
Advanced Graph Algorithms and Optimization
Graded Homework 2
Jonas Hübotter

June 13th, 2022

1 Maintaining an Expander Decomposition

Setting In this section we consider (dynamic) graphs on the vertex
set V of size n.1 We are given an m-edge, unweighted, undirected 1 All considered graphs will be on this

vertex set, so we generally refer to the
edge set of a graph G simply by G and
vice versa.

graph G with maximum degree ∆max(G) = O(1). Let H be a 1/2-

expander2 on vertices V such that ∆max(H) = O
(

log2 n
)

with an
2 with respect to sparsityembedding ΠH 7→G with congestion at most 1/2ϕ. By lemma 14.2.1 of

the lecture notes, the existence of H implies that G is a ϕ-expander.
We define the graph,

Π−1
H 7→G(D)

.
= {e ∈ H | ΠH 7→G(e) ∩ D ̸= ∅}, (1)

of all edges in H whose embedding in G uses an edge of D.
Let D ⊆ G be any subset of edges of G. In the following, we de-

scribe and analyze the algorithm CertifyOrCut(G, ϕ, H , ΠH 7→G , D)
that in time Õ(|D|/ϕ2) either outputs

• (Certify): a graph H ′ being a Ω̃(1)-expander and an embedding
ΠH ′ 7→(G\D) with congestion at most 1/2ϕ (certifying that G \ D is
still a Ω̃(ϕ)-expander); or

• (Cut): a set S ⊆ V such that (S, S) is a ϕ-sparse cut.

W.l.o.g. we assume |D| < ϕn/8. The algorithm CertifyOrCut is
described in alg. 1.

Flow Problem I We let
−→
G be the directed graph obtained by re-

placing each edge e = {u, v} ∈ G \ D by two antiparallel edges
−→e = (u, v) and −→e = (v, u). To these edges we assign capaci-
ties c .

= C · 1 where C .
= 8∆max (H)/ϕ, a sink capacity ∇ .

= 1 (the
amount of flow that one can route to the vertices), and a supply

∇.
= 4 · degΠ−1

H 7→G(D). We want to either find a feasible flow f ∈ R|
−→
G |

routing all flow to sinks or certify that no such flow exists. Given
the incidence matrix B of J, the problem is characterized as finding
B f ≤ d .

= ∇−

∇

such that 0 ≤ f ≤ c. We denote by
−→
G f the residual

graph with respect to a flow f .

Notation
Given S, T ⊆ V, we denote by EG(S, T)
the set of edges in G with one endpoint
in S and one in T. Similarly, we denote
by
−→
E −→

G
(S, T) the set of edges with tail

in S and head in T.1.1 Part A: Implementing the Flow Algorithm

We implement line 2 as follows. Denote by
−→
G ′ the graph

−→
G with

two additional vertices s and t. We then add an edge (s, v) and (v, t)

graded homework 2 2

Algorithm 1: CertifyOrCut(G, ϕ, H , ΠH 7→G , D)

1 Compute a flow f by running Dinic’s Blocking Flow algorithm
for h .

= 16∆max (G) log(4m)/ϕ iterations on I
2 if B f ≤ d then

3 H ′ ← H \ Π−1
H 7→G (D)

4 Initialize ΠH ′ 7→(G\D) to ΠH 7→G restricted to the edges in H ′

5 Let P f be a flow path decomposition of f

6 foreach u-v path −→π ∈ P f in
−→
G do

7 Add edge e = {u, v} to H ′

8 Let π be the “undirected” version of −→π in G \ D
9 ΠH ′ 7→(G\D)(e) ← π

10 return (H ′ , ΠH ′ 7→(G\D))

11 else

12 S ← {v ∈ V | (B f − d)(v) > 0}
13 while |EG\D (S, S)| ≥ ϕ|S| do
14 S ← S ∪ {v ∈ V | (u, v) ∈ −→E −→

G f
(S, S)}

15 return S

for all v ∈ V with capacity

∇
(v) and ∇(v), respectively. We denote

the resulting edge capacities by c′. We then run Dinic’s algorithm for
h iterations to compute an s-t flow f ′. We let f be the flow obtained
by restricting f ′ to the edges of

−→
G .

Lemma 2. We have for the residual graph
−→
G f that there is no path from

any vertex x ∈ V where (B f − d)(x) > 0 to a vertex y ∈ V with
(B f − d)(y) < 0 consisting of less than h edges.

Proof. First, observe that by construction, we have for any v ∈ V,

(B f ′)(v) = (B f)(v) + f ′(s, v)− f ′(v, t). (2)

Also, observe that all blocking flows used by Dinic’s algorithm to
augment the initial flow 0, are s-t path flows, and hence, we maintain
for all v ∈ V that (B f ′)(v) = 0 (i.e., every internal vertex has as much
incoming flow as outgoing flow).

Take any vertex x ∈ V with (B f − d)(x) > 0, that is, (B f)(x) >

∇(x)−

∇

(x). We obtain,

0 = (B f ′)(x) = (B f)(x) + f ′(s, x)− f ′(x, t)

> ∇(x)−

∇

(x) + f ′(s, x)− f ′(x, t)

≥ −

∇

(x) + f ′(s, x), using f ′(x, t) ≤ ∇(x)

graded homework 2 3

and hence, f ′(s, x) <

∇

(x), implying that (s, x) ∈ −→E −→
G ′

f ′
.

Similarly, take any vertex y ∈ V with (B f − d)(y) < 0, that is,
(B f)(y) < ∇(y)−

∇

(y). We obtain,

0 = (B f ′)(y) = (B f)(y) + f ′(s, y)− f ′(y, t)

< ∇(y)−

∇

(y) + f ′(s, y)− f ′(y, t)

≤ ∇(y)− f ′(y, t), using f ′(s, y) ≤

∇

(y)

and hence, f ′(y, t) < ∇(y), implying that (y, t) ∈ −→E −→
G ′

f ′
. A schematic

illustration of the residual graph used for Dinic’s algorithm is shown
in fig. 1.

Figure 1: Schematic illustration of the
residual flow graph with vertex x ∈ V
such that (B f − d)(x) > 0 and vertex
y ∈ V such that (B f − d)(y) < 0.

Next, consider the levels of the sink t in
−→
G ′ during each of the

iterations 0 < i ≤ h. We write f ′i for the flow obtained in the i-th
iteration of Dinic’s algorithm. By construction of

−→
G ′, we have that

before any iteration of Dinic’s algorithm, the shortest s-t path has
length 2, so, ℓ−→

G ′
f ′0

(t) ≥ 2.

