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1 Strongly Convex Functions

Let f : Rn → R be a µ-strongly convex and β-smooth1 function 1 I say β-smooth to mean β-gradient
Lipschitz as I am more used to this
wording.

that is twice continuously differentiable2 and whose first and second

2 We use the notion of Frechét differen-
tiability.

order derivatives are integrable.

1.1 Part A

Lemma 1. Let h : Rn → R be a convex function that is continuously
differentiable. Then,

(∇∇h(x)−∇∇h(y))⊤(x − y) ≥ 0. (1)

Proof. We have,

(∇∇h(x)−∇∇h(y))⊤(x − y)

= ∇∇h(x)⊤x −∇∇h(x)⊤y −∇∇h(y)⊤x +∇∇h(y)⊤y

= −∇∇h(x)⊤(y − x)−∇∇h(y)⊤(x − y).

Thus, it suffices to show,

∇∇h(x)⊤(y − x) +∇∇h(y)⊤(x − y) ≤ 0.

By the first-order characterization of convexity, we have,3 3 theorem 2.3.7

h(y) ≥ h(x) +∇∇h(x)⊤(y − x) and

h(x) ≥ h(y) +∇∇h(y)⊤(x − y).

Rearranging terms, we obtain,

∇∇h(x)⊤(y − x) +∇∇h(y)⊤(x − y) ≤ h(y)− h(x) + h(x)− h(y) = 0.

1.2 Part B

We first prove the following lemma.4 4 This is analogous to lemma 3.5 in [1],
however, they use a different strategy in
their proof.Lemma 2. Let h : Rn → R be a convex function that is continuously

differentiable and β-smooth. Then,

h(y) ≥ h(x) +∇∇h(x)⊤(y − x) +
1

2β
∥∇∇h(y)−∇∇h(x)∥2

2 . (2)
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Proof. Let ϕx(z)
.
= h(z)−∇∇h(x)⊤z. Note ∇∇ϕx(z) = ∇∇h(z)−∇∇h(x).

We have that ϕx is convex,5 5 We show the first-order characteriza-
tion of convexity.

ϕx(z1) +∇∇ϕx(z1)
⊤(z2 − z1)

= h(z1)−∇∇h(x)⊤z1 +∇∇h(z1)
⊤(z2 − z1) +∇∇h(x)⊤(z1 − z2)

≤ h(z2)−∇∇h(x)⊤z2 using the first-order characterization of
convexity for h

= ϕx(z2).

We also have that ϕx is β-smooth,

∥∇∇ϕx(z1)−∇∇ϕx(z2)∥2 = ∥∇∇h(z1)−∇∇h(x)−∇∇h(z2) +∇∇h(x)∥2

= ∥∇∇h(z1)−∇∇h(z2)∥2

≤ β ∥z1 − z2∥2 . using that h is β-smooth

Thus,6 6 proposition 3.3.3

ϕx(z) ≤ ϕx(y) +∇∇ϕx(y)⊤(z − y) +
β

2
∥z − y∥2

2

and therefore,

min
z∈Rn

ϕx(z) ≤ min
z∈Rn

ϕx(y) +∇∇ϕx(y)⊤(z − y) +
β

2
∥z − y∥2

2 .

We have minz∈Rn ϕx(z) = ϕx(x) as ∇∇ϕx(x) = 0 and ϕx is convex. In
the lecture,7 we have seen in an analogous argument that the right- 7 section 3.3.2

hand side is minimized for z = y − 1/β∇∇ϕx(y). The inequality
simplifies to,

h(x)−∇∇h(x)⊤x = min
z∈Rn

ϕx(z)

≤ min
z∈Rn

ϕx(y) +∇∇ϕx(y)⊤(z − y) +
β

2
∥z − y∥2

2

= h(y)−∇∇h(x)⊤y − 1
2β

∥∇∇ϕx(y)∥2
2 .

By reordering the terms, we obtain,

h(y) ≥ h(x) +∇∇h(x)⊤(y − x) +
1

2β
∥∇∇ϕx(y)∥2

2

= h(x) +∇∇h(x)⊤(y − x) +
1

2β
∥∇∇h(y)−∇∇h(x)∥2

2 ,

as desired.

Lemma 3. Let h : Rn → R be a convex function that is continuously
differentiable and β-smooth. Then,

(∇∇h(x)−∇∇h(y))⊤(x − y) ≥ 1
β
∥∇∇h(x)−∇∇h(y)∥2

2 . (3)
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Proof. Recall from section 1.1 that

(∇∇h(x)−∇∇h(y))⊤(x − y) = −∇∇h(x)⊤(y − x)−∇∇h(y)⊤(x − y).

Using eq. (2), we obtain,

−∇∇h(x)⊤(y − x)−∇∇h(y)⊤(x − y)

≥ h(x)− h(y) +
1

2β
∥∇∇h(y)−∇∇h(x)∥2

2

+ h(y)− h(x) +
1

2β
∥∇∇h(y)−∇∇h(x)∥2

2

=
1
β
∥∇∇h(y)−∇∇h(x)∥2

2 .

1.3 Part C

Lemma 4. Let f : Rn → R be a twice continuously differentiable, µ-
strongly convex, β-smooth function. Then,
(1) h(x) .

= f (x)− µ/2 ∥x∥2
2 is a convex and, if β ̸= µ, (β − µ)-smooth

function; and
(2) (∇∇ f (x)−∇∇ f (y))⊤(x − y)

≥ µβ

β + µ
∥x − y∥2

2 +
1

β + µ
∥∇∇ f (x)−∇∇ f (y)∥2

2 .

Proof of (1). Let us compute the Hessian Hh of h.

Hh(x)(i, j) =
∂2

∂x(i) ∂x(j)
h(x)

=
∂2

∂x(i) ∂x(j)

(
f (x)− µ

2
∥x∥2

2

)
= H f (x)(i, j)− µ

2
∂2

∂x(i) ∂x(j)
∥x∥2

2︸ ︷︷ ︸
=2

= H f (x)(i, j)− µ.

Thus, Hh(x) = H f (x)− µI for all x ∈ Rn. In particular, if {λi}i are
the eigenvalues of H f , then {λi − µ}i are the eigenvalues of Hh.8 8 Let A ∈ Rn×n and c ∈ R. Then,

for any eigenvalue λ ∈ R of A and
corresponding eigenvector x ∈ Rn,

(A + cI)x = Ax + cIx

= λx + cx = (λ + c)x.

Hence, λ + c is the eigenvalue of A + cI
corresponding to the eigenvector x.

To show that h is convex, it suffices to show that Hh is positive
semi-definite and therefore that λmin(Hh(x)) ≥ 0 for all x ∈ Rn.9

9 using theorem 3.2.9 and theorem 3.1.2

Using that f is µ-strongly convex, we have for all x ∈ Rn,

λmin(Hh(x)) = λmin(H f (x))︸ ︷︷ ︸
≥µ

−µ ≥ µ − µ = 0.

To show that h is (β − µ)-smooth, it suffices to show that
λmax(Hh(x)) ≤ β − µ for all x ∈ Rn.10 Using that f is β-smooth, we 10 using proposition 3.3.2



graded homework 1 4

have for all x ∈ Rn,

λmax(Hh(x)) = λmax(H f (x))︸ ︷︷ ︸
≤β

−µ ≤ β − µ.

Proof of (2). We consider two cases. First, suppose β = µ. We have,

f (y) ≥ f (x) +∇∇ f (x)⊤(y − x) +
β

2
∥x − y∥2

2 using exercise 19 (A) from the first
problem set, where f is β-strongly
convexf (y) ≥ f (x) +∇∇ f (x)⊤(y − x) +

1
2β

∥∇∇ f (y)−∇∇ f (x)∥2
2 . as we have shown for β-smooth f in

eq. (2)

We obtain,

(∇∇ f (x)−∇∇ f (y))⊤(x − y)

= −∇∇ f (x)⊤(y − x)−∇∇ f (y)⊤(x − y)

≥ f (x)− f (y) +
β

2
∥x − y∥2

2 + f (y)− f (x) +
1

2β
∥∇∇ f (y)−∇∇ f (x)∥2

2

=
β

2
∥x − y∥2

2 +
1

2β
∥∇∇ f (y)−∇∇ f (x)∥2

2 ,

which is what we wanted to show.
Now, suppose β ̸= µ. Let h(x) .

= f (x)− µ/2 ∥x∥2
2 be defined as in

(1). Using our results from (1), h is convex and (β − µ)-smooth. By
eq. (3), we have

(∇∇h(x)−∇∇h(y))⊤(x − y) ≥ 1
β − µ

∥∇∇h(x)−∇∇h(y)∥2
2 .

