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part I

Preliminaries





1

Electrical Flows

A classical graph problem is the flow of electrical currents through
a network of resistors. Such a network G = (V, E, r) can be de-
scribed by a set of vertices V, set of wires (or edges) E, and resis-
tances r ∈ R

|E|
>0 of wires. We are interested in finding the electrical

flow f̃ ∈ R|E| through the network, assigning to each wire the cur-
rent that is transported per unit time. Alternatively, we can think of
electrical voltages x̃ ∈ R|V| at the vertices, which Ohm’s law relates to
the electrical flow.

By Ohm’s law, we have that for any wire e ∈ E,

f̃ (e) =
x̃(e)
r(e)

, x̃(e) = f̃ (e) · r(e), (1.1)

where x̃({u, v}) .
= x̃(u)− x̃(v) is the voltage difference of vertices u

and v. For any flow f ∈ R|E|, the net flow of current at a vertex u ∈ V
is given as,

∑
v∼u

f (v, u). We use v ∼ u to denote all v that are
adjacent to u.

(1.2)

We say that a flow routes demand d ∈ R|V| if the net flow at every
vertex is d(v). The fact that at vertices with zero demand, the flow is
conserved1 is also known as Kirchhoff’s current law. 1 As much current is flowing into the

vertex as is flowing out of it.

Figure 1.1: Example of an electrical flow
(shown in blue) with voltages

x(s) = 0, x(u) = 1, x(t) = 2

and unit resistances, routing demands

d(s) = −1, d(u) = 0, d(t) = 1.

To keep track of the direction of flow on each edge, we assign an
arbitrary direction to each edge (we “orient” G) and only consider
non-negative flows, f ∈ R

|E|
≥0. Clearly, for any previously feasible

flow, we can assign directions in such a way that the flow remains
feasible.

1.1 The Laplacian Matrix

Definition 1.1 (Adjacency matrix). The adjacency matrix of a graph G,
Ã ∈ R|V|×|V|, is defined as,2

2 By A we will later denote the
weighted adjacency matrix.
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Ã(u, v) .
=

1 if u ∼ v

0 otherwise.
(1.3)

Definition 1.2 (Incidence matrix). The incidence matrix of an oriented
graph G, B ∈ R|V|×|E|, is defined as,

B(v, e) .
=


1 if e = (u, v) for some u ∈ V

−1 if e = (v, u) for some u ∈ V

0 otherwise.

(1.4)

Each column of B only has two non-zero entries and sums to one.

Figure 1.2: Illustration of the matrix
product BB⊤.

Lemma 1.3. BB⊤ = diag{deg(v)}v∈V − Ã.

Proof. The dot product of the rows, corresponding to the same vertex
v, produces exactly deg(v). All other dot products between rows
corresponding to vertices u and v are −1 iff u ∼ v and 0 otherwise.

We can now also write the net flow constraint,

B f = d. (1.5)

We define R .
= diag{r(e)}e∈E and then have that Ohm’s law can be

expressed as,

B⊤ x̃ = R f̃ , or equivalently, R−1B⊤ x̃ = f̃ . (1.6)

If the net flow constraint is satisfied, this yields,

BR−1B⊤︸ ︷︷ ︸
Laplacian

x̃ = B f̃ = d. (1.7)

Definition 1.4 (Laplacian matrix). The Laplacian matrix of an oriented
graph G is defined as,

L .
= BR−1B⊤ = BW B⊤ ∈ R|V|×|V|, (1.8)

where W .
= R−1 is a diagonal matrix of weights w(e) .

= 1
r(e) .

Intuitively, the weight of an edge can be understood as how “con-
nected” the two vertices at its endpoints are. In contrast, the resis-
tance of an edge is smaller when endpoints are well-connected.

We will now learn a little more about Laplacian matrices.
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Definition 1.5 (Weighted adjacency matrix). The weighted adjacency
matrix of a graph G, A ∈ R|V|×|V|, is defined as,

A(u, v) .
=

w({u, v}) if u ∼ v

0 otherwise.
(1.9)

Lemma 1.6. A is symmetric, that is, A = A⊤.