Using that the level of the sink vertex strictly increases during each
iteration of Dinic’s algorithm3 and a simple induction on the number

3 Lemma 12.3.1 of the lecture notes.of iterations i,

ℓ−→
G ′

f ′i

(t) ≥ ℓ−→
G ′

f ′i−1

(t) + 1 ≥ ℓ−→
G ′

f ′0

(t) + i ≥ i + 2.

Finally, consider the final flow f ′ = f ′h and suppose for a contra-

diction that there exists an x-y path P in
−→
G f consisting of fewer than

h edges. Then. by our previous argument, (s, x) + P + (y, t) is an s-t
path in

−→
G ′f ′ consisting of fewer than h + 2 edges. But this contradicts

ℓ−→
G ′

f ′
(t) ≥ h + 2.

Theorem 3. The expected running time of the flow procedure is at most
Õ(|D|/ϕ2).

Proof. We will prove the following two claims.

Claim 4. FindBlockingFlow (and therefore each iteration of Dinic’s
algorithm) takes expected time Õ(∥

∇

∥1).

Claim 5. ∥

∇

∥1 ≤
4|D|

ϕ .

Remark 6. It is important to note that at no point we fully construct
the flow instance I . That is, we do never construct the entire residual
graph nor its level graph. Instead, we construct the parts of these
graphs that are needed as we need them.

Using the two claims, running Dinic’s algorithm for h iterations
takes expected time,

Õ(h ∥

∇

∥1) = Õ
(

∆max(G)

ϕ
· |D|

ϕ

)
= Õ

(
|D|
ϕ2

)
. using ∆max(G) = O(1)

graded homework 2 4

Corollary 7. ∥

∇

∥1 < n
2 < ∥∇∥1 = n

Proof. Using the assumption |D| < ϕn/8, this is an immediate corol-
lary of claim 5.

Proof of claim 4. In the following, we denote the level graph with
respect to which we want to find a blocking flow by L. We implement
FindBlockingFlow using link-cut trees almost identically to the
lecture notes. The only small adjustment we make is that we do not
initialize the link-cut tree on all edges of the level graph, but add
edges only when they are “reached”.

Recall that we used the procedure Transform(L) to transform
the level graph into a graph where each edge e = (u, v) is replaced
by a vertex m incident to its two endpoints; the endpoints u and v
receive cost ∞, and the vertex m receives cost c ′(e). We write L ′ .

=

Transform(L). As mentioned in the previous remark, we do not
construct L ′ explicitly, but will refer to its parts (i.e., vertices and their
neighborhood) as we need them. Clearly, each particular vertex and
neighborhood can be constructed in time 1 + ∆max(G) = O(1).

We define the operation LC-Tree.AddEdge receiving an already
existing vertex u and a vertex v to be added with cost cost(v) as
follows.

Algorithm 8: LC-Tree.AddEdge(u, v)

1 LC-Tree.AddVertex(v)
2 LC-Tree.AddCost(v, cost(v))
3 LC-Tree.Link(u, v)

Note that as v is initially isolated, the cost-operation will not affect
any other vertices. FindBlockingFlow is described in alg. 9. There,
H tracks all parts of the level graph that have been explored,4 thus 4 In a way (though not quite), H cor-

responds to the complement of H as
used in the definition of FindBlock-
ingFlow in the lecture notes.

if the neighborhood of s in H is identical to the neighborhood of s in
L′ the algorithm terminates. If this is not true, then we find an edge
in the level graph that is not (and was not previously) in the link-cut
tree and add it.

Observe that FindBlockingFlow behaves analogously to the
procedure defined in the lecture notes, except that vertices and edges
are added lazily using the operation LC-Tree.AddEdge. It therefore
follows immediately that the algorithm is correct and f̂ ′ is indeed a
blocking flow of the level graph L.

It remains to show that the runtime of the procedure is at most
Õ(∥

∇

∥1). We distinguish two cases. First, consider the case where
the shortest s-t path in L has length two, that is, there exists some
vertex v ∈ V with edges (s, v) and (v, t) in L. Note that

∇

∈ Nn
0 ,

implying that there are at most ∥

∇

∥1 vertices v with edge (s, v) in

graded homework 2 5

Algorithm 9: FindBlockingFlow(s, t, L)

1 LC-Tree ← Initialize(∅)

2 LC-Tree.AddVertex(s)
3 Let H be an empty graph on vertices V ∪ {s, t}
4 while degH(s) < degL′(s) do
5 u← LC-Tree.FindRoot(s)
6 if u = t then
7 (w, c)← LC-Tree.FindMin(s)
8 LC-Tree.AddCost(s,−c)
9 Add to H and LC-Tree (via Cut(·)) all edges incident

to w
10 else if there is an edge (u, v) ∈ L′ such that (u, v) is

not in LC-Tree and (u, v) ̸∈ H then

11 LC-Tree.AddEdge(u, v)
12 else

13 Add to H and LC-Tree (via Cut(·)) all edges incident
to u

14 Construct the blocking flow f̂ ′ by setting for each edge (u, v) of
L, with mid-point m in L′, the flow to equal cost(m) minus the
cost on m just before it was added to H

graded homework 2 6

L. The only outgoing edge of such a vertex v in the level graph is the
edge (v, t). Therefore, we add O(∥

∇

∥1) many vertices to the link-cut
tree.

Now, consider the case where the shortest s-t path in L has a
length greater than two. We know that for any vertex v ∈ V that
does not have edge (v, t) in the level graph, it must send ∇(v) = 1
units of flow to t. As the flow is upper bounded by ∥

∇

∥1, there can
be at most ∥

∇

∥1 such “internal” vertices. Moreover, we know that
the out-degree in L of any vertex v ∈ V is at most ∆max(G) = O(1).
Therefore, we add O(∥

∇

∥1) many vertices to the link-cut tree.
Using that each operation on the link-cut tree takes amortized time

O
(

log2 n
)

, the statement follows.

Proof of claim 5. We have,

∥

∇

∥1 = 4
∥∥∥degΠ−1

H 7→G(D)

∥∥∥
1

= 8 · |Π−1
H 7→G(D)| using the handshaking lemma,

∥degE∥1 = 2|E|≤ 8 · cong(ΠH 7→G) · |D|,

as in the worst case, every edge in D has congestion cong(ΠH 7→G)

and each is contributing path ΠH 7→G(e) is the embedding of a differ-
ent edge e ∈ H. Using cong(ΠH 7→G) ≤ 1/2ϕ,

≤ 4|D|
ϕ

.

1.2 Part B: Implementing the Certify Outcome

We now consider the case where the flow f satisfies the if-condition,
B f ≤ d.