Note that ∇∇h(x) = ∇∇ f (x)− µx. This gives us,

(∇∇ f (x)−∇∇ f (y))⊤(x − y)

= (∇∇h(x)−∇∇h(y))⊤(x − y) + (µx − µy)⊤(x − y)︸ ︷︷ ︸
=µ∥x−y∥2

2

≥ 1
β − µ

∥∇∇h(x)−∇∇h(y)∥2
2 + µ ∥x − y∥2

2

=
1

β − µ
∥∇∇ f (x)−∇∇ f (y) + µ(y − x)∥2

2 + µ ∥x − y∥2
2

=
1

β − µ
∥∇∇ f (x)−∇∇ f (y)∥2

2 −
2µ

β − µ
(∇∇ f (x)−∇∇ f (y))⊤(x − y)

+
βµ

β − µ
∥x − y∥2

2 .

expanding the squared norm

Rearranging the terms, we get,

β + µ

β − µ
(∇∇ f (x)−∇∇ f (y))⊤(x − y) ≥ 1

β − µ
∥∇∇ f (x)−∇∇ f (y)∥2

2

+
βµ

β − µ
∥x − y∥2

2 .
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Finally, multiplying both sides by β−µ
β+µ > 0, we obtain,

(∇∇ f (x)−∇∇ f (y))⊤(x − y) ≥ 1
β + µ

∥∇∇ f (x)−∇∇ f (y)∥2
2

+
βµ

β + µ
∥x − y∥2

2 .

Lemma 5. When f is β-smooth and µ-strongly convex, we always have
µ ≤ β.

Proof. Suppose for a contradiction that µ > β. Recall that for any
x ∈ Rn, λmin(H f (x)) ≥ µ and λmax(H f (x)) ≤ β as f is µ-strongly
convex and β-smooth. But this yields,

λmin(H f (x)) ≥ µ > β ≥ λmax(H f (x)).

1.4 Part D

Lemma 6. Let f be defined as in the beginning of this section. When using
a version of gradient descent with xi+1

.
= xi − α∇∇ f (xi) for some α ∈ R,

then

∥xi+1 − x∗∥2
2 ≤

(
1 − 2αµβ

µ + β

)
∥xi − x∗∥2

2 + α

(
α − 2

µ + β

)
∥∇∇ f (xi)∥2

2 ,

(4)

where x∗ ∈ arg minx∈Rn f (x).

Proof. We have,

∥xi+1 − x∗∥2
2 = ∥xi − x∗ − α∇∇ f (xi)∥2

2

= ∥xi − x∗∥2
2 − 2α∇∇ f (xi)

⊤(xi − x∗) + α2 ∥∇∇ f (xi)∥2
2 .

It suffices to show,

2α∇∇ f (xi)
⊤(xi − x∗) ≥ 2α

µ + β
∥∇∇ f (xi)∥2

2 +
2αµβ

µ + β
∥xi − x∗∥2

2 .

Dividing by 2α, observe that this is precisely what we have proven in
part (2) of lemma 4 where x .

= xi and y .
= x∗.11 11 Note that ∇∇ f (x∗) = 0.

1.5 Part E

Lemma 7. In the setting of lemma 6, we have for α
.
= 1/β,

∥xk − x∗∥2
2 ≤ exp

(
−µ

β
k
)
∥x0 − x∗∥2

2 . (5)

Proof. Unraveling the recurrence from eq. (4), we get,

∥xk − x∗∥2
2 ≤

(
1 − 2αµβ

µ + β

)k
∥x0 − x∗∥2

2 + α

(
α − 2

µ + β

)
∥∇∇ f (xi)∥2

2 .
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Plugging in α
.
= 1/β, yields,

=

(
1 − 2µ

µ + β

)k
∥x0 − x∗∥2

2 +
1
β

(
1
β
− 2

µ + β

)
∥∇∇ f (xi)∥2

2 .

Using µ ≤ β, we have,

2µ

µ + β
≥ µ

β
and

2
µ + β

≥ 1
β

.

We obtain,

∥xk − x∗∥2
2 ≤

(
1 − µ

β

)k
∥x0 − x∗∥2

2 ≤ exp
(
−µ

β
k
)
∥x0 − x∗∥2

2 . using that 1 + x ≤ exp(x) for all x ∈ R

1.6 Part F

We will first show a result for the version of gradient descent we
have seen in parts D and E. We will then improve on this result us-
ing acceleration. The proof of this statement is not required for our
improved version.

Theorem 8. Let f : Rn → R be a µ-strongly convex and β-smooth
function that is twice continuously differentiable. Then, gradient descent
with xi+1

.
= xi − 1/β∇∇ f (xi) yields an approximate solution xk such that for

any ϵ > 0,

f (xk)− f (x∗) ≤ ϵ

where x∗ ∈ arg minx∈Rn f (x) and the gradient of f is computed at at most
κ log(β∥x0−x∗∥2

2/2ϵ) points.12 12 κ
.
= β/µ is the condition number of f .

Proof. First, note that during each iteration of the given scheme, the
gradient of f is evaluated at exactly one point. It therefore suffices to
bound the number of iterations until we get an ϵ-optimal solution.

As f is β-smooth, we have,

f (xk) ≤ f (x∗) +∇∇ f (x∗)⊤(xk − x∗) +
β

2
∥xk − x∗∥2

2 .

Noting that ∇∇ f (x∗) = 0 and rearranging the terms, we obtain,

f (xk)− f (x∗) ≤ β

2
∥xk − x∗∥2

2 .

Using eq. (5), we get,

≤ β

2
exp

(
− k

κ

)
∥x0 − x∗∥2

2

!
≤ ϵ.

Solving the inequality for k, yields,

k ≥ κ log

(
β ∥x0 − x∗∥2

2
2ϵ

)
as desired.
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We now show that we can improve the previous result using accel-
eration to only require order

√
κ rather than order of κ iterations to

converge to an ϵ-optimal solution.

Theorem 9. Let f : Rn → R be a µ-strongly convex and β-smooth
function that is twice continuously differentiable. Let x0 ∈ R be any initial
guess. Then, the iterative scheme,

y0
.
= x0 (6)

yi+1
.
= xi −

1
β
∇∇ f (xi) (7)

xi+1
.
= (1 + θ)yi+1 − θyi for θ

.
=

√
κ − 1√
κ + 1

, (8)

yields an approximate solution yk such that for any ϵ > 0,

f (yk)− f (x∗) ≤ ϵ

where x∗ ∈ arg minx∈Rn f (x) and the gradient of f is computed at at most√
κ log(β∥x0−x∗∥2

2/ϵ) points.13 13 The proof of this theorem is inspired
by the lecture on accelerated gradient
descent and section 3.7.1 of [1].Note that the sequence {yi}i is similar to the gradient descent

scheme that we have examined previously. We choose xi as a convex
combination of the previous and current best guess. Our approach
will be to (1) upper bound f (yi) by a function ϕi : Rn → R, of which
we (2) show that ϕi(x) converges to f (x) quickly.

We define ϕi iteratively,

ϕ0(x) .
= f (x0) +

µ

2
∥x − x0∥2

2 (9)

ϕi+1(x) .
= (1 − γ)ϕi(x) + γ

(
f (xi) +∇∇ f (xi)

⊤(x − xi) +
µ

2
∥x − xi∥2

2

)
,

(10)

as the convex combination of itself and a second-order Taylor ap-
proximation of f at xi where we write γ

.
= 1/√

κ =
√

µ/β to simplify
notation. It is easy to see that ϕi is convex.14 Our analysis rests on the 14 We will later show that ϕi is µ-

strongly convex.following two claims, which we will prove later.

Claim 10 (Upper bound). f (yi) ≤ minx∈Rn ϕi(x).

Claim 11 (Fast convergence). ϕi(x) ≤ f (x) + (1 − γ)i(ϕ0(x)− f (x)).

Proof of theorem 9. By claim 10, f (yi) ≤ ϕi(x∗) during all iterations i.
Therefore,

f (yk)− f (x∗) ≤ ϕk(x∗)− f (x∗)

≤ (1 − γ)k(ϕ0(x∗)− f (x∗)) using claim 11

= (1 − γ)k( f (x0)− f (x∗) +
µ

2
∥x0 − x∗∥2

2). using the definition of ϕ0, eq. (9)
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≤ (1 − γ)k µ + β

2
∥x0 − x∗∥2

2 using f (x)− f (x∗) ≤ β
2 ∥x − x∗∥2

2 as f
is β-smooth, see the proof of theorem 24

≤ (1 − γ)kβ ∥x0 − x∗∥2
2 using µ ≤ β

≤ exp
(
− k√

κ

)
β ∥x0 − x∗∥2

2

!
≤ ϵ using that 1 + x ≤ exp(x) for all x ∈ R

Solving the inequality for k, yields,

k ≥
√

κ log

(
β ∥x0 − x∗∥2

2
ϵ

)

as desired.

