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Pile benchmark

ours

https://paperswithcode.com/sota/language-modelling-on-the-pile

40x larger

Pile dataset
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TestTrain

Training data Learnt model Prediction

Test instance
known!

Local learning (at test-time)



A story of curve fitting
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Remedies:

• Parametric models

polynomial regression

neural networks

• Non-parametric models

kernel (ridge) regression

k-nearest neighbor

• Local models

local linear regression

…

A story of curve fitting
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Local models have two components:

• Parametric “controller”

linear regression

…

• Non-parametric “memory”

k-nearest neighbor

…

 a small model class can fit a rich function class!→
 one local model needs only little data!→
 too good to be true?→

A story of curve fitting



Local learning in a picture

all of natural 
language

all token 
sequences

inductive learning “fine-tuning” local learning

“interesting” 
language
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History
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since 1970s: local (linear) learning (Cleveland & Devlin)

“When solving a problem of interest, do not solve 
a more general problem as an intermediate step. 
Try to get the answer that you really need but not 
a more general one.”

since 1980s: transductive learning (Vapnik)

in 1990s: local fine-tuning (Vapnik & Bottou)

CNNs on MNIST

since 1960s: kernel regression (Nadaraya & Watson)

since 1950s: k-nearest neighbors Fix Cover HartHodges



History
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recently: local fine-tuning (again!) with GPT-2 (Hardt & Sun)

since 2020s: (few-shot) in-context learning (GPT-3)

parametric controller: LLM

non-parametric memory: context (+ retrieval from database)

[Hardt, Sun; ICLR ’24]



Test-time fine-tuning

1. take pre-trained model    


2. given input , find local data  from memory


3. fine-tune model  on local data  to get local model    


4. predict 

f

x Dx

f Dx fx
fx(x)
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Summary



Hypothesis for LLMs
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LLMs with test-time 
fine-tuning?

all of natural 
language

current LLMs



GPT-2 GPT-2-large Phi-3

Does local learning work with LLMs?
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GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B) Phi-3 (14B) Gemma-2 (27B)
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SIFT (ours)

Nearest Neighbor
with duplication

Nearest Neighbor
without duplication

Key challenge: which data to select?



SIFT: Selecting Informative data for Fine-Tuning
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Principle: 
Select data that maximally reduces “uncertainty” 
about how to respond to the prompt.

1. Estimate uncertainty

2. Minimize uncertainty

(H, Bongni, Hakimi, Krause; ICLR ’25)



• Making this tractable…


Surrogate model: approximate model  as logit-linear model in a 
known representation space


• Error bound:

f

1) Estimating uncertainty
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 linear representation hypothesis (e.g., Park et al; ICML ’24)→

dTV( fn(x), f ⋆(x)) ≤ β(δ) σn(x) (with prob. 1 − δ)

  measures uncertainty about response to !→ σn(x) x
scaling uncertaintyerror

dTV( fn(x), f ⋆(x))
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 measures uncertainty about response to !σn(x) x



• SIFT: minimize uncertainty about response to input : 


• convergence of uncertainty is guaranteed!

x⋆ Dx⋆ = Xn ∪ {xn+1}

= argmax

k(x⋆, x1)
⋮

k(x⋆, xn)
k(x⋆, x)

⊤
k(x1, x1) ⋯ k(x1, xn) k(x1, x)

⋮ ⋱ ⋮ ⋮
k(xn, x1) ⋯ k(xn, xn) k(xn, x)
k(x, x1) ⋯ k(x, xn) k(x, x)

+
1
η

In+1

−1
k(x⋆, x1)

⋮
k(x⋆, xn)
k(x⋆, x)

with k(x, x′￼) = ϕ(x)⊤ϕ(x′￼)

17

xn+1 = argmin σXn∪{x}(x⋆)
x

x

prompt

maximize relevance minimize redundancy

 predictions can be only as good as the data and the learned abstractions!→

Not possible with nearest neighbor retrieval!

2) Minimizing uncertainty

irreducible uncertainty

→ σ∞(x⋆)σn(x⋆)
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too little relevance

too little 
diversity

1/η



A probabilistic interpretation of SIFT
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“memory”
probabilistic model 
with belief about f

(“controller”) response y(x)

search for x

= arg max I( f(x⋆); y(x) ∣ y1:n)

= arg max I( f(x⋆); y(x)) − I( f(x⋆); y(x); y1:n)
redundancyrelevance

x

x

Tractable Probabilistic Model

y(x) = f(x) + ε(x)

f ∼ 𝒢𝒫(μ, k)

ε(x) iid∼ 𝒩(0, λ)

xn+1 = arg min Var( f(x⋆) ∣ y1:n, y(x))
x

posterior variance σ2
n(x⋆)



Evaluation: language modeling on the Pile
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Observations 

• larger relative gains with 
stronger base models


• larger relative gains with 
larger “memory”

GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B)
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Can we learn representations over time?
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Strong representations can be bootstrapped!
(H, Sukhija, Treven, As, Krause; NeurIPS ’24)



Conclusion
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Local models 
solve one problem at a time

Inductive models (most current SOTA models)

attempt to solve all possible problems at once

 local learning allows allocating compute where it is “interesting”!→



• Transductive Active Learning: Theory and Applications 
NeurIPS ’24


• Efficiently Learning at Test-Time: Active Fine-Tuning of LLMs 
ICLR ’25


• Active Fine-Tuning of Generalist Policies
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