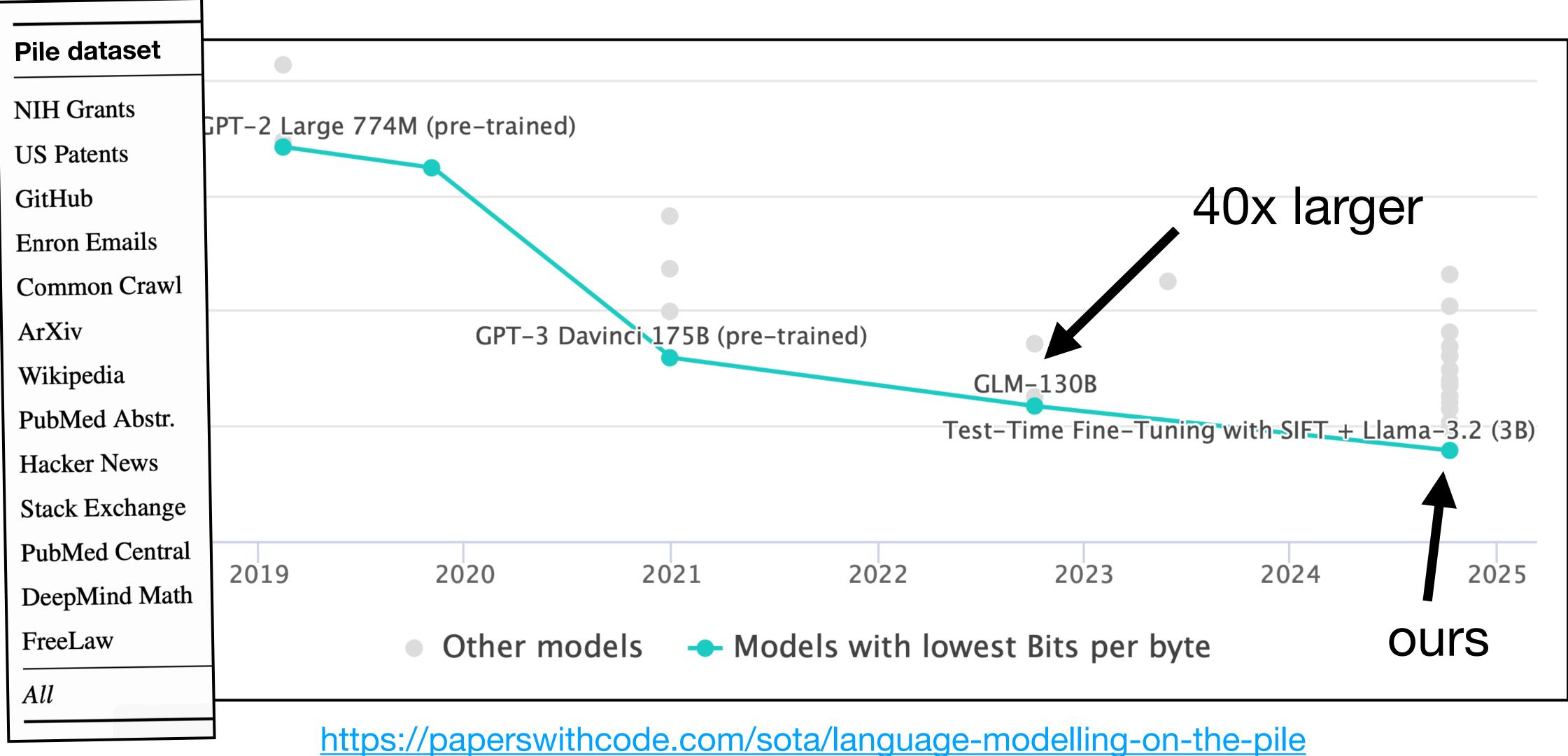
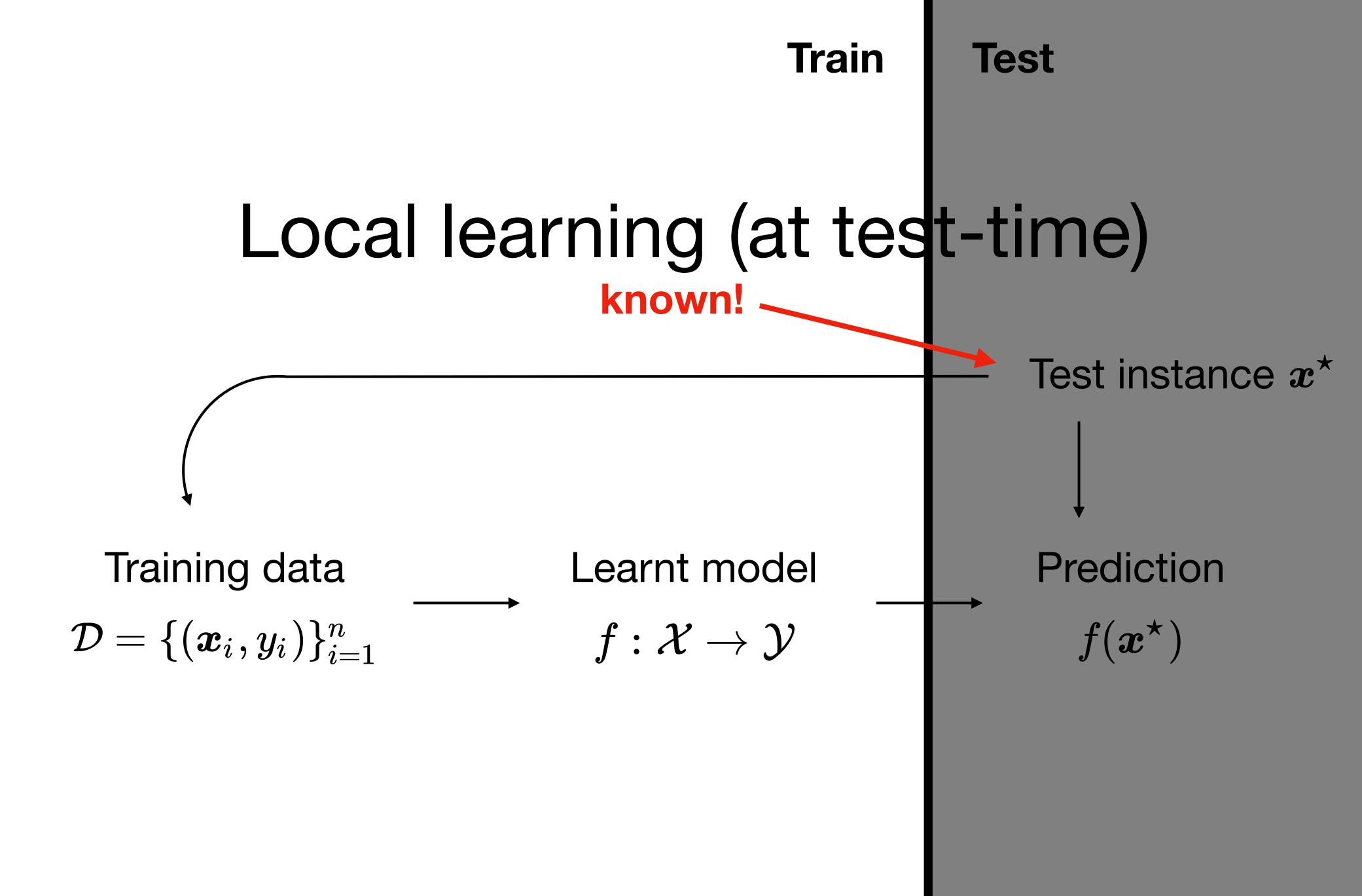
Efficiently learning at test-time with LLMs via transductive active learning