It remains to prove the two claims.

Proof of claim 11. We prove the claim by induction on i. In the base
case, i = 0, we immediately have,

f (x) + (1 − γ)0(ϕ0(x)− f (x)) = ϕ0(x).

Let us now consider any fixed i ∈ N0 and suppose that the state-
ment holds for i. We have,

ϕi+1(x) = (1 − γ)ϕi(x) + γ
(

f (xi) +∇∇ f (xi)
⊤(x − xi) +

µ

2
∥x − xi∥2

2

)
using the definition of ϕi+1, eq. (10)

≤ (1 − γ)i+1(ϕ0(x)− f (x)) + (1 − γ) f (x)

+ γ
(

f (xi) +∇∇ f (xi)
⊤(x − xi) +

µ

2
∥x − xi∥2

2

)
.

using the induction hypothesis

Finally, observe that

f (x) ≥ f (xi) +∇∇ f (xi)
⊤(x − xi) +

µ

2
∥x − xi∥2

2

as f is µ-strongly convex. Noting that (1 − γ) f (x) + γ f (x) = f (x),
completes the proof.

To prove the final claim, we define vi
.
= arg minx∈Rn ϕi(x) and

ϕ∗
i

.
= minx∈Rn ϕi(x).

Claim 12. ϕ∗
i+1 ≥ (1 − γ)ϕ∗

i + (1 − γ)∇∇ f (xi)
⊤(xi − yi) + γ f (xi)

− 1
2β

∥∇∇ f (xi)∥2
2 .

Proof of claim 10. We prove the claim by induction on i. In the base
case, i = 0, we have,

f (y0) = f (x0) ≤ min
x∈Rn

f (x0) +
µ

2
∥x − x0∥2

2︸ ︷︷ ︸
≥0

= min
x∈Rn

ϕ0(x),

using that y0 = x0.
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Let us now consider any fixed i ∈ N0 and suppose that the state-
ment holds for i. By the β-smoothness of f , we have,

f (yi+1) ≤ f (xi) +∇∇ f (xi)
⊤(yi+1 − xi) +

β

2
∥yi+1 − xi∥2

2 .

By the definition of yi+1, we have yi+1 − xi = −∇∇ f (xi)/β and the
inequality simplifies to,

f (yi+1) ≤ f (xi)−
1

2β
∥∇∇ f (xi)∥2

2

= (1 − γ) f (yi)− (1 − γ) f (yi) + f (xi)−
1

2β
∥∇∇ f (xi)∥2

2

≤ (1 − γ)ϕ∗
i − (1 − γ) f (yi) + f (xi)−

1
2β

∥∇∇ f (xi)∥2
2 using the induction hypothesis

= (1 − γ)ϕ∗
i + (1 − γ)( f (xi)− f (yi)) + γ f (xi)−

1
2β

∥∇∇ f (xi)∥2
2

Using the first-order characterization of convexity, we have,

f (xi)− f (yi) ≤ ∇∇ f (xi)
⊤(xi − yi).

Combining the previous two inequalities, yields,

f (yi+1) ≤ (1 − γ)ϕ∗
i + (1 − γ)∇∇ f (xi)

⊤(xi − yi) + γ f (xi)

− 1
2β

∥∇∇ f (xi)∥2
2 .

f (yi+1) ≤ ϕ∗
i+1 follows by claim 12.

Claim 13. We use the following simple observations for our proof of
claim 12.
(1) ϕi(x) = ϕ∗

i +
µ
2 ∥x − vi∥2

2.

(2) vi+1 = (1 − γ)vi + γ
(

xi − 1
µ∇∇ f (xi)

)
.

(3) vi − xi =
xi−yi

γ .

Proof of claim 12. We have,

ϕ∗
i+1 +

µ

2
∥xi − vi+1∥2

2 = ϕi+1(xi) using claim 13(1)

= (1 − γ)ϕi(xi) + γ f (xi) using the definition of ϕi+1, eq. (10)

= (1 − γ)ϕ∗
i + (1 − γ)

µ

2
∥xi − vi∥2

2 + γ f (xi) using claim 13(1).

By rearranging the terms, we get,

ϕ∗
i+1 = (1 − γ)ϕ∗

i + (1 − γ)
µ

2
∥xi − vi∥2

2 + γ f (xi)−
µ

2
∥xi − vi+1∥2

2 .

Using claim 13(2), we have,

∥xi − vi+1∥2
2 =

∥∥∥∥(1 − γ)(xi − vi) +
γ

µ
∇∇ f (xi)

∥∥∥∥2

2
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= (1 − γ)2 ∥xi − vi∥2
2 − 2(1 − γ)

γ

µ
∇∇ f (xi)

⊤(vi − xi)

+
γ2

µ2 ∥∇∇ f (xi)∥2
2 .

Combining the two equalities, we obtain,

ϕ∗
i+1 = (1 − γ)ϕ∗

i + γ(1 − γ)
µ

2
∥xi − vi∥2

2︸ ︷︷ ︸
≥0

+ γ f (xi) + γ(1 − γ)∇∇ f (xi)
⊤(vi − xi)−

1
2β

∥∇∇ f (xi)∥2
2

≥ (1 − γ)ϕ∗
i + γ f (xi) + (1 − γ)∇∇ f (xi)

⊤(xi − yi)−
1

2β
∥∇∇ f (xi)∥2

2 , using claim 13(3)

as desired.

We finish by giving formal proofs of the statements in claim 13

even though they are similar to proofs we have seen in class and the
weekly problem sets.

Proof of claim 13(1). We first show by induction on i that Hϕi (x) = µI
for all x ∈ Rn and i ≥ 0. By a simple calculation, we have,

∇∇ϕ0(x) = µ(x − x0) and Hϕ0(x) = µI.

Let us consider any fixed i ∈ N0 and suppose that the statement
holds for i. Following from the definition of ϕi+1, we have,

∇∇ϕi+1(x) = (1 − γ)∇∇ϕi(x) + γ(∇∇ f (xi) + µ(x − xi)) and

Hϕi+1(x) = (1 − γ)Hϕi (x) + γµI.

Using the induction hypothesis, we conclude,

Hϕi+1(x) = (1 − γ)µI + γµI = µI.

In particular, this shows that ϕi is µ-strongly convex.
Note that the highest-order term in ϕi must therefore be of or-

der two. It is easy to see that any quadratic function that satisfies
Hϕi+1(x) = µI and ϕ∗

i = minx∈Rn ϕi(x), can be written as15 15 Consider an arbitrary quadratic
function g(x) = x⊤Ax + x⊤b + c with
minimum m and Hg(x) = A + A⊤ =
µI. Thus, A = µ/2I. Now, consider the
function

h(x) =
µ

2
∥x − z∥2

2 + m

=
µ

2
∥x∥2

2 − µx⊤z +
µ

2
∥z∥2

2 + m.

To get h ≡ g, we simply need to set
z = −b/µ. As z is the minimizer of both
h and g, c = µ/2 ∥z∥2

2 − m is uniquely
determined using that the minimum of
h and g is m.

ϕi(x) =
µ

2
∥x − z∥2

2 + ϕ∗
i

for some z ∈ Rn. We immediately see that ϕi is minimized by z, and
hence, z = vi.

Proof of claim 13(2). Recall,

∇∇ϕi+1(x) = (1 − γ)∇∇ϕi(x) + γ(∇∇ f (xi) + µ(x − xi)).
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Using claim 13(1), we get,

= (1 − γ)∇∇
(µ

2
∥x − vi∥2

2 + ϕ∗
i

)
+ γ(∇∇ f (xi) + µ(x − xi))

= (1 − γ)µ(x − vi) + γ(∇∇ f (xi) + µ(x − xi))

= µx − µ(1 − γ)vi − µγxi + γ∇∇ f (xi)
!
= 0.

Solving the equation for x, yields,

x = (1 − γ)vi + γxi −
γ

µ
∇∇ f (xi).