Theorem 10. H′ as returned by the algorithm is a 1/8-expander.

Proof. Consider any cut (S, S) with |S| ≤ |S̄|. As H is a 1/2-expander,
we have |EH(S, S)| ≥ |S|/2. We will consider two cases.

First, if |EH′(S, S)| ≥ |EH(S,S)|/4 (that is, “few edges are removed
from the cut”), we immediately obtain that H′ is a 1/8-expander, as
we have,

|EH′(S, S)| ≥ |EH(S, S)|
4

≥ |S|
8

,

using that H is a 1/2-expander.

Figure 2: Schematic illustration of the
two cases. If not too many edges were
removed, the graph is still an expander.
If many edges were removed, the path
decomposition leads to the addition of
sufficiently many new edges.

Now, suppose that |EH′(S, S)| < |EH(S,S)|/4, that is, “many edges
are removed from the cut”. We will show that this implies that a
sufficient amount of flow “escapes” the set S, yielding a sufficient
number of edges to be added to H′ based on the flow path decompo-
sition P f . First, observe that if F units of flow are transported from S

graded homework 2 7

to S̄ (“across the cut”), then |EP f (S, S)| ≥ F, as each vertex v ∈ V can
absorb at most ∇(v) = 1 units of flow. For the same reason, we know
that,

F ≥ 1⊤S

∇

−1⊤S ∇ = 1⊤S

∇

−|S|.

Hence, it suffices to show that 1⊤S

∇

≥ 9
8 |S|, as then at least 1⊤S

∇

−|S| ≥ |S|/8 edges across the cut are added to H′ due to the flow path
decomposition.

Because for every removed cut-edge {u, v} where u ∈ S, v ∈ S̄,
degΠ−1

H 7→G(D)(u) increases by one,

1⊤S

∇

= 4 · 1⊤S degΠ−1
H 7→G(D) ≥ 4

(
|EH(S, S)| − |EH\Π−1

H 7→G(D)(S, S)|
)

≥ 4
(
|EH(S, S)| − |EH′(S, S)|

)
using |EH\Π−1

H 7→G(D)
(S, S)| ≤ |EH′ (S, S)|

> 3|EH(S, S)| using |EH′ (S, S)| < |EH (S,S)|
4

≥ 3
2
|S| using |EH(S, S)| ≥ |S|

2

Theorem 11. G \ D is a Ω̃(ϕ)-expander.

Proof. We will prove the following claim.

Claim 12. ΠH′ 7→(G\D) has congestion at most Õ(1/ϕ).

Now, consider any cut (S, S) with |S| ≤ |S|. Since H′ is a Ω(1)-
expander, we have that |EH′(S, S)| = Ω(|S|). From ΠH′ 7→(G\D),
we know that for each {u, v} ∈ EH′(S, S), we can find a u-v path
in G \ D that has to cross the cut (S, S) at least once. By the given
claim, each edge in G \ D is on at most Õ(1/ϕ) such paths, so at least
Ω̃(ϕ)|EH′(S, S)| = Ω̃(ϕ|S|) edges in G \ D cross the cut (S, S).5 5 This proof is analogous to the proof of

lemma 14.2.1 of the lecture notes.
Proof of claim 12. We write H′1

.
= H \ Π−1

H 7→G(D) and H′2 for the
edges {u, v} in H′ resulting from a u-v path −→π from the flow path
decomposition P f . We write ΠH′1 7→(G\D) and ΠH′2 7→(G\D) for the
embedding ΠH′ 7→(G\D) restricted to H′1 and H′2, respectively. Note
that H′ = H′1 ∪ H′2 and ΠH′ 7→(G\D) = ΠH′1 7→(G\D) ∪ΠH′2 7→(G\D). Thus,
it is sufficient to show that both ΠH′1 7→(G\D) and ΠH′2 7→(G\D) have
congestion at most Õ(1/ϕ).

Recall that, by assumption, the congestion of ΠH 7→G (and therefore
also ΠH′1 7→(G\D)) is at most 1/2ϕ = O(1/ϕ).

Finally, due to our choice of the edge capacities of the flow prob-
lem I , each edge can be used by at most C many paths of P f , as
every u-v path transports at least,

min{

∇

(u), C,∇(v)} ≥ min{4, C, 1}, using that

∇

(u) > 0, as “some” flow is
transported away from u

units of flow.6 Hence, the congestion of ΠH′2 7→(G\D) is at most, 6 Since the edge capacity C is integral
(otherwise we cannot apply Dinic’s
algorithm); and any path flow must
saturate at least one of its constituting
edges.

graded homework 2 8

C =
8∆max(H)

ϕ
= O

(
log2 n

ϕ

)
= Õ

(
1
ϕ

)
,

and the statement follows.

1.3 Part C: Implementing the Cut Outcome

Finally, we consider the case where the flow f does not satisfy the
if-condition, i.e., B f ̸≤ d. We define the residual graph

−→
G f such that

an edge (u, v) is in the residual graph iff (u, v) is not saturated by f .
This ensures that the residual graph is simple.

Let S0
.
= {v ∈ V | (B f − d)(v) > 0} and for i > 0,7 7 Note that the graphs are unweighted,

so dist(u, v) corresponds to the length
of the shortest u-v path.Si

.
= {v ∈ V | ∃s ∈ S0 with dist−→

G f
(s, v) ≤ i}. (3)

Observe that because the if-condition is not satisfied, S0 ̸= ∅. Letting
k be the number of iteration of the while-loop, observe that for 0 <

i ≤ k, the sets Si coincide with the set S after the i-th iteration of the
while-loop. In particular, the set Sk is returned by the algorithm.

Lemma 13. For each 0 ≤ i < k,

vol−→
G f

(Si+1) ≥
(

1 +
ϕ

8∆max(G)

)
vol−→

G f
(Si). (4)

Proof. Due to the definition of the set Si+1, we have,

vol−→
G f

(Si+1) ≥ vol−→
G f

(Si) + |
−→
E −→

G f
(Si, Si)|. (5)

This is because in each iteration of the while-loop we add all vertices
to Si+1 that have distance one to the set Si, and each of these new
vertices will contribute at least one to the volume.