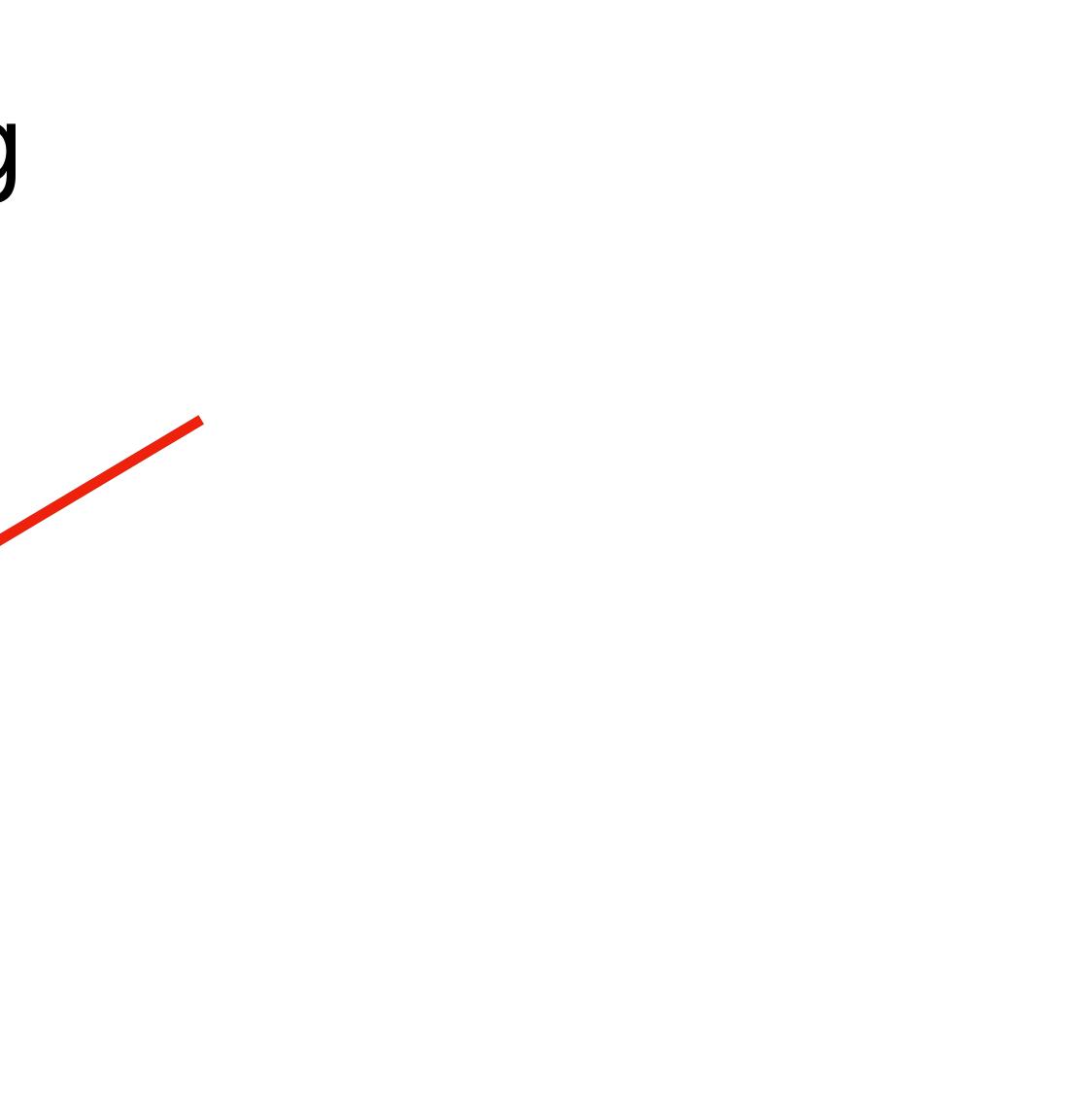
Jonas Hübotter

Pile benchmark

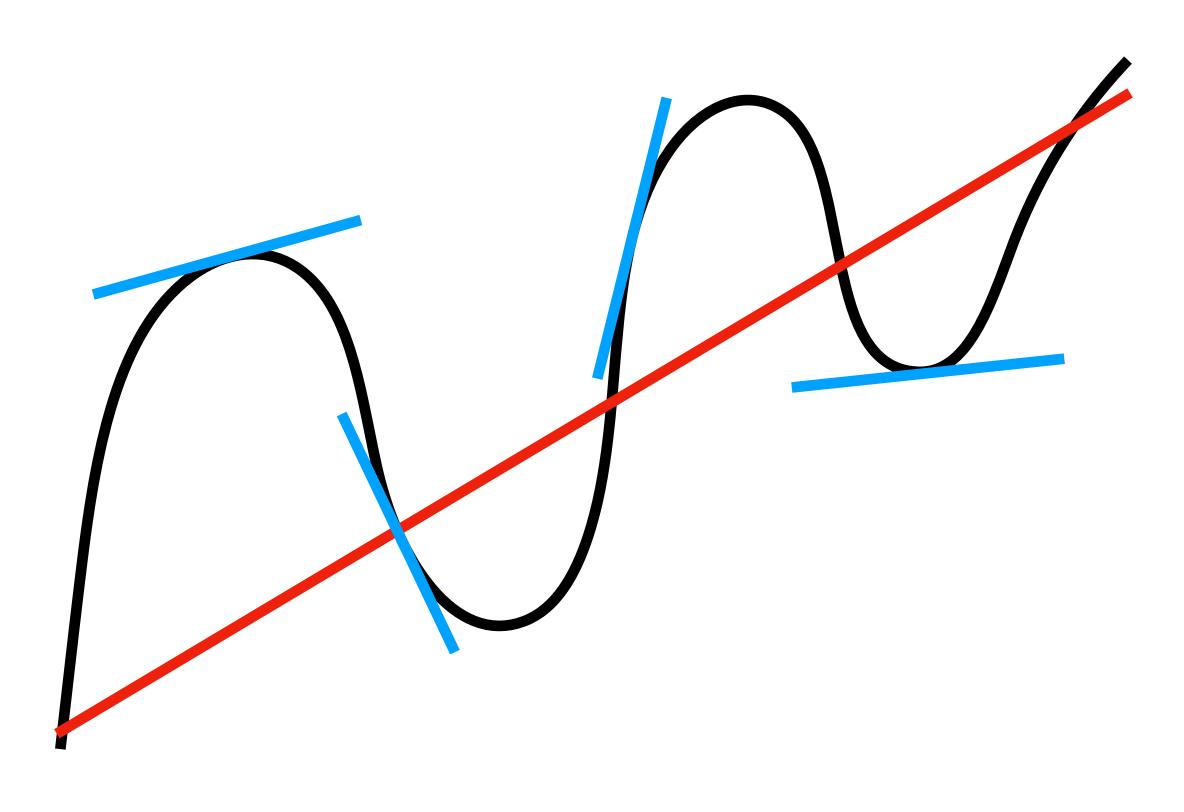




A story of curve fitting



A story of curve fitting



Remedies:

- Parametric models polynomial regression neural networks
- Non-parametric models kernel (ridge) regression k-nearest neighbor
- Local models local linear regression

. . .