Proof. This follows immediately from the fact that G is undirected.

Definition 1.7 (Weighted degree). The weighted degree of a vertex
v ∈ V is given as,

d(v) .
= ∑
{u,v}∈E

w({u, v}). (1.10)

We write D .
= diag{d(v)}v∈V .

Lemma 1.8. L = D− A.

Proof. The proof is identical to the proof of lemma 1.3, only that
every entry is now weighted, due to the additional factor W .

Corollary 1.9. L is symmetric.

Proof. This directly follows from the fact that D and A are symmet-
ric.3 3 Diagonal matrices like D are trivially

symmetric.

Lemma 1.10. For any x ∈ R|V|, we have,

x⊤Lx = ∑
{u,v}∈E

w({u, v})[x(u)− x(v)]2 ≥ 0. (1.11)

Proof. We have,

x⊤Lx = x⊤Dx− x⊤Ax.

x⊤Dx = ∑
v∈V

d(v)x(v)2 = ∑
{u,v}∈E

w({u, v})[x(u)2 + x(v)2].

x⊤Ax = ∑
v∈V

x(v)(Ax)(v)

= ∑
v∈V

x(v) ∑
u∈V

A(v, u)x(u)

= ∑
v,u∈V

w({u, v})x(u)x(v)

= 2 ∑
{u,v}∈E

w({u, v})x(u)x(v).
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Combining the above equalities, we obtain,

x⊤Lx = ∑
{u,v}∈E

w({u, v})[x(u)2 + x(v)2]− 2 ∑
{u,v}∈E

w({u, v})x(u)x(v)

= ∑
{u,v}∈E

w({u, v})[x(u)− x(v)]2.

Corollary 1.11. L is positive semi-definite.4 4 By the previous lemma, L satisfies the
definition of positive semi-definiteness,
which we will introduce in the follow-
ing section.

Exercise 1.12. A matrix M is a Laplacian matrix iff it satisfies the follow-
ing conditions:

1. M⊤ = M;
2. the diagonal entries of M are non-negative, and the off-diagonal entries of

M are non-positive; and
3. M1 = 0.

It is often to useful to look at a normalized Laplacian matrix,
where weighted vertex degrees are normalized to one and edges
are weighted based on the degrees of their endpoints.

Definition 1.13 (Normalized Laplacian matrix). The normalized Lapla-
cian matrix of an oriented graph G is defined as,

N(i, j) .
=


1 if i = j

− 1√
d(i)d(j)

if i ∼ j

0 otherwise.

(1.12)

This characterization is equivalent to,5 5 A−1/2, where A is a diagonal matrix, is
the diagonal matrix diagi{A(i, i)−1/2}.

N = D−1/2LD−1/2 = I − D−1/2 AD−1/2. (1.13)

As we will see later, the normalized Laplacian matrix is intimately
related to the probability transition matrix of a random walk on G,
where transition probabilities are proportional to edge weights.

Lemma 1.14. N is positive semi-definite.

Proof. We have for any x ∈ Rn,

x⊤Nx = x⊤D−1/2LD−1/2x = (D−1/2x)⊤L(D−1/2x) ≥ 0,

using positive semi-definiteness of L.

1.2 An Optimization Problem

We have seen that finding electrical voltages x̃ or the electrical flow
f̃ is equivalent, we can go from one to the other and back. So let us
first focus on how we can find electrical voltages x̃.
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In eq. (1.7), we saw that electrical voltages satisfy Lx̃ = d, obeying
by Ohm’s law and satisfying the net flow constraint. A standard ap-
proach to reframe the solution to such a system of linear equations as
the result of an optimization problem, is to consider the cost function,

c(x) .
=

1
2

x⊤Lx− x⊤d. (1.14)

Observe that ∇∇c(x) = Lx− d !
= 0 iff Lx = d.