Recall that due to our definition of the residual graph, we have
that −→e ∈ −→E −→

G f
(Si, Si) iff f (−→e) < C. Thus,

|−→E −→
G f

(Si, Si)| = |{−→e ∈
−→
E −→

G
(Si, Si) | f (−→e) < C}|

= |E−→
G
(Si, Si)| − |{−→e ∈

−→
E −→

G
(Si, Si) | f (−→e) = C}|

≥ |E−→
G
(Si, Si)| −

1⊤Si

∇

C
using that the number of saturated

cut-edges is at most 1⊤Si

∇

/C and the
amount of flow leaving Si is at most its
supply, 1⊤Si

∇= |EG\D(Si, Si)| −
41⊤Si

degΠ−1
H 7→G(D)

C

≥ ϕ|Si| −
4|Si|∆max(H)

C
using the while-condition,

|EG\D(Si , Si)| ≥ ϕ|Si |, and
Π−1

H 7→G(D) ⊆ H= ϕ|Si| −
1
2

ϕ|Si|

=
1
2

ϕ|Si|. (6)

graded homework 2 9

Finally, observe that,

vol−→
G f

(Si) ≤ 2volG\D(Si) using that
−→
G f is simple but may

contain antiparallel edges
= 2 ∑

v∈Si

degG\D(v)

≤ 2|Si|∆max(G). (7)

Combining inequalities eq. (5), eq. (6), and eq. (7) yields the desired
bound.8 8 Even slightly better by a small con-

stant factor.
Lemma 14. k ≤ h.

Proof. We prove the statement by contradiction. Let h′ ≥ h. By the
previous lemma and a simple induction,

vol−→
G f

(Sh′) ≥
(

1 +
ϕ

8∆max(G)

)h′

vol−→
G f

(S0)

≥
(

1 +
ϕ

8∆max(G)

)h
using that S0 ̸= ∅, vol−→

G f
(S0) ≥ 1

≥
(

1 +
ϕ

16∆max(G)
+

(
ϕ

16∆max(G)

)2
)h

using ϕ ≤ ∆max(G) from the definition
of sparsity

> e
hϕ

16∆max(G) using ex < 1 + x + x2 for 0 < x ≤ 1

= elog(4m) = 4m,

contradicting,

vol−→
G f

(Sh′) ≤ 2volG(Sh′) = 2 ∑
v∈Sh′

degG(v) ≤ 4m.

Theorem 15. |Sk| ≤ |Sk| and |EG\D(Sk, Sk)| < ϕ|Sk|.9 9 Hence, (Sk , Sk) is a ϕ-sparse cut.

Proof. Observe that |EG\D(Sk, Sk)| < ϕ|Sk| follows immediately
because the set Sk corresponds to the set after the final iteration of the
while-loop, implying that the wile-condition is dissatisfied for Sk.

Claim 16. |Sh| ≤ ∥

∇

∥1.

Using this claim, we obtain,

|Sk| ≤ |Sh| ≤ ∥

∇

∥1 ≤
n
2

. using Sk ⊆ Sh as k ≤ h and ∥

∇

∥1 ≤ n
2

by corollary 7

Proof of claim 16. By lemma 2, there is no vertex y with (B f − d)(y) <
0 in Sh. Therefore, |Sh| “consumes” at least 1⊤Sh

∇ = |Sh| units of flow.
However, note that there is at most ∥

∇

∥1 units of flow in total, and
hence, we must have that |Sh| = 1⊤Sh

∇ ≤ ∥

∇

∥1.

graded homework 2 10

2 An ℓ1-Interior Point Method for Maximum Flow

Setting We consider an undirected graph G = (V, E) with capacities
c ∈ N|E|. We write n .

= |V|, m .
= |E|, and assume m > 10 and

∥c∥1 ≤ m10. Let s, t ∈ V be some source and sink vertex. We assume
that we are given the maximum s-t flow value 0 < F ≤ m10, which we
assume to be integral.

In the following, we will consider the graph G̃ = (V, Ẽ) where
Ẽ .

= E ∪ {ẽ} and ẽ = {s, t} is an edge with unlimited capacity. We
assign an arbitrary orientation to edges E and orient the edge ẽ such
that its tail is s and its head is t. Let B be the incidence matrix of G̃.

We are interested in finding an s-t flow f ∈ R|E| with value F. We
will do so by considering s-t flows f ∈ R|Ẽ| that do not send any flow
from s to t on edge ẽ, i.e., f (ẽ) ≤ 0. We obtain the program,

min
f∈R|Ẽ|

B f=F(1t−1s)
∀e∈E : −c(e)≤ f (e)≤c(e)

f (ẽ). (8)

Barrier Program We now consider a variant of the above program
using barrier functions. Let,

I .
= { f ∈ R|Ẽ| | f (ẽ) > 0 and ∀e ∈ E : − c(e) < f (e) < c(e)},

be a capacity-constrained flow set. We define a barrier B : I → R by,

B(f) .
= ∑

e∈E
− log

(
1− f (e)

c(e)

)
− log

(
1 +

f (e)
c(e)

)
,

and a potential function Φ : I → R, Φ(f) .
= 10m log(f (ẽ)) + B(f).

The barrier program is described by,

min
f∈I

B f=F(1t−1s)

Φ(f). (9)

2.1 Part A: The Potential Function: Initialization and End-Goal

Lemma 17. Program (8) is convex.

Proof. This immediately follows because the objective is linear, the
equality constraint is linear, and the inequality constraints are linear
(hence, convex).

Lemma 18. The potential function Φ is non-convex.

Proof. Observe that Φ is twice continuously differentiable. We have
for its gradient,

∇∇Φ(f)(e) =

10m
f (ẽ) e = ẽ

1
c(e)− f (e) −

1
c(e)+ f (e) e ∈ E,

(10)

graded homework 2 11

and for its (diagonal!) Hessian,

HΦ(f)(e, e) =

−
10m
f (ẽ)2 e = ẽ

1
(c(e)− f (e))2 +

1
(c(e)+ f (e))2 e ∈ E.

(11)

Clearly, HΦ(f) is not positive semi-definite, and hence, by the second-
order characterization of convexity, Φ is non-convex.

Corollary 19. Program (9) is non-convex.

Lemma 20. Any optimal solution f ∗ for the program (8) routes F units of
flow from s to t on the edges of E and has f ∗(ẽ) = 0.

Proof. Due to the definition of F, there exists a flow f ∈ R|E| routing
F units of flow from s to t. By definition, f only uses the edges of E.
This implies that f ∗(ẽ) ≤ 0.

Now suppose that f ∗(ẽ) < 0. But then, the flow f defined by
f (e) .

= f ∗(e) for e ∈ E and f (ẽ) = 0 routes F − f ∗(ẽ) > F units of
flow from s to t, contradicting the definition of F.