A story of curve fitting

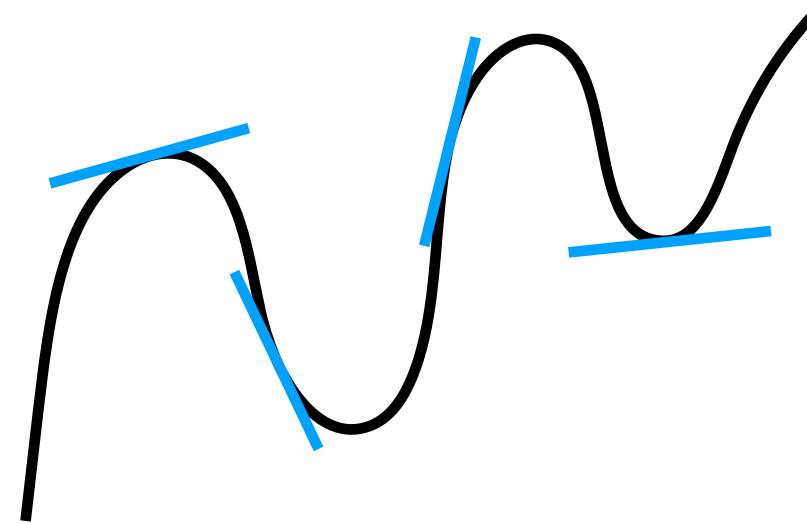
Local models have two components:

• Parametric "controller" linear regression

. . .

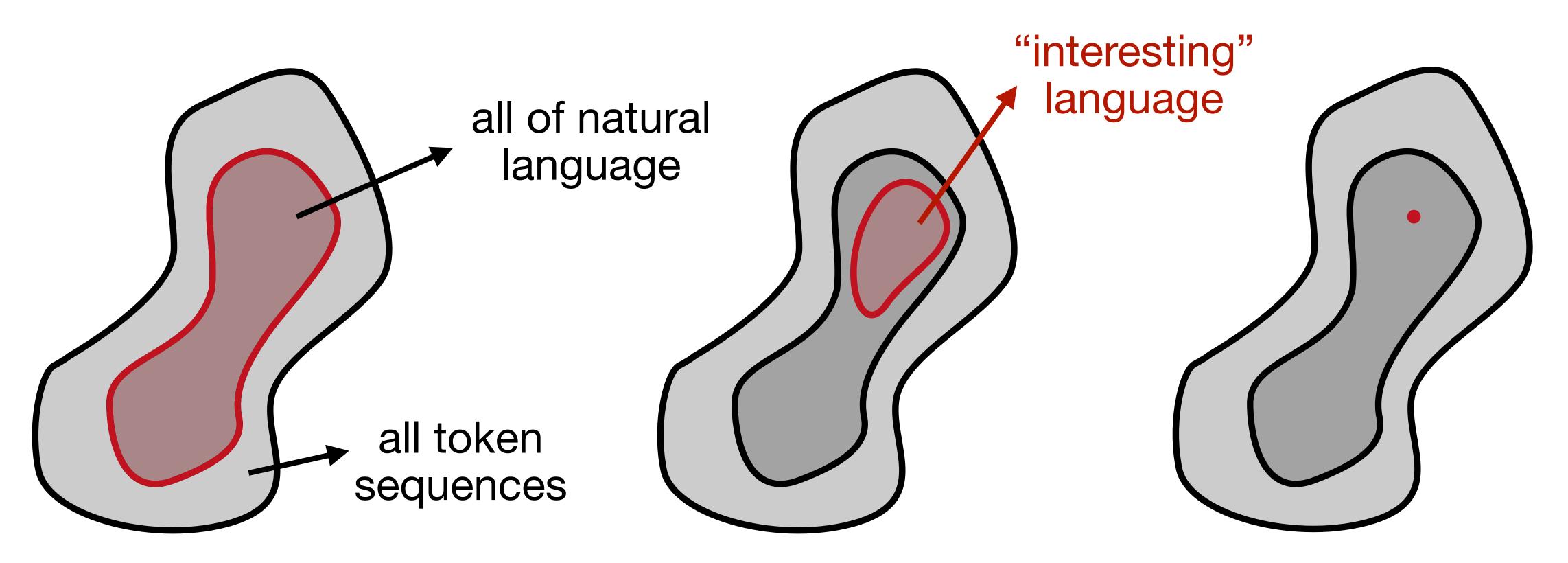
. . .

- Non-parametric "memory" k-nearest neighbor
- \rightarrow a small model class can fit a rich function class!
- \rightarrow <u>one</u> local model needs only little data!
- \rightarrow too good to be true?



unction class! ata!

Local learning in a picture



inductive learning

"fine-tuning"

local learning

History

since 1950s: k-nearest neighbors

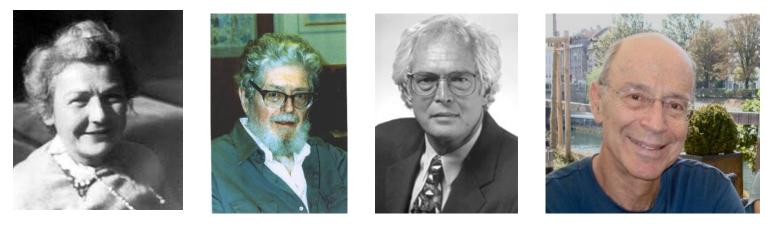
since 1960s: kernel regression

since 1970s: local (linear) learning

since 1980s: transductive learning

"When solving a problem of interest, do not solve a more general problem as an intermediate step. Try to get the answer that you really need but not a more general one." 0123456789 **CNNs on MNIST** 23456789 234561

in 1990s: local fine-tuning



Hodges Cover Hart Fix

(Nadaraya & Watson)

(Cleveland & Devlin)

(Vapnik)

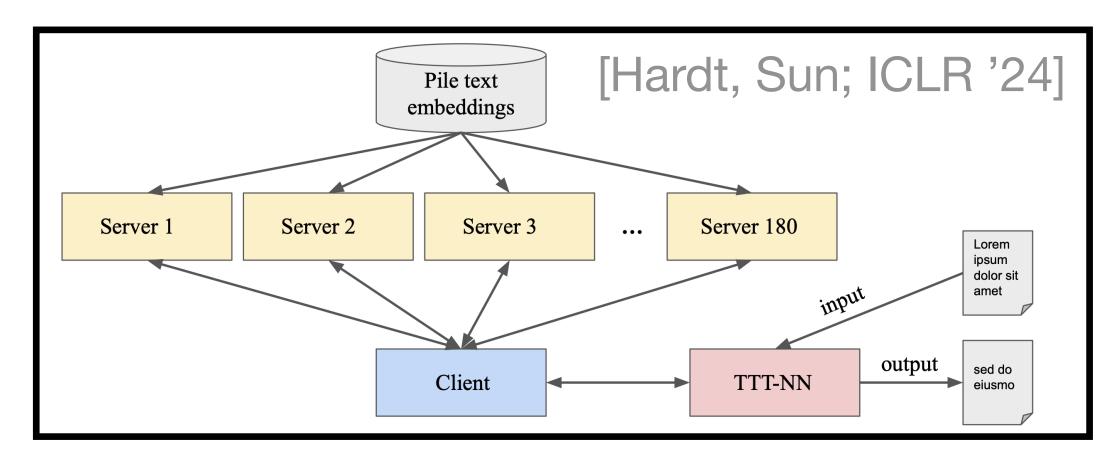
(Vapnik & Bottou)