Claim 1.15. c is convex, hence, its critical point coincides with its mini-
mizer.6 6 We will develop tools to show this in

the next part.
We have therefore recast the problem of finding electrical voltages

to the convex optimization,

x̃ = arg min
x∈R|V|

c(x). (1.15)

1.3 Energy & Duality

Let us now look at the same problem through a different lens. Trans-
porting current through a network of resistors requires energy, which
is dissipated as heat by the resistor. By Joule’s law, sending a current
f̃ across a resistor with potential drop x̃, spends f̃ · x̃ units of energy
per unit time.7 Using Ohm’s law, we have, 7 We will think about everything as if

happening in one unit of time.

f̃ · x̃ =
x̃2

r
= r · f̃ 2. (1.16)

We can therefore write the electrical energy dissipated by routing a
current f̃ (or equivalently with electrical voltages x̃) as,

E( f̃ ) .
= ∑

e∈E
r(e) f̃ (e)2 = f̃⊤R f̃ = x̃⊤Lx̃ .

= E(x̃). using Ohm’s law, f̃ = R−1B⊤ x̃(1.17)

Remark 1.16. Given electrical voltages x̃ ⊥ 1, we can also write the
electrical energy as

E(x̃) = x̃⊤Lx̃ = d⊤ x̃ = d⊤L+d .
= E(d), using Lx = d and L+Lx = x as

x ⊥ ker L
(1.18)

using the pseudoinverse L+ of L.

Let us consider the electrical energy-minimizing flow:8 8 Note that we could instead (and
equivalently) characterize the optimiza-
tion problem using electrical voltages.f ∗ .

= arg min
f∈R|E|

B f=d

E( f ). (1.19)

Exercise 1.17. f ∗ is precisely the electrical flow f̃ , that is, f ∗ satisfies
Ohm’s law.
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This indicates that the two above optimization problems are inti-
mately related: both yield the electrical flow (or equivalently, electri-
cal voltages). In fact, it can be shown that,

Exercise 1.18. E( f̃ ) = −c(x̃),

where we think about maximizing −c(x̃) instead of minimizing c(x̃).
More generally,

Exercise 1.19. E( f ) ≥ −c(x) for any flow f routing d and any voltages x.

So, for any voltages x, the value of −c(x) is a lower bound on the
minimum electrical energy E( f̃ ).

This is an example of a much broader phenomenon known as
Lagrangian duality, where we have a minimization problem and a re-
lated maximization problem that gives lower bounds on the optimal
value of the minimization problem.
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Linear Algebra

Claim 2.1. If a square matrix A ∈ Rn×n is symmetric1, then A has n 1 A is symmetric iff A = A⊤.

real eigenvalues λ1, . . . , λn and eigenvectors v1, . . . , vn ∈ Rn such that
Avi = λivi and the vi are orthogonal2. 2 that is, v⊤i vj = 0 for i ̸= j

Definition 2.2 (Positive (semi-)definiteness). Let A ∈ Rn×n be a
symmetric matrix. We say A is

1. positive definite iff x⊤Ax > 0 for any x ∈ Rn \ {0};
2. positive semi-definite iff x⊤Ax ≥ 0 for any x ∈ Rn;
3. if neither A nor −A is positive semi-definite, A is indefinite.

We denote by Sn the set of symmetric n× n matrices, by Sn
+ the set

of such matrices that are positive semi-definite, and by Sn
++ the set of

such matrices that are positive definite.

Theorem 2.3. Let A ∈ Rn×n be a symmetric matrix. Then,

1. A is positive definite iff all eigenvalues are positive; and
2. A is positive semi-definite iff all eigenvalues are non-negative.

This theorem is a corollary of the Courant-Fischer theorem, which we
will work towards now.