As ϕi+1 is convex, x minimizes ϕi+1, and hence, vi+1 = x.16 16 As ϕi+1 is µ-strongly convex, it is
strictly convex, and therefore x is its
unique minimizer.Proof of claim 13(3). We prove the statement by induction on i. For

i = 0, note that the minimizer v0 of ϕ0 is x and hence,

v0 − x0 = 0 = x0 − y0. using that x0 = y0

Let us consider any fixed i ∈ N0 and suppose that the statement
holds for i. We have,

vi+1 − xi+1 = (1 − γ)vi + γxi −
1

γβ
∇∇ f (xi)− xi+1 using claim 13(2) and the identity

γ/µ = 1/γβ

=
1
γ

xi −
(

1
γ
− 1
)

yi −
1

γβ
∇∇ f (xi)− xi+1 using the induction hypothesis

=
1
γ

yi+1 −
(

1
γ
− 1
)

yi − xi+1 using the definition of yi+1,
xi = yi+1 + 1/β∇∇ f (xi)

!
=

xi+1 − yi+1

γ
.

Solving the equation for xi+1, we obtain,

xi+1 = (1 + θ)yi+1 − θyi for θ =
1 − γ

γ + 1
=

√
κ − 1√
κ + 1

,

which coincides precisely with our choice of xi+1.

2 A different kind of smoothness

Definition 14. A norm on Rn is a function ∥·∥ : Rn → R such that
(1) for every a ∈ R and x ∈ Rn, ∥ax∥ = |a| ∥x∥;
(2) for every x, y ∈ Rn, ∥x + y∥ ≤ ∥x∥+ ∥y∥; and
(3) for every x ∈ Rn, ∥x∥ = 0 implies x = 0.

Definition 15. Given the norm ∥·∥ on Rn its dual norm ∥·∥∗ is defined
as,

∥x∥∗
.
= sup{z⊤x | z ∈ Rn, ∥z∥ = 1}. (11)
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2.1 Part A

Lemma 16.
(1) The supremum in the definition of the dual norm is obtained.
(2) ∥·∥∗ is a norm on Rn.
(3) x⊤y ≤ ∥x∥ ∥y∥∗.
(4) (∥x∥∗)∗ ≤ ∥x∥.17 17 The other direction holds too, but is

not shown here.
Proof of (1). Let B .

= {z ∈ Rn | ∥z∥ = 1} ⊆ Rn be the unit ball and
consider the linear functional,

fx : B → R, z 7→ z⊤x.

We want to show that im fx has a supremum. By the completeness
axiom, it is sufficient to show that im fx is nonempty and bounded
(as im fx ⊆ R).

Note that im fx ̸= ∅ follows from the simple observation that
B ̸= ∅.18 18 We have that B is nonempty, as we

have for any x ∈ Rn \ {0} that the unit
vector x/∥x∥ ∈ B.

To show that im fx is bounded, recall that the unit ball B is bounded.
Thus, it suffices to show that fx is a bounded operator. For any
z ∈ Rn, we have,

| fx(z)| =
∣∣∣z⊤x

∣∣∣ ≤ ∥z∥2 ∥x∥2 ,

using the Cauchy-Schwartz inequality. Now, recall that all norms on
Rn are equivalent.19 19 In particular, there exists C ∈ R such

that for all x ∈ Rn, ∥x∥2 ≤ C ∥x∥.
Using this fact, we obtain,

≤ C ∥x∥2︸ ︷︷ ︸
const.

∥z∥ ,

proving that fx is a bounded operator and im fx is bounded.

Proof of (2). We check the three properties of a norm. We fix arbitrary
a ∈ R and x, y ∈ Rn.
(1) ∥ax∥∗ = sup

∥z∥=1
az⊤x = sup

∥z∥=1
|a| z⊤x = |a| sup

∥z∥=1
z⊤x = |a| ∥x∥∗ . using that sup z⊤x = sup z⊤(−x) as

∥z∥ = 1 implies ∥−z∥ = 1

(2) ∥x + y∥∗ = sup
∥z∥=1

z⊤(x + y) = sup
∥z∥=1

z⊤x + z⊤y

≤ sup
∥z∥=1

z⊤x + sup
∥z∥=1

z⊤y = ∥x∥∗ + ∥y∥∗ . using that sup a + b ≤ sup a + sup b

(3) We prove the contrapositive of positive definiteness. Suppose
x ̸= 0. Then, using the unit vector z .

= x/∥x∥,
∥x∥∗ = sup∥z∥=1 z⊤x ≥ ∥x∥2

2/∥x∥ > 0.

Proof of (3). Taking the unit vector z .
= x/∥x∥, we get,

∥y∥∗ = sup
∥z∥=1

z⊤y ≥ x⊤y
∥x∥ .

Rearranging the terms, yields the desired result.
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Proof of (4). First, note that the dual norm can be characterized equiv-
alently as,

∥x∥∗ = sup
∥z∥=1

z⊤x = sup
y ̸=0

y⊤x
∥y∥ , (12)

by taking the unit vector z .
= y/∥y∥. Using this characterization, we

obtain,

(∥x∥∗)∗ = sup
z ̸=0

z⊤x
∥z∥∗

= sup
z ̸=0

z⊤x

supy ̸=0
y⊤z
∥y∥

= sup
z ̸=0

z⊤x inf
y ̸=0

∥y∥
y⊤z

= sup
z ̸=0

inf
y ̸=0

∥y∥ z⊤x
y⊤z

≤ inf
y ̸=0

∥y∥ sup
z ̸=0

z⊤x
y⊤z

. using the max-min inequality

Observe that when x and y are not linearly dependent, their fraction
can be made arbitrarily large, and hence, in this case the supremum
is ∞. If, on the other hand y = αx for some α ∈ Rn, then the fraction
evaluates to 1/α. This observation yields,

= α ∥x∥ · 1
α
= ∥x∥ ,

where we used absolute homogeneity.

2.2 Part B

Definition 17.
(1) Given any positive definite matrix M, the Mahalanobis norm is

defined as ∥x∥M
.
=

√
x⊤Mx.

(2) The uniform norm is defined as ∥x∥∞
.
= maxi |x(i)|.

(3) The Manhattan norm is defined as ∥x∥1
.
= ∑i |x(i)|.

Lemma 18.
(1) (∥·∥M)∗ = ∥·∥M−1 .
(2) (∥·∥∞)∗ = ∥·∥1.

Proof of (1). As M is positive definite, it can be factorized uniquely20 20 by the Cholesky decomposition

into M = LL⊤ where L is lower triangular with positive entries on
the diagonal. We write M1/2 .

= L. Also note that as M is positive
definite, it is symmetric. We have for any x ∈ Rn,



graded homework 1 14

(∥x∥M)∗ = sup
∥z∥M=1

z⊤x.

We substitute y .
= M1/2z,21 21 We have z = M−1/2y and

∥z∥M =
√

z⊤Mz

=

√(
M−1/2y

)⊤MM−1/2y

=
√

y⊤y = ∥y∥2 .

= sup
∥y∥2=1

x⊤M−1/2y

= sup
∥y∥2=1

(
M−1/2x

)⊤
y

≤ sup
∥y∥2=1

∥∥∥M−1/2x
∥∥∥

2
∥y∥2︸︷︷︸
=1

=
∥∥∥M−1/2x

∥∥∥
2

using the Cauchy-Schwartz inequality

=

√(
M−1/2x

)⊤M−1/2x =
√

x⊤M−1x = ∥x∥M−1 .

Moreover, for y .
= M−1/2x/

∥∥∥M−1/2x
∥∥∥

2
, we have,22 22 Note that y is normalized to unit

length, i.e., ∥y∥2 = 1.

(∥x∥M)∗ ≥

∥∥∥M−1/2x
∥∥∥2

2∥∥M−1/2x
∥∥

2

=
∥∥∥M−1/2x

∥∥∥
2
= ∥x∥M−1 .

Hence, (∥x∥M)∗ = ∥x∥M−1 .

Corollary 19. In particular, the euclidean norm ∥·∥2 is self-dual.

Proof. (∥·∥2)∗ = (∥·∥I)∗ = ∥·∥I = ∥·∥2.

Proof of (2). We have,

(∥·∥∞)∗ = sup
∥z∥∞=1

z⊤x

= sup
maxi |z(i)|=1

z⊤x.