History

since 2020s: (few-shot) in-context learning

parametric controller: LLM non-parametric memory: context (+ retrieval from database)

recently: local fine-tuning (again!) with GPT-2

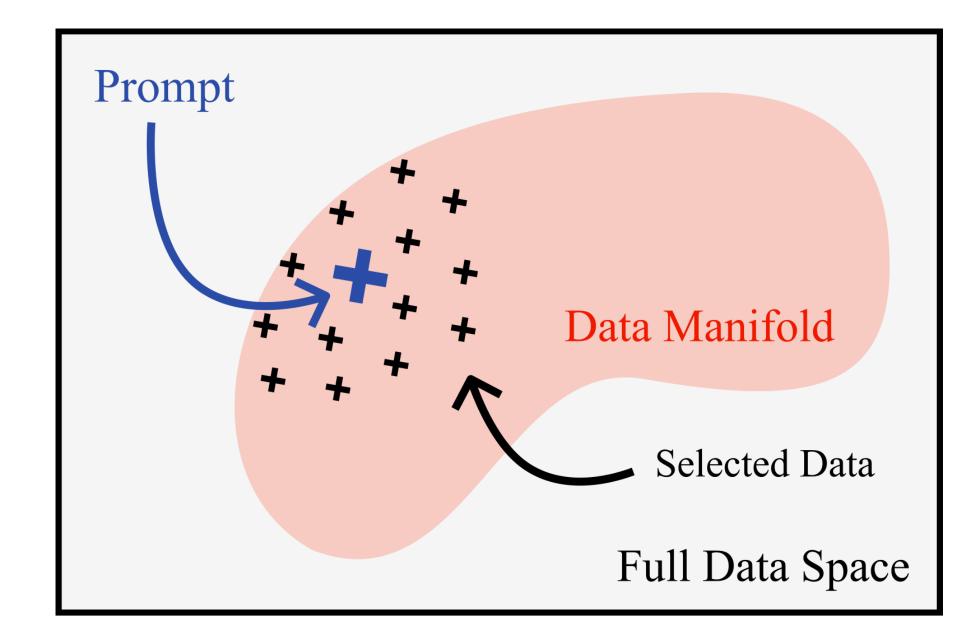


(GPT-3)

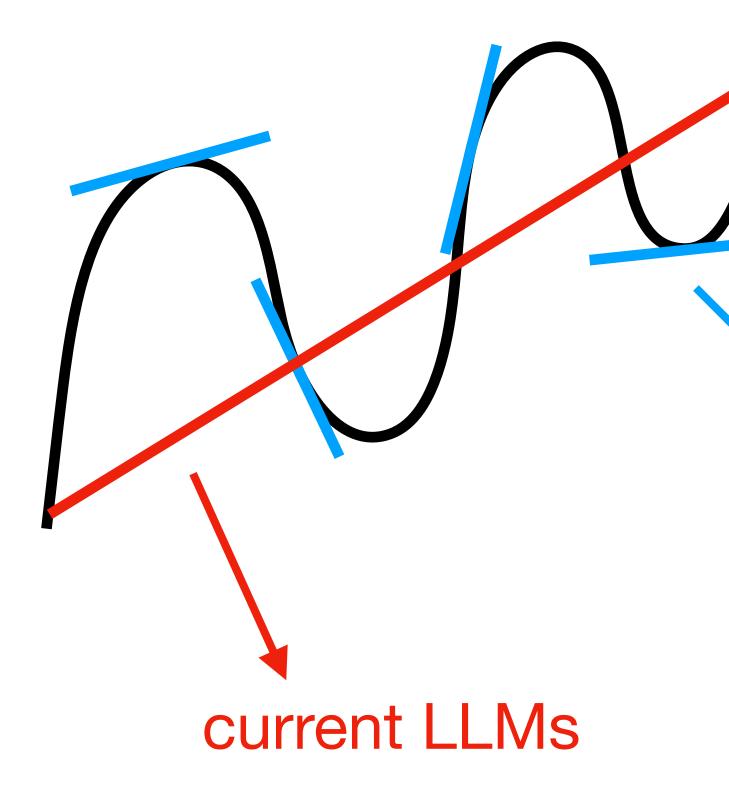
(Hardt & Sun)

Test-time fine-tuning Summary

- 1. take pre-trained model f
- 2. given input x, find local data D_x from memory
- 3. fine-tune model f on local data D_{χ} to get **local model** f_{χ}
- 4. predict $f_{x}(x)$



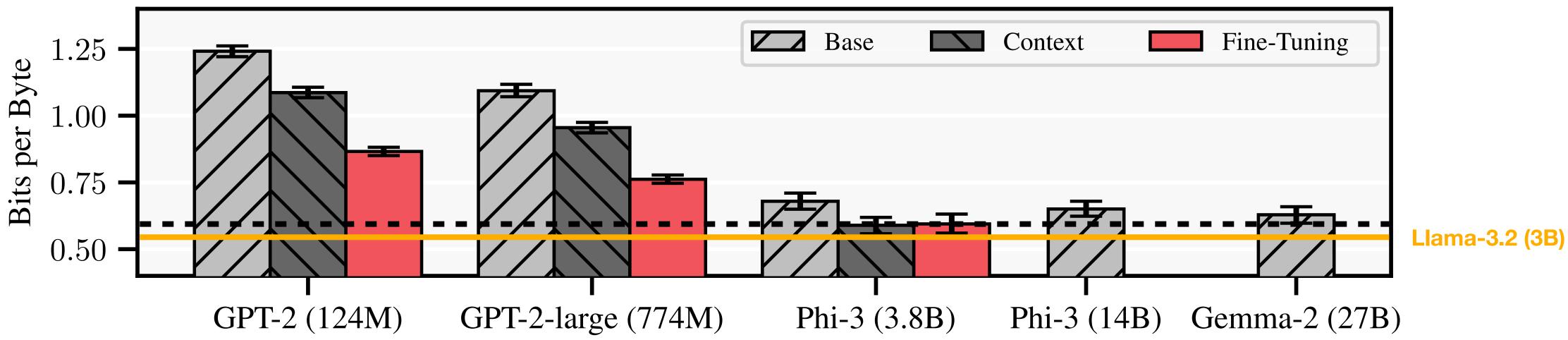
Hypothesis for LLMs



all of natural language

LLMs with test-time fine-tuning?

Does local learning work with LLMs?



	Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ		Context	Fine-Tuning	Δ
GitHub	74.6 (2.5)	28.6 (2.2)	$\downarrow 56.0$	GitHub	74.6 (2.5)	31.0 (2.2)	$\downarrow 43.6$	DeepMind Math	100.8	75.3	$\downarrow 25.5$
DeepMind Math	100.2 (0.1)	70.1 (2.1)	\downarrow 30.1	DeepMind Math	100.2 (0.7)	74.2 (2.3)	$\downarrow 26.0$	GitHub	71.3	46.5	$\downarrow 24.8$
US Patents	87.4 (2.5)	62.2 (3.6)	$\downarrow 25.2$	US Patents	87.4 (2.5)	64.7 (3.8)	$\downarrow 22.7$	FreeLaw	78.2	67.2	↓11.0
FreeLaw	87.2 (3.6)	65.5 (4.2)	$\downarrow 21.7$	FreeLaw	87.2 (3.6)	68.3 (4.2)	$\downarrow 18.9$	ArXiv	101.0	94.3	$\downarrow 6.4$

GPT-2

GPT-2-large

Phi-3

Key challenge: which data to select?

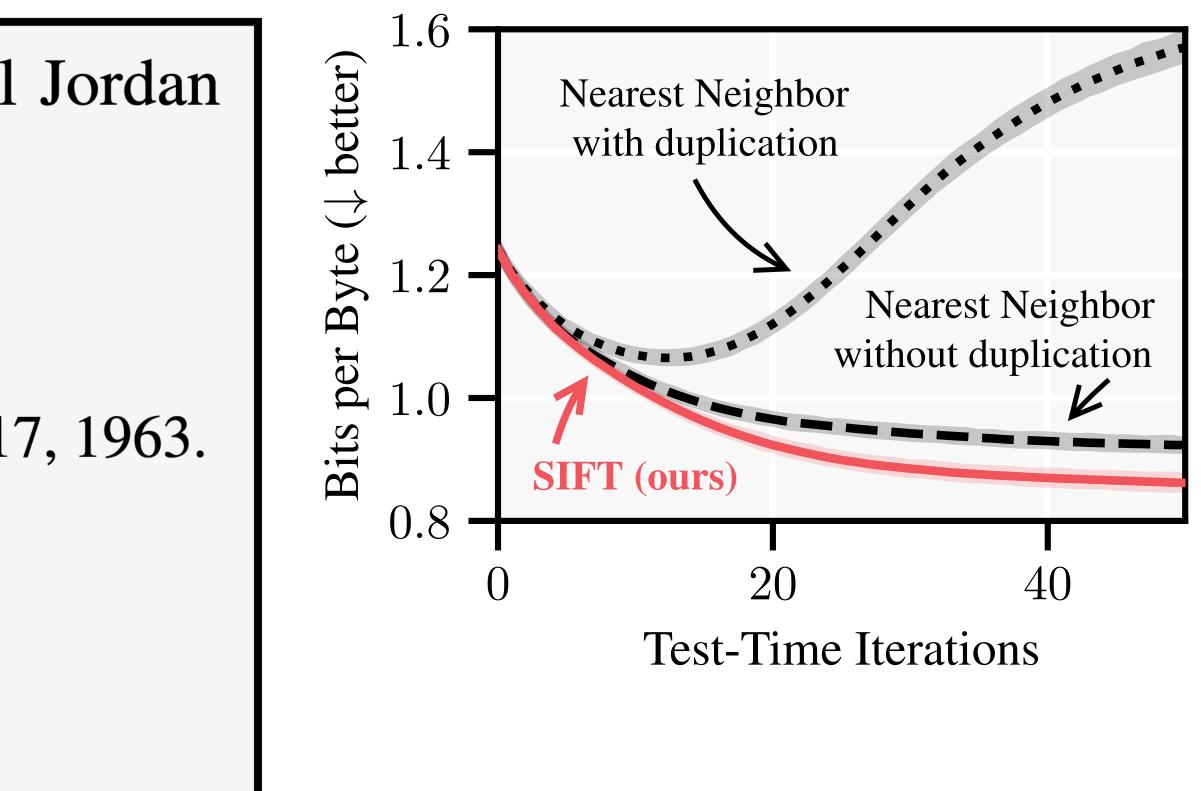
Prompt: What is the age of Michael Jordan and how many kids does he have?

Nearest Neighbor:

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan was born on February 17, 1963.

SIFT (ours):

- 1. The age of Michael Jordan is 61 years.
- 2. Michael Jordan has five children.



SIFT: Selecting Informative data for Fine-Tuning

Principle:

Select data that maximally reduces "uncertainty" about how to respond to the prompt.

- 1. Estimate uncertainty
- 2. Minimize uncertainty

(H, Bongni, Hakimi, Krause; ICLR '25)

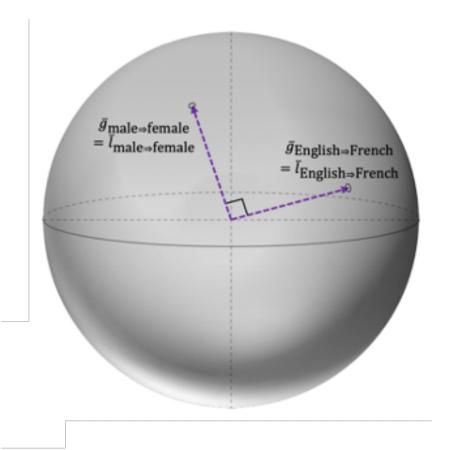
1) Estimating uncertainty

• Making this tractable...

known representation space

- Error bound: $d_{TV}(f_n(x), f^*(x)) \le \beta(\delta) \sigma_n(x)$ (with prob. 1δ) error

 $\rightarrow \sigma_n(x)$ measures uncertainty about response to x!