Lemma 21 (Termination). If f ∈ I and Φ(f) ≤ −10m log m,10 then 10 The assumption B f = F(1t − 1s) is
not needed here.f (ẽ) ≤ 1/m.11

11 So f is an approximate solution to
program (8).Proof. As f ∈ I , we know that f (e)/c(e) ∈ (−1, 1). We write

∇

(e) .
=

| f (e)/c(e)| ∈ [0, 1). Because the logarithm is concave, we have that
| log(1 −

∇

(e))| > | log(1 +

∇

(e))|. We also have that log(1 −∇
(e)) < 0 and log(1 +

∇
(e)) > 0. This shows that B(f) ≥ 0.

As we assumed Φ(f) ≤ −10m log m, this implies,

10m log(f (ẽ)) ≤ −10m log m

=⇒ log(f (ẽ)) ≤ log
(

1
m

)
=⇒ f (ẽ) ≤ 1

m
.

Lemma 22 (Initialization). For f0
.
= F1ẽ, we have B f0 = F(1t − 1s),

f0 ∈ I , and Φ(f0) ≤ 100m log m.

Proof. (1) We have B f0 = FB1ẽ = F(1t − 1s) per the definition of the
orientation of ẽ.

(2) We have f0(ẽ) = F > 0 and we have that for any e ∈ E,

f0(e) = 0 ∈ (−c(e), c(e)),

so f0 ∈ I .
(3) Observe that B(f0) = ∑e∈E−2 log(1) = 0. We have,

Φ(f0) = 10m log(f0(ẽ)) + B(f0)

= 10m log(F)

≤ 10m log(m10) using that the sum of capacities is at

most m10
= 100m log m.

graded homework 2 12

2.2 Part B: IPM Progress using Updates

Given f ∈ I , we define l ∈ R|Ẽ| by l(ẽ) .
= 1/f (ẽ) and

l(e) .
=

1
min{c(e)− f (e), c(e) + f (e)}

for all e ∈ E. Observe that l f > 0 (in each coordinate) as f (ẽ) > 0 and
f (e) ∈ (−c(e), c(e)) for all e ∈ E. We define a corresponding diagonal
matrix L f

.
= diage∈Ẽ(l f (e)).

In the following we will consider “updates” (that is, circulations12) 12 A circulation is a flow δ satisfying
Bδ = 0.δ ∈ R|Ẽ|.

Lemma 23. If
∥∥L f δ

∥∥
∞ ≤ 1/2, then f + δ ∈ I .

Proof. (1) By assumption, |l f (ẽ) · δ(ẽ)| = l f (ẽ) · |δ(ẽ)| ≤ 1/2. This
implies |δ(ẽ)| ≤ 1/2l f (ẽ) = f (ẽ)/2. From this, we get,

f (ẽ) + δ(ẽ) ≥ f (ẽ)− f (ẽ)
2

=
f (ẽ)

2
> 0.

(2) Fix any e ∈ E. By assumption, |l f (e) · δ(e)| = l f (e) · |δ(e)| ≤ 1/2.
Consider two cases:
(i) If f (e) ≥ 0, then l f (e) = 1

c(e)− f (e) , implying, |δ(e)| ≤
c(e)− f (e)

2 . Thus,

f (e) + δ(e) ≤ f (e) +
c(e)− f (e)

2
=

f (e) + c(e)
2

< c(e) and using f (e) < c(e)

f (e) + δ(e) ≥ f (e)− c(e)− f (e)
2

=
3 f (e)− c(e)

2
≥ − c(e)

2
> −c(e). using f (e) ≥ 0

(ii) If f (e) < 0, then l f (e) = 1
c(e)+ f (e) , implying, |δ(e)| ≤

c(e)+ f (e)
2 . Thus,

f (e) + δ(e) ≥ f (e)− c(e) + f (e)
2

=
f (e)− c(e)

2
> −c(e) and using f (e) > −c(e)

f (e) + δ(e) ≤ f (e) +
c(e) + f (e)

2

=
3 f (e) + c(e)

2
<

c(e)
2

< c(e). using f (e) < 0

Altogether, we have (f + δ)(ẽ) > 0 and (f + δ)(e) ∈ (−c(e), c(e)) for
all e ∈ E, so f + δ ∈ I .

Lemma 24. If
∥∥L f δ

∥∥
∞ ≤ 1/2, then

Φ(f + δ) ≤ Φ(f) +∇∇Φ(f)⊤δ + 4
∥∥L f δ

∥∥2
1 . (12)

graded homework 2 13

Proof. We have seen that f + δ ∈ I , so Φ(f + δ) is well-defined. By
Taylor’s theorem (second-order form),

Φ(f + δ) = Φ(f) +∇∇Φ(f)⊤δ +
1
2

δ⊤HΦ(f̃)δ, (13)

where f̃ .
= (1− θ) f + θ(f + δ) = f + θδ for some θ ∈ [0, 1]. We have,

δ⊤HΦ(f + θδ)δ

= − 10m
δ(ẽ)2

(f (ẽ) + θδ(ẽ))2

+ ∑
e∈E

(
1

(c(e)− f (e)− θδ(e))2 +
1

(c(e) + f (e) + θδ(e))2

)
δ(e)2

using our characterization of HΦ from
eq. (11)

≤ ∑
e∈E

(
1

(c(e)− f (e) + θ|δ(e)|)2 +
1

(c(e) + f (e)− θ|δ(e)|)2

)
δ(e)2.

From
∥∥L f δ

∥∥
∞ ≤ 1/2, we conclude that

|δ(e)| ≤ 1
2l f (e)

=
min{c(e)− f (e), c(e) + f (e)}

2

for all e ∈ E. This implies that 1
(c(e)− f (e)+θ|δ(e)|)2 ≤ 4

(c(e)− f (e))2 and

similarly in the other case, 1
(c(e)+ f (e)−θ|δ(e)|)2 ≤ 4

(c(e)+ f (e))2 , yielding,

≤ 4 ∑
e∈E

(
1

(c(e)− f (e))2 +
1

(c(e) + f (e))2

)
δ(e)2

≤ 8 ∑
e∈E

l f (e)2δ(e)2 using 1
(c(e)− f (e))2 + 1

(c(e)+ f (e))2 ≤ 2l f (e)2

≤ 8

(
∑
e∈E

l f (e)|δ(e)|
)2

using ∑n
i=1 a2

i ≤ (∑n
i=1 ai)

2 if ai ≥ 0

= 8
∥∥L f δ

∥∥2
1 .

Plugging this inequality into eq. (13), we obtain the desired bound.

