforcement Learning
o Offline — based on existing experience  Learning from existing experience

* Online — interaction with an environment Collecting new experience

TTT Agents



Part 2: Test-time training agents



1. Imitating existing data

+

+ & + Data Manifold
Selecting informative data for fine-tuning (SIFT): AR ,\:
Select data that maximally reduces “uncertainty” Selected Data
about how to solve the task. Full Data Space

1. given task x, find local data D, (from memory)

2. fine-tune pre-trained model f on local data D, to get specialized model f,

3. predict f,(x)
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Evaluation: language modeling on the Plle

Pile dataset
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Observations

* larger relative gains with

stronger base models

larger “memory”

* larger relative gains with

US NN NN-F SIFT A
NIH Grants 93.1¢1.1) 8491 91.60167 53.8389 |31.1
US Patents 85.6(1.5) 80.3(1.9) 108.8(6.6) 62935 |17.4
GitHub 45.6 22) 42.10 53.2¢40 30022 J|12.1
Enron Emails  68.6 (9.8) 64.4 (10.1) 91.6 (206) 53.1(114) |11.3
Wikipedia 67.501.9) 66320 121.235 62721 |3.6
Common Crawl 92.6 (04) 90.4(0.5) 148.8(1.5 87507 2.9
PubMed Abstr.  88.9(0.3) 87.2(04) 162.6(1.3) 84.406) |2.8
ArXiv 85412 85.01.6 1668064 825014 2.5
PubMed Central 81.7 2.6) 81.7(26) 155.6(¢5.1) 79.526  [2.2
Stack Exchange 78.6(0.7) 78.2(0.7) 141915 76.70.77 |1.5
Hacker News  80.4(2.5) 79.2(28) 133.1(6.3) 78428  |0.8
FreeLaw 63.94.1) 641140 122471 64041 10.1
DeepMind Math 69.4 (2.1) 69.6(2.1) 121.83.1) 69.72.1) 10.3
All 80.20.5 78.3(.5) 133.31.2) 73506 4.8




New SOTA on the Pile benchmark
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Other models -~ Models with lowest Bits per byte ours

https.//paperswithcode.com/sota/language-modelling-on-the-pile
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2. Imitating data to be collected

Pretrained policy

Agent selects task

ﬂ
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Datase J .
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Robomimic, mismatch
0 5

Rounds

~

Query data that maximally reduces the agent’s
uncertainty about the test-time task in expectation.
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Multi-task success rate

W

= AMF-NN Uniform, with adaptive prior ™ Uniform
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3. Learning from existing experience

* EXxperience is not from the optimal policy — should not be imitated directly.
* We need to infer the optimal policy from previous (suboptimal) experience.

* |nstead of imitation learning (i.e., behavioral cloning / supervised learning) we
do offline RL.

(Bagatella®, Albaba*, H, Martius, Krause; ICML PUT workshop '25)
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3. Learning from existing experience

Goal-conditioned Test-time Training (GC-TTT)

Pre-training Data

Experience collected with
potentially suboptimal policies
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* Specializes the agent to the current goal & current state

* We do this recursively every K steps
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3. Learning from existing experience

Goal-conditioned Test-time Training (GC-TTT)

Pre-training Data A Offline RL
Experience collected with gent """"""""""""
potentially suboptimal policies 7] = pre-training
1 + GC-TTT (no critic)
L 61 HEl + GC-TTT
- ~ R LEEELLEETN : S VS . | +88.5%
Current . Select trajectories | . Filter to the most |
(state, goal) > relevant to 5 > optimal trajectories | >
. of agent ) . current state | . for the current goal

* Specializes the agent to the current goal & current state

* We do this recursively every K steps
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4. Collecting new experience

» Solving previously unsolved tasks requires the agent to obtain experience.
e |.e., online interaction with an environment — called TTRL

 How should the agent select which experience to collect?

« Commonly in online RL, the agent simply attempts the test-time task.

 But if this task is not currently achievable, the agent never observes a reward:

TD3 Thompson Sampling SAC SAC + MaxInfoRL

(a) Point maze (b) Ant maze (c) Arm
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4. Collecting new experience
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Motivation: Going beyond short-term memory

* Jrain-time RL trains the model to produce longer chains of thought.
* This increases the context (“scratch memory”) needed to solve a problem.

* While this is useful, eventually deep exploration attains experience that does
not fit (or is inefficient to fit) into scratch memory.

 Why did we pre-train in the first place? Precisely to compress large amounts
of experience.

—> [o learn completely new skills at test-time, we need to update the model’s
representations — simply expanding short-term memory is not enough!
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Conclusion

 TTT Iis a method for specializing “foundation”
models to individual tasks

* [here are many open questions around TTT
and TTT agents for hard tasks

Happy to discuss more
jonas.huebotter@inf.ethz.ch
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