Clearly,

z(i) .
=

1 x(i) ≥ 0

−1 x(i) < 0

is a least upper bound for z⊤x. To see this, suppose for a contradic-
tion that there exists a y ∈ Rn such that y⊤x > z⊤x. But then, we
must have for at least one coordinate i that |y(i)| > 1, contradicting
∥y∥∞ = 1. We obtain,

(∥·∥∞)∗ = z⊤x = ∑
i
|x(i)| = ∥x∥1 .
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2.3 Part C

Definition 20. Given a norm ∥·∥ : Rn → R, the dual vector map is a
function (·)# : Rn → Rn such that x⊤ (x)# = ∥x∥ and

∥∥∥(x)#
∥∥∥
∗
= 1.

We will often work with the dual vector map with respect to the
dual norm of a given norm ∥·∥. We denote this dual vector map by
(·)#

∗. Using the aforementioned properties, we have,
(1) x⊤ (x)#

∗ = ∥x∥∗ and

(2)
(∥∥∥(x)#

∗

∥∥∥
∗

)
∗
=
∥∥∥(x)#

∗

∥∥∥ = 1. using that (∥·∥∗)∗ = ∥·∥

Lemma 21.
(1) The dual vector map for ∥·∥M is (x)# .

= Mx/
√

x⊤Mx and unique.
(2) A (non-unique) dual vector map for ∥·∥1 is given by,

(x)# (i) .
=

1 x(i) ≥ 0

−1 x(i) < 0.
(13)

(3) A (non-unique) dual vector map for ∥·∥∞ is given by,

(x)# (i) .
=


1 i = j and x(i) ≥ 0

−1 i = j and x(i) < 0

0 otherwise,

(14)

where j ∈ arg maxj |x(j)| is arbitrary but fixed.

Note that in our analysis of the dual vector map, we exclude the case
x = 0, as any unit vector can be chosen as the dual vector to 0.23 23 This would immediately imply that

there are infinitely many dual vector
maps.Proof of (1). We have,

x⊤ (x)# =
x⊤Mx√
x⊤Mx

=
√

x⊤Mx = ∥x∥M and

∥∥∥(x)#
∥∥∥

M−1
=

∥Mx∥M−1√
x⊤Mx

=

√
(Mx)⊤M−1Mx√

x⊤Mx
=

√
x⊤Mx√
x⊤Mx

= 1. as M is positive definite, it is also
symmetric

It remains to show that this choice of (x)# is unique. Consider the
special case where M .

= I.24 As ∥·∥2 is self-dual, we need that 24 As we have seen, ∥·∥I = ∥·∥2.∥∥∥(x)#
∥∥∥

2
= (x)#⊤ (x)# !

= 1,

implying that (x)# must have unit length. Then, to satisfy x⊤ (x)# !
=

∥x∥2, we must have (x)# = x/∥x∥2, which corresponds uniquely to our
choice of the dual vector map for ∥·∥I .

Proof of (2). We have,

x⊤ (x)# = ∑
i

x(i) · (x)# (i) = ∑
i
|x(i)| = ∥x∥1 and
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∥∥∥(x)#
∥∥∥

∞
= max

i

∣∣∣(x)# (i)
∣∣∣ = 1.

Clearly, our choice of (·)# is not unique, as if x contains zeros, the
coordinates of the dual vector map may be either positive or negative.

Proof of (3). Observe that, by definition, (x)# has only one non-zero
coordinate. This coordinate corresponds precisely to the coordinate
of x with the largest absolute value. We therefore have,

x⊤ (x)# = max
i

|x(i)| = ∥x∥∞ and∥∥∥(x)#
∥∥∥

1
= 1.

Again, our choice of (x)# is not unique, as when x has multiple coor-
dinates with maximal absolute value, any one of them can be selected
by the dual vector map.

2.4 Part D

Definition 22. A differentiable function f : Rn → R is β-smooth with
respect to a norm ∥·∥ if for all x, y ∈ Rn,

∥∇∇ f (x)−∇∇ f (y)∥∗ ≤ β ∥x − y∥ . (15)

Lemma 23. Let f : Rn → R be differentiable and β-smooth with respect to
the norm ∥·∥. Then,

f (y) ≤ f (x) +∇∇ f (x)⊤(y − x) +
β

2
∥y − x∥2 . (16)

Proof. We fix any x, y ∈ Rn. We define g(θ) .
= f (xθ) where we let

xθ
.
= x + θ(y − x). Note that g(1)− g(0) = f (y)− f (x). We have,

f (y) = f (x) + g(1)− g(0)

= f (x) +
∫ 1

0

dg(θ)
dθ

dθ by the fundamental theorem of calculus

= f (x) +
∫ 1

0
∇∇ f (xθ)

⊤(y − x) dθ by the chain rule

= f (x) +
∫ 1

0
∇∇ f (x)⊤(y − x) dθ

+
∫ 1

0
(∇∇ f (xθ)−∇∇ f (x))⊤(y − x) dθ

= f (x) +∇∇ f (x)⊤(y − x) +
∫ 1

0
(∇∇ f (xθ)−∇∇ f (x))⊤(y − x) dθ

For the integrand, we obtain,

(∇∇ f (xθ)−∇∇ f (x))⊤(y − x) ≤ ∥∇∇ f (xθ)−∇∇ f (x)∥∗ ∥y − x∥ using x⊤y ≤ ∥x∥ ∥y∥∗
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≤ β ∥xθ − x∥ ∥y − x∥ using that f is β-smooth, eq. (15)

= θβ ∥y − x∥2 .

We get,

f (y) ≤ f (x) +∇∇ f (x)⊤(y − x) +
∫ 1

0
θβ ∥y − x∥2 dθ

= f (x) +∇∇ f (x)⊤(y − x) +
β

2
∥y − x∥2 .

2.5 Part E

Theorem 24. Let f : Rn → R be continuously differentiable, convex, and
β-smooth with respect to the norm ∥·∥. Then, gradient descent with

xi+1
.
= xi −

1
β
∥∇∇ f (xi)∥∗ (∇∇ f (xi))

#
∗ (17)

yields an approximate solution xk such that for any ϵ > 0,

f (xk)− f (x∗) ≤ ϵ

where x∗ ∈ arg minx∈Rn f (x), ∇∇ f and (·)#
∗ are evaluated at most

O
(

βR2/ϵ
)

times and at most O
(
nβR2/ϵ

)
additional arithmetic operations

are used. Here,

R .
= max

x∈Rn

f (x)≤ f (x0)

∥x − x∗∥ . (18)

Proof. We will show that k = O
(

βR2/ϵ
)

is sufficient. Clearly, by the
choice of the update rule, each iteration computes the gradient and
dual vector only once. As we work with vectors in n dimensions, the
addition and scalar multiplications take O(n) time per iteration.

By β-smoothness of f , we have,

f (xi+1) ≤ f (xi) +∇∇ f (xi)
⊤(xi+1 − x) +

β

2
∥xi+1 − x∥

= f (xi)−
1
β
∥∇∇ f (xi)∥∗ ∇∇ f (xi)

⊤ (∇∇ f (xi))
#
∗︸ ︷︷ ︸

=∥∇∇ f (xi)∥∗

+
1

2β
∥∇∇ f (xi)∥2

∗

∥∥∥(∇∇ f (xi))
#
∗

∥∥∥2

︸ ︷︷ ︸
=1

= f (xi)−
1

2β
∥∇∇ f (xi)∥2

∗ . (19)

The remainder of the proof is analogous to the proof of gradient
descent in ∥·∥2 we have seen in the lecture and the exercises. We
define gapi

.
= f (xi)− f (x∗). We have,

gapi = f (xi)− f (x∗) ≤ ∇∇ f (xi)
⊤(xi − x∗) using the first-order characterization of

convexity,
f (x∗) ≥ f (xi) +∇∇ f (xi)

⊤(x∗ − xi)
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≤ ∥∇∇ f (xi)∥∗ ∥xi − x∗∥
≤ R ∥∇∇ f (xi)∥∗ , (20)

where we note that for all i, f (xi) ≤ f (x0). We obtain,

gapi+1 − gapi = f (xi+1 − xi) ≤ − 1
2β

∥∇∇ f (xi)∥2
∗ ≤ − 1

2β

(gapi
R

)2
. using eq. (19) and then rearranging

eq. (20)
(21)

Claim 25. f (xk)− f (x∗) ≤ 2βR2

k+1 .

Using this claim, solving

f (xk)− f (x∗) ≤ 2βR2

k + 1

!
≤ ϵ

for k, yields k = Ω
(

βR2/ϵ
)
. Thus, choosing k = O

(
βR2/ϵ

)
is sufficient.