Lemma 25 (Update). If for some κ > 1, we have
∥∥L f δ

∥∥
1 ≤ κ and

∇∇Φ(f)⊤δ = −1, then

Φ
(

f +
1

8κ2 δ

)
≤ Φ(f)− 1

16κ2 . (14)

Proof. Let δ′
.
= 1

8κ2 δ. We have,

∥∥L f δ′
∥∥

∞ =
1

8κ2

∥∥L f δ
∥∥

∞ ≤
1

8κ2

∥∥L f δ
∥∥

1 ≤
1

8κ
≤ 1

2
. using ∥·∥∞ ≤ ∥·∥1 and

∥∥L f δ
∥∥

1 ≤ κ

Therefore, by lemma 24,

Φ(f + δ′) ≤ Φ(f) +∇∇Φ(f)⊤δ′ + 4
∥∥L f δ′

∥∥2
1

graded homework 2 14

= Φ(f) +
1

8κ2 ∇∇Φ(f)⊤δ︸ ︷︷ ︸
=−1

+
1

16κ4

∥∥L f δ
∥∥2

1︸ ︷︷ ︸
≤κ2

≤ Φ(f)− 1
8κ2 +

1
16κ2

= Φ(f)− 1
16κ2 .

2.3 Part C: The Update

Let us consider the update program,

min
δ∈R|Ẽ|
Bδ=0

∇∇Φ(f)⊤δ=−1

∥∥L f δ
∥∥

1 , (15)

given the current flow f ∈ I .

Lemma 26. The update program (15) is convex.

Proof. Observe that the two equality constraints are linear in δ. It is
therefore sufficient to show that the objective is convex.

Fix any θ ∈ [0, 1] and x, y ∈ R|Ẽ|. We have,∥∥L f (θx + (1− θ)y)
∥∥

1 =
∥∥θL f x + (1− θ)L f y

∥∥
1

≤
∥∥θL f x

∥∥
1 +

∥∥(1− θ)L f y
∥∥

1 using the triangle inequality

= θ
∥∥L f x

∥∥
1 + (1− θ)

∥∥L f y
∥∥

1 .

Lemma 27. Let γ∗ be the value of the update program (15). We have,
γ∗ ≤ 1.13 13 This is a slightly better constant than

what we were asked for.
Proof. Let f ∗ be an optimal solution and f be a feasible solution (that
is not optimal) to program (8) and let δ̄

.
= α(f ∗ − f) where

α
.
= − 1
∇∇Φ(f)⊤(f ∗ − f)

and f is chosen such that ∇∇Φ(f)⊤(f ∗ − f) ̸= 0.14 We will first 14 Such an f clearly exists, take f0 for
example.show that δ̄ is a feasible solution for program (15) and then see that∥∥L f δ̄

∥∥
1 ≤ 1, implying γ∗ ≤ 1.

We have,

Bδ̄ = α(B f ∗ − B f) = α(F(1t − 1s)− F(1t − 1s)) = 0, using feasibility of f ∗ and f w.r.t.
program (8)

so δ̄ is indeed a cycle flow. Moreover,

∇∇Φ(f)⊤δ̄ = α∇∇Φ(f)⊤(f ∗ − f) = −∇∇Φ(f)⊤(f ∗ − f)
∇∇Φ(f)⊤(f ∗ − f)

= −1.

This shows that δ̄ is feasible.
It remains to show that

∥∥L f δ̄
∥∥

1 ≤ 1. We will use the following two
claims, which we will prove later.

graded homework 2 15

Claim 28. For all e ∈ E, f ∗(e)− f (e)
c(e)− f (e) ≤ 1− | f

∗(e)− f (e)|
c(e)− f (e) .

Claim 29. For all e ∈ E, − f ∗(e)− f (e)
c(e)+ f (e) ≤ 1− | f

∗(e)− f (e)|
c(e)+ f (e) .

Using our characterization of ∇∇Φ from eq. (10), we obtain,

∇∇Φ(f)⊤(f ∗ − f)

= 10m
f ∗(ẽ)− f (ẽ)

f (ẽ)
+ ∑

e∈E

(
1

c(e)− f (e)
− 1

c(e) + f (e)

)
(f ∗(e)− f (e))

= −10m + ∑
e∈E

(
1

c(e)− f (e)
− 1

c(e) + f (e)

)
(f ∗(e)− f (e)) using f ∗(ẽ) = 0

≤ −8m− ∑
e∈E

(
1

c(e)− f (e)
+

1
c(e) + f (e)

)
| f ∗(e)− f (e)|. using claim 28 and claim 29

Next, observe that,

∑
e∈E

(
1

c(e)− f (e)
+

1
c(e) + f (e)

)
| f ∗(e)− f (e)|

≥ ∑
e∈E

l f (e) · | f ∗(e)− f (e)|

=
∥∥L f (f ∗ − f)

∥∥
1 − l f (ẽ) · | f ∗(ẽ)− f (ẽ)|

=
∥∥L f (f ∗ − f)

∥∥
1 −
| f (ẽ)|
f (ẽ)

using f ∗(ẽ) = 0

≥
∥∥L f (f ∗ − f)

∥∥
1 − 1.

Combining the two inequalities, we obtain,

∇∇Φ(f)⊤(f ∗ − f) ≤ −8m−
∥∥L f (f ∗ − f)

∥∥
1 + 1 ≤ −

∥∥L f (f ∗ − f)
∥∥

1 .

In particular, ∇∇Φ(f)⊤(f ∗ − f) < 0, using that ∇∇Φ(f)⊤(f ∗ − f) ̸= 0.
Altogether, we have,∥∥L f δ̄

∥∥
1 = |α|

∥∥L f (f ∗ − f)
∥∥

1

=

∥∥L f (f ∗ − f)
∥∥

1
|∇∇Φ(f)⊤(f ∗ − f)|

= −
∥∥L f (f ∗ − f)

∥∥
1

∇∇Φ(f)⊤(f ∗ − f)
using ∇∇Φ(f)⊤(f ∗ − f) < 0

≤
∥∥L f (f ∗ − f)

∥∥
1∥∥L f (f ∗ − f)
∥∥

1

using

∇∇Φ(f)⊤(f ∗ − f) < −
∥∥L f (f ∗ − f)

∥∥
1

= 1.

Proof of claim 28. Fix any e ∈ E. We have,

f ∗(e)− f (e)
c(e)− f (e)

=
f ∗(e)− c(e) + c(e)− f (e)

c(e)− f (e)

= 1− | f
∗(e)− c(e)|

c(e)− f (e)
using f ∗(e)− c(e) ≤ 0

≤ 1− | f
∗(e)− f (e)|

c(e)− f (e)
. using | f (e)| ≤ c(e)

graded homework 2 16

Proof of claim 29. Fix any e ∈ E. We have,

− f ∗(e)− f (e)
c(e) + f (e)

= − f ∗(e) + c(e)− (c(e) + f (e))
c(e) + f (e)

= 1− | f
∗(e) + c(e)|

c(e) + f (e)
using f ∗(e) + c(e) ≥ 0

≤ 1− | f
∗(e)− f (e)|

c(e) + f (e)
. using | f (e)| ≤ c(e)

Lemma 30. There exists an optimal solution δ∗ for the update program
(15), which is supported on a single cycle.