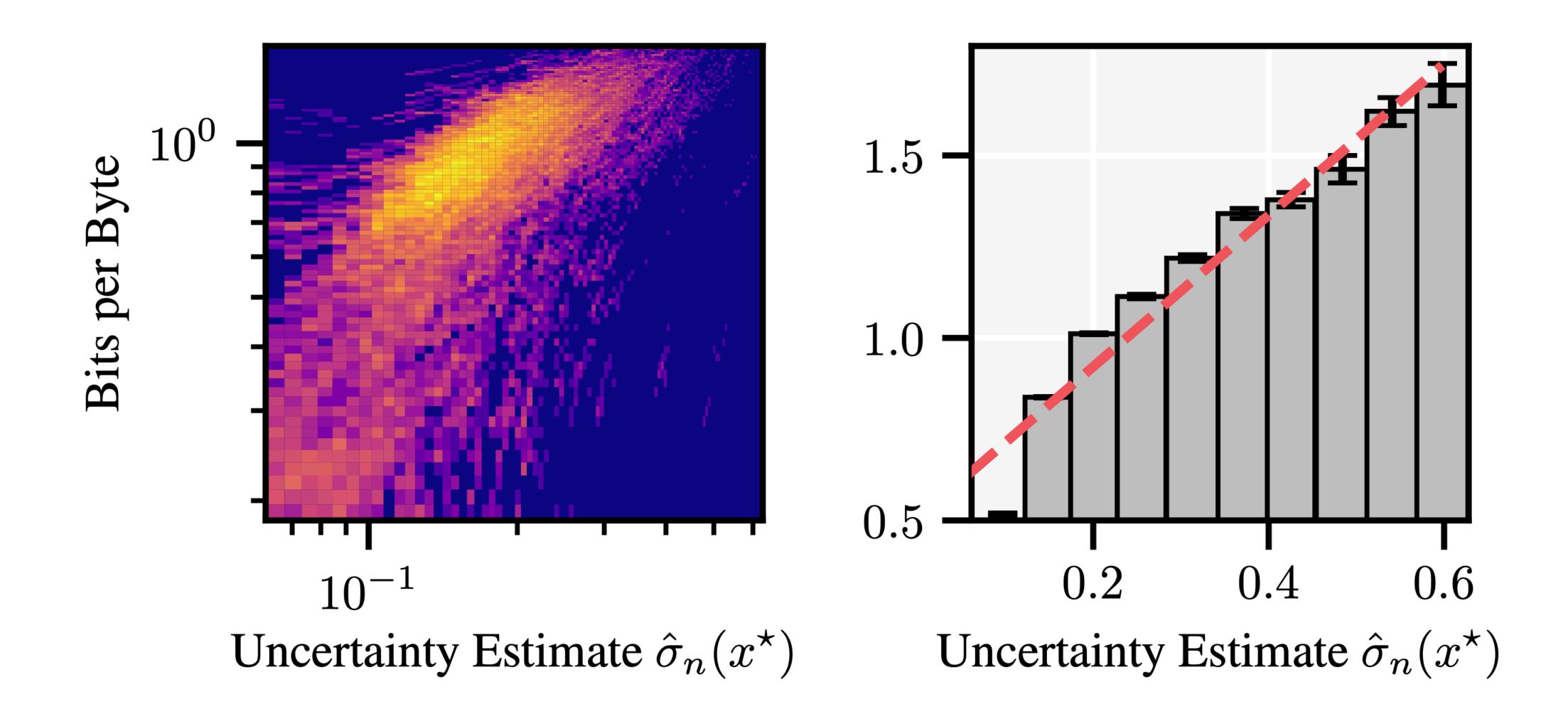


Surrogate model: approximate model f as logit-linear model in a

\rightarrow linear representation hypothesis (e.g., Park et al; ICML '24)

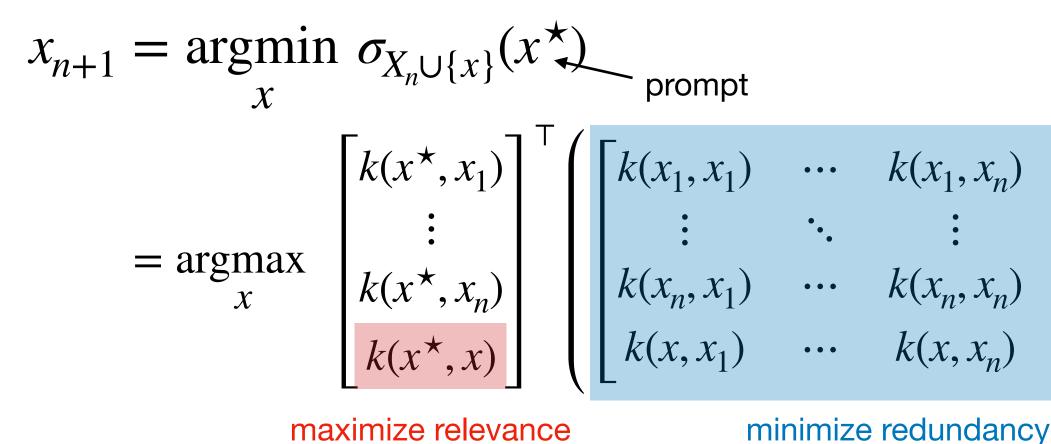
scaling uncertainty

$\sigma_n(x)$ measures uncertainty about response to x!



2) Minimizing uncertainty

• SIFT: minimize uncertainty about response to input x^* : $D_{x^*} = X_n \cup \{x_{n+1}\}$



convergence of uncertainty is guaranteed!

$$\sigma_n(x^\star) \to \sigma_\infty(x^\star)$$

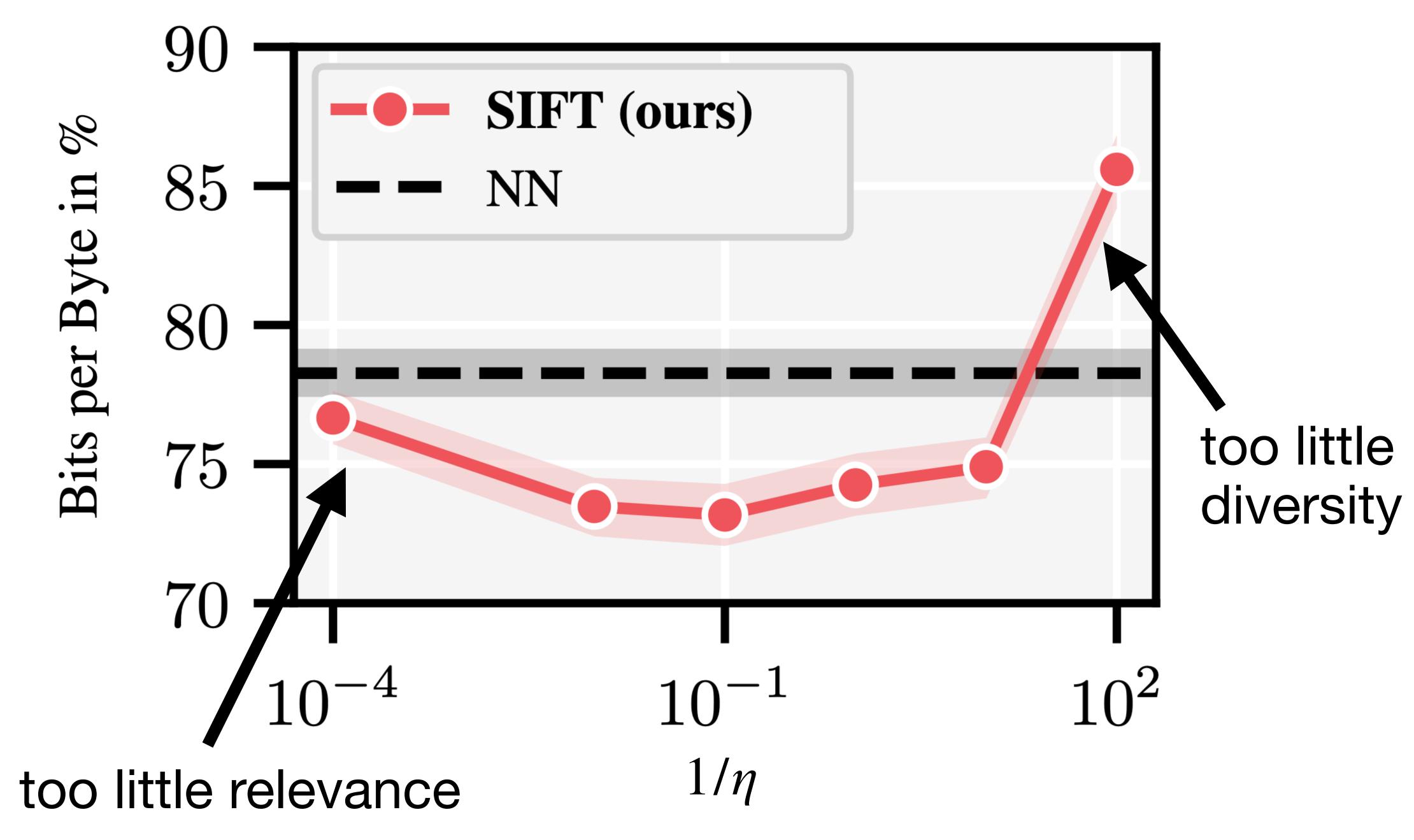
irreducible uncertainty

 \rightarrow predictions can be only as good as the data and the learned abstractions!