Proof of claim 25. We prove 1/gapi ≥ i+1/2βR2 analogously to the proof
of exercise 15 on the first problem set by an induction on 1/gapi.25 In 25 We assume that gapi > 0 for all i, as

otherwise our algorithm has already
converged to the optimal solution.

the base case,

gap0 = f (x0 − f (x∗) ≤ ∇∇ f (x∗)⊤(x0 − x∗) +
β

2
∥x0 − x∗∥2 using that f is β-smooth and

∇∇ f (x∗) = 0

=
β

2
∥x0 − x∗∥2 ≤ 2βR2,

from which we obtain 1/gap0 ≥ 1/2βR2. Let us now consider an ar-
bitrary but fixed i ∈ N0 and suppose the statement holds for i.
Dividing eq. (21) by gapi · gapi+1, yields,

1
gapi

− 1
gapi+1

≤ − 1
2βR2 ·

gapi
gapi+1

≤ − 1
2βR2 using gapi ≥ gapi+1

Rearranging and using the induction hypothesis, yields,

1
gapi+1

≥ 1
2βR2 +

1
gapi

≥ i + 2
2βR2 .

2.6 Part F

Lemma 26. Let f : Rn → R be differentiable and convex such that for all
x, y ∈ Rn,

f (y) ≤ f (x) +∇∇ f (x)⊤(y − x) +
β

2
∥y − x∥2 .

Then, f is β-smooth with respect to the norm ∥·∥, i.e.,

∥∇∇ f (x)−∇∇ f (y)∥∗ ≤ β ∥x − y∥ .
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Proof. We adopt a similar approach to our proof of lemma 2. Let
ϕx(z)

.
= f (z) −

(
f (x) +∇∇ f (x)(z − x)⊤

)
. Note that this yields,

∇∇ϕx(z) = ∇∇ f (z)−∇∇ f (x). We have that ϕx is convex,

ϕx(z1) +∇∇ϕx(z1)
⊤(z2 − z1)

= f (z1)− f (x)−∇∇ f (x)⊤(z1 − x)

+∇∇ f (z1)
⊤(z2 − z1)−∇∇ f (x)⊤(z2 − z1)

≤ f (z2)− f (x)−∇∇ f (x)⊤(z2 − x) using the first-order characterization of
convexity for f

= ϕx(z).

Using the β-smoothness of f , we have for any y ∈ Rn,

ϕx(z) = f (x)−
(

f (x) +∇∇ f (x)(z − x)⊤
)

≤ f (y) +∇∇ f (y)⊤(z − y) +
β

2
∥z − y∥2

−
(

f (x) +∇∇ f (x)(z − x)⊤
)

.

Rearranging to group terms that depend on z, we obtain,

= f (y)−
(

f (x) +∇∇ f (x)⊤(y − x)
)

+ (∇∇ f (y)−∇∇ f (x))⊤(z − y) +
β

2
∥z − y∥2 .

As ∇∇ϕx(x) = 0 and ϕx is convex, minz∈Rn ϕx(z) = ϕx(x) = 0. Taking
the minimum of both sides of the previous inequality, we get,

0 = min
z∈Rn

ϕx(z)

≤ f (y)−
(

f (x) +∇∇ f (x)⊤(y − x)
)

+ min
z∈Rn

(∇∇ f (y)−∇∇ f (x))⊤(z − y) +
β

2
∥z − y∥2

= f (y)−
(

f (x) +∇∇ f (x)⊤(y − x)
)

+ min
δ∈Rn

(∇∇ f (y)−∇∇ f (x))⊤δ +
β

2
∥δ∥2 .

Claim 27. For any z ∈ Rn, we have minδ∈Rn z⊤δ + β
2 ∥δ∥2 = − 1

2β ∥z∥2
∗.

Using this claim, rearranging the terms of the previous inequality
gives,

f (y) ≥ f (x) +∇∇ f (x)⊤(y − x) +
1

2β
∥∇∇ f (x)−∇∇ f (y)∥2

∗ . (22)

Now, recall from section 1.1 that

(∇∇ f (x)−∇∇ f (y))⊤(x − y) = −∇∇ f (x)⊤(y − x)−∇∇ f (y)⊤(x − y).
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Using eq. (22), we obtain,

∥∇∇ f (x)−∇∇ f (y)∥∗ ∥x − y∥
≥ (∇∇ f (x)−∇∇ f (y))⊤(x − y) using x⊤y ≤ ∥x∥ ∥y∥∗

= −∇∇ f (x)⊤(y − x)−∇∇ f (y)⊤(x − y)

≥ f (x)− f (y) +
1

2β
∥∇∇ f (x)−∇∇ f (y)∥2

∗

+ f (y)− f (x) +
1

2β
∥∇∇ f (x)−∇∇ f (y)∥2

∗

=
1
β
∥∇∇ f (x)−∇∇ f (y)∥2

∗ .

Rearranging gives the desired inequality.

Proof of claim 27. We will prove both directions separately. To see that
minδ∈Rn z⊤δ + β

2 ∥δ∥2 ≤ − 1
2β ∥z∥2

∗, we choose δ
.
= − 1

β ∥z∥∗ (z)
#
∗, and

obtain,26 26 This is similar to our choice of the
update rule of gradient descent from
the previous section.z⊤δ +

β

2
∥δ∥2 = − 1

β
∥z∥∗ z⊤ (z)#

∗︸ ︷︷ ︸
=∥z∥∗

+
1

2β
∥z∥2

∗

∥∥∥(z)#
∗

∥∥∥2

︸ ︷︷ ︸
=1

= − 1
2β

∥z∥2
∗ .

To see that minδ∈Rn z⊤δ + β
2 ∥δ∥2 ≥ − 1

2β ∥z∥2
∗, we bound,

z⊤δ +
β

2
∥δ∥2 = −(−z)⊤δ +

β

2
∥δ∥2

≥ −∥z∥∗ ∥δ∥+ β

2
∥δ∥2 using x⊤y ≤ ∥x∥ ∥y∥∗

≥ min
∆∈R

−∥z∥∗ ∆ +
β

2
∆2︸ ︷︷ ︸

.
=Φz(∆)

. choosing ∆ .
= ∥δ∥ and minimizing

Clearly, Φz is a quadratic with positive curvature, and hence, convex.
We have that

dΦz(∆)
d∆

= −∥z∥∗ + β∆ !
= 0,

is solved for ∆ = 1/β ∥z∥∗, which therefore is a minimizer of Φz.
Substituting for this minimizer in our previous inequality, we obtain,

z⊤δ +
β

2
∥δ∥2 ≥ − 1

2β
∥z∥2

∗ .

2.7 Part G

Lemma 28. Let f : Rn → R be a twice continuously differentiable function
such that for all x, y ∈ Rn,

0 ≤ y⊤H f (x)y ≤ β ∥y∥2 . (23)

Then, f is convex and β-smooth with respect to the norm ∥·∥.
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Proof. To show that f is convex, it suffices that H f is positive semi-
definite.27 This corresponds precisely to the condition that for all 27 using theorem 3.2.9

x, y ∈ Rn, y⊤H f (x)y ≥ 0. Thus, it only remains to show that f is also
β-smooth.

Similarly to our proof of lemma 23, we employ the fundamental
theorem of calculus. We fix arbitrary x, y ∈ Rn and let g(θ) .

= f (xθ)

for xθ
.
= x + θ(y − x). Analogously to the mentioned proof, we have,

f (y) = f (x) + g(1)− g(0)

= f (x) +
∫ 1

0

dg(θ)
dθ

dθ by the fundamental theorem of calculus

= f (x) +
∫ 1

0
∇∇ f (xθ)

⊤(y − x) dθ by the chain rule

= f (x) +
∫ 1

0
∇∇ f (x)⊤(y − x) dθ

+
∫ 1

0
(∇∇ f (xθ)−∇∇ f (x))⊤(y − x) dθ

= f (x) +∇∇ f (x)⊤(y − x) +
∫ 1

0
(∇∇ f (xθ)−∇∇ f (x))⊤(y − x) dθ.

Now, let us shift our attention to bounding the integrand. We define
h(τ) .

= ∇∇ f (xτ)⊤(y − x) where we let xτ
.
= x + τ(xθ − x). Note that

(∇∇ f (xθ)−∇∇ f (x))⊤(y − x) = h(1)− h(0).

By the chain rule,

dh(τ)
dτ

= (xθ − x)⊤H f (xτ)(y − x)

= θ(y − x)⊤H f (xτ)(y − x).

We obtain the bound,

h(1)− h(0) =
∫ 1

0

dh(τ)
dτ

dτ by the fundamental theorem of calculus

=
∫ 1

0
θ (y − x)⊤H f (xτ)(y − x)︸ ︷︷ ︸

≤β∥y−x∥2

dτ using the assumption

≤
∫ 1

0
θβ ∥y − x∥2 dτ

= θβ ∥y − x∥2 .