Proof. Let δ be a feasible solution for the update program. We will
later prove the following claim.

Claim 31. Any circulation flow δ (i.e., Bδ = 0) can be decomposed into
k cycle flows δ1, . . . , δk (i.e., δ = ∑k

i=1 δi) such that the cycle flows15 send 15 A cycle flow is a circulation flow
that sends the same amount of flow
on every edge in its support, that is,
it is supported on a single cycle. In
particular, any cycle flow δ satisfies
Bδ = 0

flow into the same direction on every edge. More formally, for all e ∈ Ẽ and
i, j ∈ [k], we have that either δi(e), δj(e) ≤ 0 or δi(e), δj(e) ≥ 0.

Visually, this property corresponds to the fact that a drawing of
δ1, . . . , δk does not have antiparallel edges. In the following, we will
therefore call cycle decompositions obeying by this property paral-
lel and cycle flows mutually violating this property on some edge
antiparallel.

Let δ1, . . . , δk be an parallel cycle decomposition of δ. We know
that ∇∇Φ(f)⊤δ = −1. Because this is a linear function in δ, there
must exist some cycle flow δj such that ∇∇Φ(f)⊤δj ≤ −1. We define
the cycle flow,

δ̄
.
= αδj, where α = − 1

∇∇Φ(f)⊤δj
=

1
|∇∇Φ(f)⊤δj|

≤ 1.

In particular,
∥∥L f δ̄

∥∥
1 ≤

∥∥L f δj
∥∥

1. We will show that δ̄ is at least as
“good” as δ w.r.t. the update program.

First, observe that δ̄ is a feasible solution as Bδ̄ = αBδj = 0 and

∇∇Φ(f)⊤δ̄ = α∇∇Φ(f)⊤δj = −1.

We have, ∥∥L f δ
∥∥

1 = ∑
e∈Ẽ

l f (e) · |δ(e)|

= ∑
e∈Ẽ

l f (e) ·
∣∣∣∣∣ k

∑
i=1

δi(e)

∣∣∣∣∣
= ∑

e∈Ẽ

l f (e) ·
(

k

∑
i=1
|δi(e)|

)
using that the cycle decomposition is
parallel

graded homework 2 17

=
k

∑
i=1

∑
e∈Ẽ

l f (e) · |δi(e)|

=
k

∑
i=1

∥∥L f δi
∥∥

1

≥
∥∥L f δj

∥∥
1

≥
∥∥L f δ̄

∥∥
1 . using

∥∥L f δ̄
∥∥

1 ≤
∥∥L f δj

∥∥
1

In particular, given the optimal solution δ∗, δ̄∗ is also optimal.

Proof of claim 31. Let δ1, . . . , δk be any cycle decomposition of the
circulation δ with l > 0 antiparallel pairs of mutually antiparallel
cycle flows. We will give a procedure that yields a cycle decomposi-
tion δ′1, . . . , δ′k′ with at most l − 1 mutually antiparallel cycle flows.
Repeating this procedure at most l times yields the desired cycle
decomposition. We denote by,

Ci
.
= {e ∈ Ẽ | |δi(e)| > 0},

the support of the i-th cycle flow of the cycle decomposition.
The procedure works as follows. Let δi, δj be any pair of mutually

antiparallel cycle flows on edges Ē ⊆ Ẽ. W.l.o.g. we assume δi(ē) > 0,
δj(ē) < 0 for ē ∈ Ē and that δi and δj route α and β units of flow,
respectively. To simplify the presentation, we also assume α ≥ β, the
other case is symmetric.

Figure 3: Schematic illustration of the
cycle flow update. δi sends α units of
flow and δj sends β units of flow. The
net flow on the edge ē is α− β.

First, assume that δi and δj do not share any parallel edges. A
schematic illustration is given in fig. 3. We define the cycle flows,

δ′i (e)
.
=

β e ∈ Ci ∪ Cj \ Ē

0 otherwise,

δ′j(e)
.
=

α− β e ∈ Ci

0 otherwise.

Note that δ′j = 0 if α = β.
Clearly, δ′i + δ′j = δi + δj. Moreover, δ′i and δ′j are not mutually

antiparallel, as any edge ē ∈ Ē where flow was sent into opposite
directions is only in the support of δ′j and on all edges in the shared
support Ci \ Ē flow is sent into the same direction. Hence, the cycle
decomposition,

δ1, . . . , δi−1, δ′i , δi+1, . . . , δj−1, δ′j , δj+1, . . . , δk,

has the desired properties.

Figure 4: Schematic illustration of the
cycle flow update when parallel edges
are present. δi sends α units of flow and
δj sends β units of flow. The net flow
on the edge ē is α− β and the net flow
on the edge ê is α + β.

Finally, if δi and δj share some parallel edges Ê ⊆ Ẽ, then we
can find a new cycle decomposition consisting of more than two

graded homework 2 18

cycles. A schematic illustration is given in fig. 4. δ′i and δ′j are defined
similarly to the previous case but accordingly to the edges as shown
in the schematic illustration. We define the new cycle flow δ′k′+1
analogously routing β units of flow. By the same arguments as in the
previous case, δ′i + δ′j + δ′k′+1 = δi + δj and the new flows are not
mutually antiparallel.

It is easy to see that the schematic illustration also covers the case
where |Ê| > 1 and |Ē| > 1, though we might need to add more
cycles.

We now describe an algorithm solving the undirected maximum
flow problem. Suppose we are given the following subroutines:
(1) ComputeStep(G̃, f , τ) that given the graph, f ∈ I , and a pa-

rameter τ > 1 returns δ that is feasible for the update pro-
gram (15) and has

∥∥L f δ
∥∥

1 ≤ 10 · 2τ . This algorithm takes time
TComputeStep

.
= 2log n/τm.

(2) RoundFlow(f) that given f ∈ I with B f = F(1t − 1s) returns
an integral flow f̂ with f̂ (ẽ) = 0, −c(e) ≤ f̂ (e) ≤ c(e) for all
e ∈ E, and B f̂ = F̂(1t − 1s) where F̂ ≥ F − f (ẽ) − 10. This
algorithm takes time TRoundFlow

.
= Õ(m).