$$\begin{array}{c} x_{n} & k(x_{1}, x) \\ \vdots \\ x_{n} & k(x_{n}, x) \\ x_{n} & k(x, x) \end{array} \right] + \frac{1}{\eta} I_{n+1} \\ - \frac{1}{\eta}$$

with $k(x, x') = \boldsymbol{\phi}(x)^{\top} \boldsymbol{\phi}(x')$

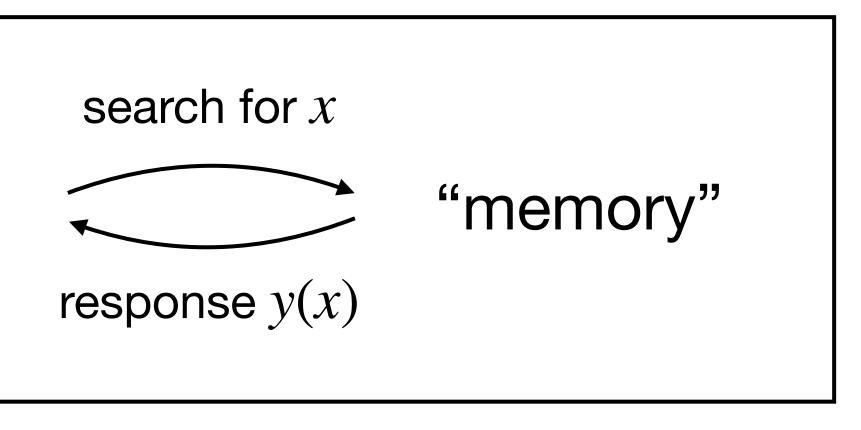
Not possible with nearest neighbor retrieval!



A probabilistic interpretation of SIFT

probabilistic model with **belief** about f ("controller")

Tractable Probabilistic Model	$x_{n+1} = ar_{n+1}$
$y(x) = f(x) + \varepsilon(x)$	n+1 — an
$f \sim \mathcal{GP}(\mu, k)$	= ar
	— or
$\varepsilon(x) \stackrel{iid}{\sim} \mathcal{N}(0,\sqrt{\lambda})$	= ar



$$relevance \sigma_n^2(x^*)$$

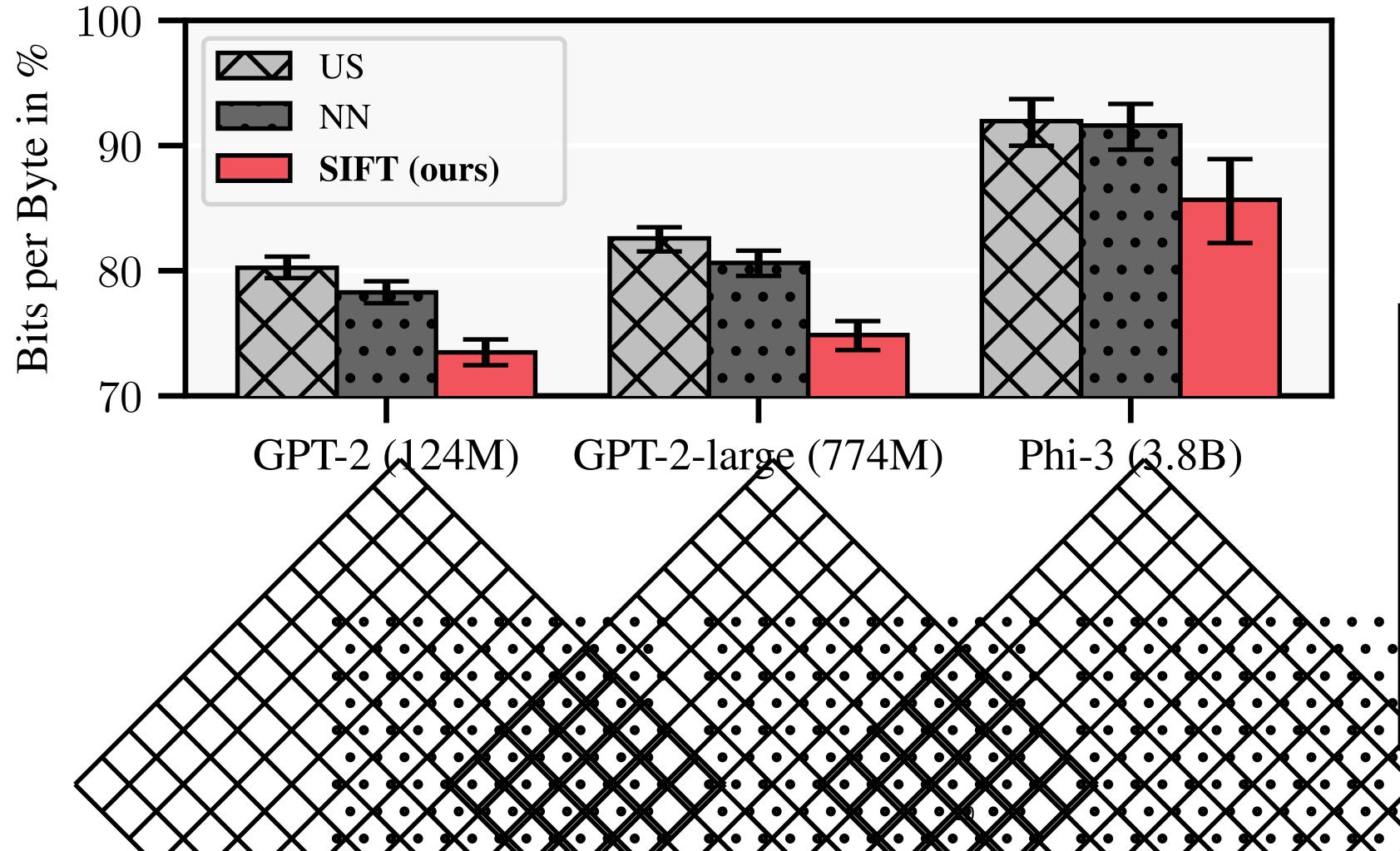
$$res_x^{x} \quad Var(f(x^*) \mid y_{1:n}, y(x))$$

$$rs_x^{x} \quad I(f(x^*); y(x) \mid y_{1:n})$$

$$rs_x^{x} \quad I(f(x^*); y(x)) - I(f(x^*); y(x); y_{1:n})$$

$$relevance \quad redundancy$$

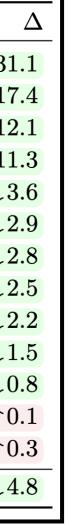
Evaluation: language modeling on the Pile