Substituting this bound for the integrand, we obtain,

f (y) ≤ f (x) +∇∇ f (x)⊤(y − x) +
∫ 1

0
θβ ∥y − x∥2 dθ

= f (x) +∇∇ f (x)⊤(y − x) +
β

2
∥y − x∥2 .

Using lemma 26, we conclude that f is indeed β-smooth.
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2.8 Part H

We will consider the function,

m : Rn → R, x 7→ 1
λ

log

(
∑

i
exp(λx(i))

)
, (24)

for some λ > 0. We will see that m is a well-behaved approximation
to a slight variation of the uniform norm.

Lemma 29.
(1) maxi x(i) ≤ m(x) ≤ log n

λ + maxi x(i).
(2) m is convex and λ-smooth with respect to ∥·∥∞.

Proof of (1). Fix any x ∈ Rn. We have,

m(x) =
1
λ

log

(
∑

i
exp(λx(i))

)

≤ 1
λ

log
(

n exp(λ max
i

x(i))
)

=
1
λ

(
log n + λ max

i
x(i)

)
=

log n
λ

+ max
i

x(i).

For the other direction,

m(x) =
1
λ

log

(
∑

i
exp(λx(i))

)

≥ 1
λ

log
(

exp(λ max
i

x(i))
)

= max
i

x(i).

Proof of (2). First, we show that m is convex. To begin with, recall
Hölder’s inequality,

∑
i
|x(i)y(i)| ≤

(
∑

i
|x(i)|p

) 1
p
(

∑
i
|y(i)|q

) 1
q

, (25)

for any x, y ∈ Rn and 1
p + 1

q = 1. Fix any θ ∈ [0, 1]. Then,

m(θx + (1 − θ)y) =
1
λ

log

(
∑

i
eλ(θx+(1−θ)y)

)

=
1
λ

log

(
∑

i
eθλxe(1−θ)λy(i)

)

≤ 1
λ

log

(∑
i

eλx(i)

)θ(
∑

i
eλy(i)

)1−θ
 using Hölder’s inequality with 1/p

.
= θ

and 1/q = 1 − θ
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= θ
1
λ

log

(
∑

i
eλx(i)

)
+ (1 − θ)

1
λ

log

(
∑

i
eλy(i)

)
= θm(x) + (1 − θ)m(y).

To prove smoothness of m, we first compute its Hessian and then
apply lemma 28. For the Hessian of m, we have for any fixed x ∈ Rn,

Hm(x)(i, j) =
∂2

∂x(i) ∂x(j)
m(x)

=
∂

∂x(i)

(
1
λ

∂

∂x(j)
log

(
∑
k

eλx(k)

))
.

We compute,

∂

∂x(j)
log

(
∑
k

eλx(k)

)
=

∂
∂x(j) ∑k eλx(k)

∑k eλx(k)
=

λeλx(j)

∑k eλx(k)
. using the chain rule in each step

We write Φ .
= ∑k eλx(k) and Φ−i

.
= Φ − eλx(i). Then,

Hm(x)(i, j) =
∂

∂x(i)
eλx(j)

Φ

=

(
∂

∂x(i) eλx(j)
)
· Φ − eλx(j) · ∂

∂x(i)Φ

Φ2 using the quotient rule

=
1

Φ2

λeλx(i)Φ − λe2λx(i) i = j

−λeλ(x(i)+x(j)) i ̸= j

=
1

Φ2

λeλx(i)Φ−i i = j

−λeλ(x(i)+x(j)) i ̸= j.

Fixing any y ∈ Rn, we have,

y⊤Hm(x)y = ∑
i,j

Hm(x)(i, j) · y(i) · y(j)

≤ λ ∑
i

y(i)2eλx(i) · Φ−i
Φ2 using that the off-diagonal entries of the

Hessian are negative

≤ λ ∥y∥2
∞

1
Φ ∑

i
eλx(i)

︸ ︷︷ ︸
=Φ

using Φ−1
Φ < 1 and y(i) ≤ ∥y∥∞

= λ ∥y∥2
∞ .

2.9 Part I

We consider the flow problem on a weighted and undirected graph
G = (V, E, c) with incidence matrix B and U .

= diage∈Ec(e) for

capacities c ∈ R
|E|
≥0:

min
f∈R|E|

B⊤ f=b

∥∥∥U−1 f
∥∥∥

∞
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for demands b ∈ R|V|. The flow problem can be characterized equiv-
alently as,

min
d∈R|E|

B⊤d=0

∥∥∥U−1( f̃0 + d)
∥∥∥

∞

for any feasible flow f̃0, i.e., B⊤ f̃0 = b. We can also characterize the
problem as,

min
x∈R|E|

∥ f0 + Px∥∞

where P̂ ∈ R|E|×|E| is a projection matrix such that for all x ∈ R|E| we
have B⊤P̂x = 0 and for every circulation28 d there exists an x ∈ R|E| 28 A circulation is a vector d ∈ R|E| such

that B⊤d = 0.so that P̂x = d. We let P .
= U−1P̂U and f0

.
= (I − P)U−1 f̃0. We

write,

OPT .
= min

x∈R|E|
∥ f0 + Px∥∞ .

Because the uniform norm is not smooth, we will use a smooth
approximation similar to the function m we have seen in the previ-
ous section to approximately solve the optimization problem using
gradient descent. As a smooth approximation, we use,

s : Rn → R, x 7→ 1
λ

log
(

∑e∈E exp(λx(e)) + exp(−λx(e))
2|E|

)
,

for some λ > 0, which is convex, O(λ)-smooth with respect to ∥·∥∞,
and satisfies,

∥x∥∞ ≤ s(x) ≤ 2
log |E|

λ
+ ∥x∥∞ . (26)

We will therefore optimize the function g(x) .
= s( f0 + Px). Note that,

as g is the composition of two convex functions, it is also convex.

Lemma 30. g is O
(

λ ∥P∥2
∞→∞

)
-smooth with respect to ∥·∥∞.29

29 Here, ∥A∥α→β
.
= max∥x∥α=1 ∥Ax∥β

is the operator norm of A induced by
norms ∥·∥α on the input space and ∥·∥β
on the output space. We have,

∥Ax∥β ≤ ∥A∥α→β ∥x∥α . (27)Proof. By O(λ)-smoothness of s, we have for any x, y ∈ Rn,

s(y) ≤ s(x) +∇∇s(x)⊤(y − x) +
O(λ)

2
∥y − x∥2

∞ .

Let us now fix any x′, y′ ∈ Rn. We substitute x .
= f0 + Px′ and y .

=

f0 + Py′. Note that by the chain rule, ∇∇g(x′) = P⊤∇∇s( f0 + Px′).30 30 The chain rule says that for a function
g(x) .

= s(h(x)),

Dg(x) = D f (h(x))Dh(x).

Moreover, ∇∇g(x) = (Dg(x))⊤. In this
case, h(x) = f0 + Px, so Dh(x) = P.

We obtain,

g(y′) = s( f0 + Py′)

≤ s( f0 + Px′) +∇∇s( f0 + Px′)⊤P(y′ − x′) +
O(λ)

2

∥∥P(y′ − x′)
∥∥2

∞
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= g(x′) + (P⊤∇∇s( f0 + Px′)︸ ︷︷ ︸
=∇∇g(x′)

)⊤(y′ − x′) +
O(λ)

2

∥∥P(y′ − x′)
∥∥2

∞

≤ g(x′) +∇∇g(x′)⊤(y′ − x′) +
O(λ)

2
∥P∥2

∞→∞
∥∥y′ − x′

∥∥2
∞ . using eq. (27)

Applying lemma 26, completes the proof.

We denote by X⋆ the set of vectors x⋆ that are minimizers of g, i.e.,
for which we have g(x⋆) = minx∈Rn g(x).

Lemma 31. For any ϵ > 0 and x̂ ∈ Rn such that g(x̂) ≤ g(x⋆) + ϵ
2OPT,

we have,

∥ f0 + Px̂∥∞ ≤ (1 + ϵ)OPT

for some λ = Θ(log |E|/ϵOPT).

Proof. We know,

∥ f0 + Px̂∥∞ ≤ s( f0 + Px̂) = g(x̂) ≤ g(x⋆) +
ϵ

2
OPT.

Thus, it suffices to show, g(x⋆) ≤ (1 + ϵ/2)OPT. We have,

g(x⋆) = min
x∈Rn

g(x)

= min
x∈Rn

s( f0 + Px)

≤ 2
log |E|

λ
+ min

x∈Rn
∥ f0 + Px∥∞

= 2
log |E|

λ
+ OPT

!
≤
(

1 +
ϵ

2

)
OPT.