Algorithm 32: ComputeMaxFlow(G, s, t)

1 f ← 0
2 f (ẽ) ← F
3 while Φ(f) > −10m log m do

4 δ ← ComputeStep(G̃, f , τ)

5 f ← f + 1
8κ2 δ

6 f̂ ← RoundFlow(f)
7 while val(f̂) < F do

8 f̃ ← FindAugmentingPath(G f̂ , s, t)

9 f̂ ← f̂ + f̃

10 return f̂

Theorem 33. Algorithm 32 returns the maximum s-t flow in the undi-
rected graph G in time m2+o(1) .

Proof. We denote by k the number of iterations of the first while-loop
and by f i and δi the flow and update after/during the i-th iteration
of said while-loop, respectively. We fix τ

.
= log log m.16 We have, 16 Throughout our analysis, we assume

that the logarithm is with respect to
base 2.

log log m > log log 8 = log 3 > 1, where we used our assumption
m > 10.

graded homework 2 19

Observe that f0 (the flow before the first iteration of the while-
loop) coincides with our characterization of f0 in lemma 22, and
hence, B f0 = F(1t − 1s), f0 ∈ I , and Φ(f0) ≤ 100m log m.

Let us assume fi ∈ I . Per the definition of ComputeStep,
Bδi+1 = 0, ∇∇Φ⊤fi

δi+1 = −1, and
∥∥L fi δi+1

∥∥
1 ≤ 10 · 2τ .

= κ.17 By 17 Note that κ > 1.

lemma 25, it follows that B fi+1 = F(1t − 1s), fi+1 ∈ I , and

Φ(fi+1) = Φ
(

fi +
1

8κ2 δi+1

)
≤ Φ(fi)−

1
16κ2 .

We have,

Φ(fi) = Φ(f0) +
i

∑
j=1

Φ(f j)−Φ(f j−1)

≤ 100m log m− i
16κ2 using Φ(f j)−Φ(f j−1) ≤ −1/16κ2

For any 0 ≤ i < k, the while-condition is satisfied, implying,

−10m log m < Φ(fi) ≤ 100m log m− i
16κ2

=⇒ i
16κ2 < 110m log m

=⇒ i = O
(

κ2m log m
)

.

In particular,

k = O
(

κ2m log m
)
= O

(
22τm log m

)
= O

(
m log3 m

)
= m1+o(1).

Evaluating RoundFlow(fk) yields a feasible integral flow f̂ sup-
ported on E routing F̂ units of flow from s to t, where

F̂ ≥ F− fk(ẽ)− 10

≥ F− 1
m
− 10 using lemma 21

≥ F− 11.

Finally, we find an augmenting path for f̂ in the residual graph G f̂

until the flow is optimal (and no such augmenting path exists). As f̂
and c are integral, each augmenting path increases the value of the
flow by at least one. As the initial f̂ is almost optimal, we only have
to find a constant number of augmenting paths. Each augmenting
path can be found in O(m) time using breadth-first search.

The total runtime of ComputeMaxFlow is,

k · TComputeStep
+ TRoundFlow +O(m)

= m2+o(1) · 2
log n

τ + Õ(m) +O(m)

= m2+o(1) · 2
log m

log log m using n = O(m)

= m2+o(1)+ 1
log log m

= m2+o(1).

graded homework 2 20

2.4 Part D: Stability

Finally, we will see that an update δ with small norm
∥∥L f δ

∥∥
1 can

only cause l f+δ to change significantly in very few entries. This can
be used to compute each individual update in time mo(1).

We define s .
= L−1

f l f+δ and U .
= {e ∈ Ẽ | |s(e)− 1| > 1/2}.

Lemma 34. If
∥∥L f δ

∥∥
1 ≤ 1/2, then |U | = O(1).

Proof. In the following, we will disregard whether ẽ ∈ U , as this only
changes the size of U by a constant. By assumption,

∑
e∈E

l f (e) · |δ(e)| ≤
∥∥L f δ

∥∥
1 ≤

1
2

.

We have for all e ∈ E,

s(e) =
l f+δ(e)

l f (e)
.

We will prove the following two claims.

Claim 35. For any e ∈ E, if f (e) ≥ 0 and |s(e) − 1| > 1/2, then
|δ(e)| > c(e)− f (e)

3 .

Claim 36. For any e ∈ E, if f (e) < 0 and |s(e) − 1| > 1/2, then
|δ(e)| > c(e)+ f (e)

3 .

Using the two claims, we obtain,

∑
e∈E

l f (e) · |δ(e)| = ∑
e∈E

f (e)≥0

|δ(e)|
c(e)− f (e)

+ ∑
e∈E

f (e)<0

|δ(e)|
c(e) + f (e)

>
|U |
3

,

leading to a contradiction if |U | = ω(1).

First, observe that |s(e)− 1| > 1/2 iff either s(e) < 1/2 or s(e) > 3/2.

Proof of claim 35. Fix any e ∈ E with f (e) ≥ 0. We have, l f (e) =

c(e)− f (e). We consider two cases:
(1) If s(e) > 3

2 ,

3
2
< s(e) =

c(e)− f (e)
min{c(e)− f (e)− δ(e), c(e) + f (e) + δ(e)}

≤ c(e)− f (e)
c(e)− f (e)− |δ(e)|

So, |δ(e)| > c(e)− f (e)
3 .

graded homework 2 21

(2) If s(e) < 1
2 ,

1
2
> s(e) =

c(e)− f (e)
min{c(e)− f (e)− δ(e), c(e) + f (e) + δ(e)}

≥ c(e)− f (e)
c(e)− f (e)− δ(e)

So, δ(e) < −c(e) + f (e) < 0, and hence, |δ(e)| > c(e)− f (e).

Proof of claim 36. Fix any e ∈ E with f (e) < 0. We have, l f (e) =

c(e) + f (e). We consider two cases:
(1) If s(e) > 3

2 ,

3
2
< s(e) =

c(e) + f (e)
min{c(e)− f (e)− δ(e), c(e) + f (e) + δ(e)}

≤ c(e) + f (e)
c(e) + f (e)− |δ(e)|

So, |δ(e)| > c(e)+ f (e)
3 .

(2) If s(e) < 1
2 ,

1
2
> s(e) =

c(e) + f (e)
min{c(e)− f (e)− δ(e), c(e) + f (e) + δ(e)}

≥ c(e) + f (e)
c(e) + f (e) + δ(e)

So, δ(e) > c(e) + f (e), and hence, |δ(e)| > c(e) + f (e).

	Maintaining an Expander Decomposition
	An 1-Interior Point Method for Maximum Flow