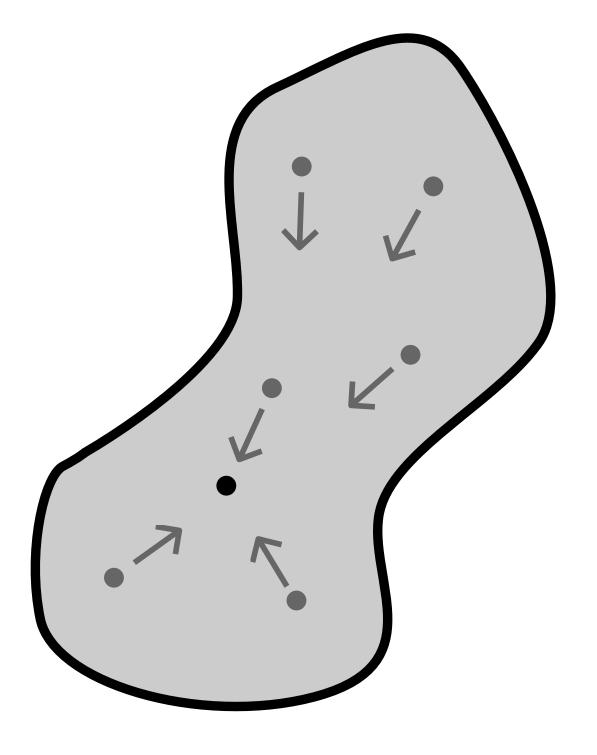
Observations

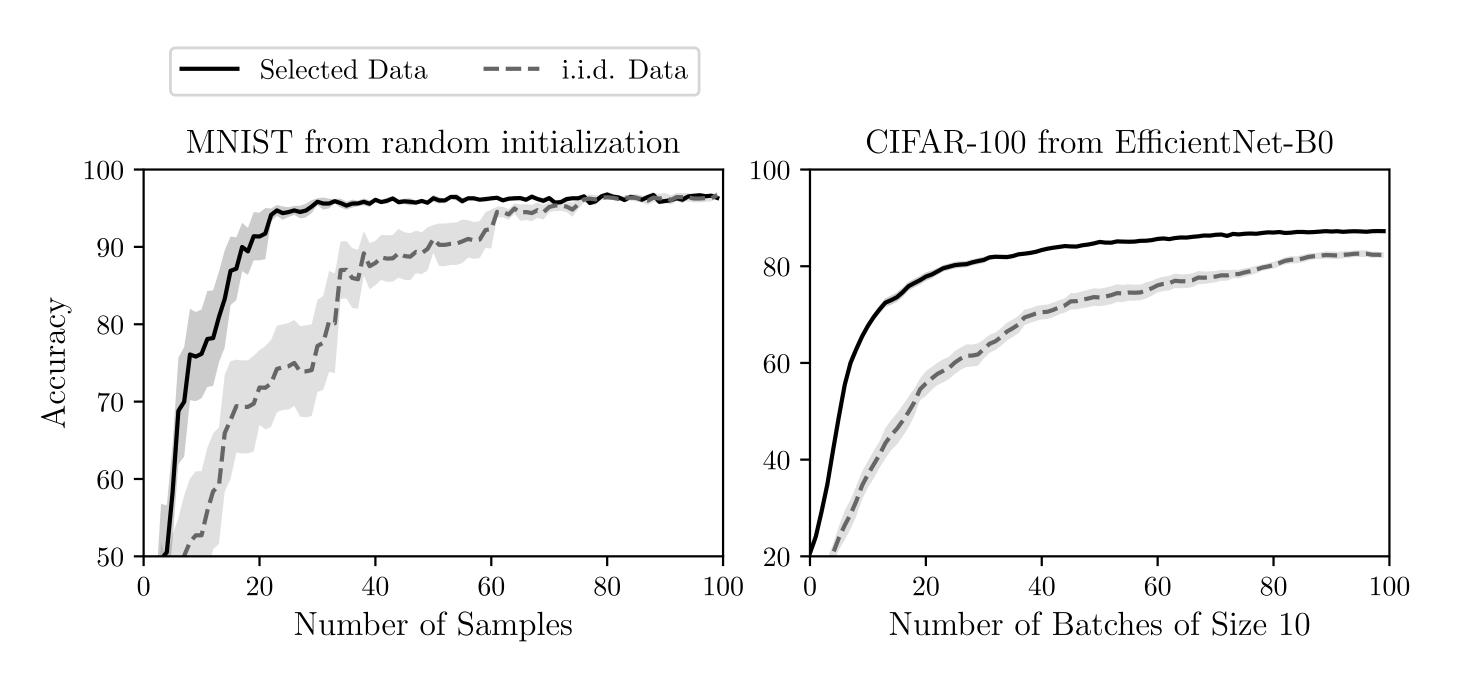
- larger relative gains with stronger base models
- larger relative gains with larger "memory"

	US	NN	NN-F	SIFT	
NIH Grants	93.1 (1.1)	84.9 (2.1)	91.6 (16.7)	53.8 (8.9)	$\downarrow 3$
US Patents	85.6(1.5)	80.3 (1.9)	108.8 (6.6)	62.9 (3.5)	$\downarrow 1'$
GitHub	45.6 (2.2)	42.1 (2.0)	53.2 (4.0)	30.0 (2.2)	$\downarrow 1$
Enron Emails	68.6 (9.8)	64.4 (10.1)	91.6 (20.6)	53.1 (11.4)	$\downarrow 1$
Wikipedia	67.5 (1.9)	66.3 (2.0)	121.2 (3.5)	62.7 (2.1)	\downarrow
Common Crawl	92.6 (0.4)	90.4 (0.5)	148.8 (1.5)	87.5 (0.7)	\downarrow
PubMed Abstr.	88.9 (0.3)	87.2 (0.4)	162.6 (1.3)	84.4 (0.6)	\downarrow
ArXiv	85.4 (1.2)	85.0 (1.6)	166.8 (6.4)	82.5 (1.4)	\downarrow
PubMed Central	81.7 (2.6)	81.7 (2.6)	155.6 (5.1)	79.5 (2.6)	\downarrow
Stack Exchange	78.6 (0.7)	78.2 (0.7)	141.9 (1.5)	76.7 (0.7)	\downarrow
Hacker News	80.4 (2.5)	79.2 (2.8)	133.1 (6.3)	78.4 (2.8)	\downarrow
FreeLaw	63.9 (4.1)	64.1 (4.0)	122.4 (7.1)	64.0 (4.1)	\uparrow
DeepMind Math	69.4 (2.1)	69.6 (2.1)	121.8 (3.1)	69.7 (2.1)	\uparrow
All	80.2 (0.5)	78.3 (0.5)	133.3 (1.2)	73.5 (0.6)	\downarrow



Can we learn representations over time?





representations

Strong representations can be bootstrapped! (H, Sukhija, Treven, As, Krause; NeurIPS '24)

Conclusion

Local models solve one problem at a time

Inductive models (most current SOTA models) attempt to solve all possible problems at once

 \rightarrow local learning allows allocating compute where it is "interesting"!

22

Jonas Hübotter

jonas.huebotter@inf.ethz.ch

 Transductive Active Learning: Theory and Applications NeurIPS '24

 Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs **ICLR** '25