Solving for λ, we obtain,

λ ≥ 4 log |E|
ϵOPT

.

Hence, choosing λ = Θ(log |E|/ϵOPT) is sufficient.

2.10 Part J

It can be shown that,

R .
= max

x∈Rn

g(x)≤g(x0)

∥x − x∗∥∞ = max
x∈Rn

g(x)≤g(x0)

min
x⋆∈X⋆

∥x − x⋆∥∞ . (28)

Lemma 32.
(1) ∥ f0∥∞ ≤ (1 + ∥P∥∞→∞)OPT.
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(2) For any y such that g(y) ≤ g(0), we have,

g(y) ≤ (1 + ∥P∥∞→∞)OPT + 2
log |E|

λ
.

(3) R = O((1 + ∥P∥∞→∞)OPT + log |E|/λ) when x0
.
= 0.

Proof of (1). Consider an optimal circulation d∗ ∈ R|E|. As the dis-
cussed optimization problems are all equivalent, we have,∥∥∥U−1( f0 + d∗)

∥∥∥
∞
= OPT.

We have,

∥ f0∥∞ =
∥∥∥(I − P)U−1 f̃0

∥∥∥
∞

=
∥∥∥U−1 f̃0 + U−1P̂d∗ − PU−1 f̃0 − U−1P̂d∗

∥∥∥
∞

≤
∥∥∥U−1 f̃0 + U−1P̂d∗

∥∥∥
∞
+
∥∥∥PU−1 f̃0 + U−1P̂d∗

∥∥∥
∞

using the triangle inequality

=
∥∥∥U−1( f̃0 + P̂d∗)

∥∥∥
∞
+
∥∥∥PU−1( f̃0 + d∗)

∥∥∥
∞

. using P̂ = UPU−1

Recall that d∗ was the result of the projection P̂x∗ for some x∗. There-
fore, due to the idempotency of projections, P̂d∗ = P̂2x∗ = P̂x∗ = d∗,
and we obtain,

=
∥∥∥U−1( f̃0 + d∗)

∥∥∥
∞
+
∥∥∥PU−1( f̃0 + d∗)

∥∥∥
∞

using P̂ = UPU−1

≤
∥∥∥U−1( f̃0 + d∗)

∥∥∥
∞
+ ∥P∥∞→∞

∥∥∥U−1( f̃0 + d∗)
∥∥∥

∞
using eq. (27)

= (1 + ∥P∥∞→∞)
∥∥∥U−1( f̃0 + d∗)

∥∥∥
∞

= (1 + ∥P∥∞→∞)OPT.

Proof of (2). We have,

g(y) ≤ g(0) = s( f0) ≤ 2
log |E|

λ
+ ∥ f0∥∞

≤ 2
log |E|

λ
+ (1 + ∥P∥∞→∞)OPT.

Proof of (3). We have,

R = max
x∈Rn

g(x)≤g(0)

min
x⋆∈X⋆

∥x − x⋆∥∞ .

Observe that given any x⋆ ∈ X⋆, we have for y .
= Px⋆ + x − Px that

Py = Px⋆ and therefore y ∈ X⋆. This gives a feasible solution for the
minimum,

≤ max
x∈Rn

g(x)≤g(0)

∥x − y∥∞
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= max
x∈Rn

g(x)≤g(0)

∥Px − Px⋆∥∞

= max
x∈Rn

g(x)≤g(0)

∥ f0 + Px − f0 − Px⋆∥∞

≤ max
x∈Rn

g(x)≤g(0)

∥ f0 + Px∥∞ + ∥ f0 + Px⋆∥∞ using the triangle inequality

≤ max
x∈Rn

g(x)≤g(0)

g(x) + g(x⋆)︸ ︷︷ ︸
≤g(x)

≤ 2 max
x∈Rn

g(x)≤g(0)

g(x)

≤ 2(1 + ∥P∥∞→∞)OPT + 4
log |E|

λ
.

2.11 Part K

We choose P̂ .
= I − UBL+B⊤ with the Laplacian L .

= B⊤UB.31 Then, 31 Note that the definition of the inci-
dence matrix used here is the transpose
of the incidence matrix as defined in the
lecture notes.

∥∥∥U−1P̂U
∥∥∥

∞→∞
= ∥P∥∞→∞ ≤ 1 + 8

log |E|
Φ2 ,

where Φ is the expansion of the graph.

Theorem 33. Gradient descent with respect to g and ∥·∥∞ yields a (1 + ϵ)

approximate solution to OPT in time Õ(|E|/ϵ2Φ8) under the assumption
that solving a Laplacian linear system exactly is as expensive as finding a
1/|V|100-approximate solution.

Proof. First, recall that g is continuously differentiable, convex, and
O
(

λ ∥P∥2
∞→∞

)
-smooth with respect to ∥·∥∞. Using our analysis

from theorem 24, gradient descent with respect to g and ∥·∥∞ will
evaluate ∇∇g and (·)#

∗ at most O
(

βR2/ϵOPT
)

times and use at most
O
(
|E|βR2/ϵOPT

)
additional arithmetic operations to find an x̂ such

that g(x̂)− g(x∗) ≤ ϵ
2OPT. By lemma 31, we know that this yields a

(1 + ϵ) approximation of OPT for some λ = Θ(log |E|/ϵOPT).
We have for β,

β = O
(

λ ∥P∥2
∞→∞

)
= O

(
log |E|
ϵOPT

(
1 + 8

log |E|
Φ2

)2
)

= O
(

log |E|
ϵOPT

· log2 |E|
Φ4

)

= O
(

log3 |E|
ϵOPTΦ4

)
and for R,

R = O
(
(1 + ∥P∥∞→∞)OPT +

log |E|
λ

)
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= O
((

2 + 8
log |E|

Φ2 + ϵ

)
OPT

)
= O

(
log |E|

Φ2 OPT
)

.

Combining these bounds, we get,

O
(

βR2

ϵOPT

)
= O

(
log5 |E|

ϵ2Φ8

)
= Õ

(
1

ϵ2Φ8

)
.

It therefore remains to show that each iteration of gradient descent
takes Õ(|E|) time.

For a matrix A, let T(A) be the maximum time to compute Ax and
A⊤x for any vector x. We use the following claim:

Claim 34. T(P) = Õ(|E|).

By the chain rule, we have ∇∇g(x) = P⊤∇∇s( f0 + Px). Thus, ∇∇g
can be computed in time T(P) plus the time to compute ∇∇s. It is not
hard to show that ∇∇s can be computed in time O(|E|).32 Finally, ob- 32 The argument is similar to our com-

putation of the first-order deriva-
tive of the function m in the proof of
lemma 29(2).

serve that (·)#
∗ corresponds to the dual vector map of the Manhattan

norm, which we stated in eq. (13). Clearly, this mapping can be com-
puted in O(|E|) time. Therefore, each iteration of gradient descent
can be computed in Õ(|E|) time.

Proof of claim 34. We have,

P = U−1P̂U = I − BL+B⊤U and

P⊤ = I − U⊤B⊤L+B. using (L+)⊤ = L+

Trivially, Ix, Ux, and U⊤x can be computed in O(|E|) time. As by
definition of the incidence matrix B, nnz(B) = O(|E|), Bx and B⊤x
can also be computed in O(|E|) time.

It follows from the definition of the incidence matrix that 1 ∈ ker B
and 1 ∈ ker B⊤. Therefore, we have for any y ∈ R|V| that By ⊥ 1 and
for any x ∈ R|E| that B⊤x ⊥ 1.33 Therefore, B⊤Ux ⊥ 1 and By ⊥ 1 33 (By)⊤1 = y⊤B⊤1 = y⊤0 = 0; the

other case is symmetricfor any x and y.34

34 B⊤Ux and By can be interpreted as
demand vectors.Using the result of Kyng and Sachdeva,35 we can find an
35 Corollary 10.2.5 in the lecture notesϵ-approximate solution z̃ to Lz = d in time O

(
|E| log3 |V| log(1/ϵ)

)
,

where d ⊥ 1. Using our assumption that finding z̃ for ϵ = 1/|V|100

is as expensive as finding z exactly, we conclude that L+B⊤Ux and
L+By can be computed in

O
(
|E| log3 |V| log |V|100

)
= O

(
|E| log4 |V|

)
= Õ(|E|)

time.
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