Fact 2.4 (Spectral theorem for symmetric matrices). For all symmetric
matrices A ∈ Rn×n there exist

V =
[
v1 · · · vn

]
∈ Rn×n, and Λ = diag{λi}i∈[n] ∈ Rn×n, (2.1)

where λi and vi are the eigenvalues and corresponding (normalized) eigen-
vectors of A, such that

1. A = VΛV⊤ = ∑n
i=1 λiviv⊤i ; and

2. V⊤V = I, i.e., the columns of V form an orthonormal basis of Rn.

Theorem 2.5 (Courant-Fischer min-max theorem). For symmetric
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matrices A ∈ Rn×n with eigenvalues λ1 ≤ · · · ≤ λn,

λi = min
subspace W ⊆ Rn

dim(W)=i

max
x∈W
x ̸=0

x⊤Ax
x⊤x

(2.2)

= max
subspace W ⊆ Rn

dim(W)=n−i+1

min
x∈W
x ̸=0

x⊤Ax
x⊤x

. (2.3)

Proof. We show eq. (2.2). The proof of the other equation proceeds
analogously.

• “≥”: We choose W = span{v1, . . . , vi} We can write x in the basis
of eigenvectors,

x =
i

∑
j=1

c(j)vj

for some c ∈ Ri. We have,

x⊤x = ∥x∥2
2 =

i

∑
j=1

i

∑
k=1

c(j)c(k)v⊤j vk =
i

∑
j=1

c(j)2, using that v⊤j vk = 0 if j ̸= k and

v⊤j vk = 1 otherwise

and,

x⊤Ax = x⊤VΛV⊤x = (V⊤x)⊤Λ(V⊤x︸︷︷︸
c

)

= c⊤Λc =
i

∑
j=1

λjc(j)2 ≤ λi

i

∑
j=1

c(j)2.

Altogether,

x⊤Ax
x⊤x

≤ λi.

• “≤”: Consider any subspace W ⊆ Rn with dim(W) = i and fix
the subspace T .

= span{vi, . . . , vn} with dim(T) = n− i + 1. We
have that dim(W ∩ T) = dim(W) + dim(T) − dim(W ∪ T) and
dim(W ∪ T) ≤ dim(Rn) = n, so, dim(W ∩ T) ≥ 1. Therefore,

max
x∈W
x ̸=0

x⊤Ax
x⊤x

≥ max
x∈W∩T

x ̸=0

x⊤Ax
x⊤x

≥ min
subspace V ⊆ T

dim(V)=1

max
x∈V
x ̸=0

x⊤Ax
x⊤x

.

For the last inequality note that V can be chosen as W ∩ T.
We choose V .

= span{vi}. For some c ∈ R, we can write x = cvi.
Similarly to the previous part, we obtain,

x⊤Ax
x⊤x

=
λic2

c2 = λi.



linear algebra 17

Proof of theorem 2.3. Using Courant-Fischer, we have for the smallest
eigenvalue λ1 of A,

λ1 = min
x∈Rn

x ̸=0

x⊤Ax
x⊤x

.

Thus, if λ1 is positive, then x⊤Ax > 0 for all x ∈ Rn \ {0}. In contrast,
if for any such x, x⊤Ax > 0, then λ1 must be positive. The proof of
positive semi-definiteness is analogous.

Corollary 2.6. For a symmetric matrix A ∈ Rn×n and any x ∈ Rn,

λmin(A) ∥x∥2
2 ≤ x⊤Ax, (2.4)

where λmin(A) is the smallest eigenvalue of A.

Proof. By Courant-Fischer, we have for any x ∈ Rn such that x ̸= 0,

λmin(A) = min
y∈Rn

y ̸=0

y⊤Ay

∥y∥2
2

≤ x⊤Ax

∥x∥2
2

.

If x = 0, the inequality trivially holds.

Claim 2.7. For any matrix M and invertible matrix T , M and T MT−1

have the same eigenvalues.

2.1 Square Roots

We now state a useful fact for positive semi-definite matrices.

Lemma 2.8. Any symmetric and positive semi-definite matrix A has a
positive semi-definite square root A1/2 such that A1/2 A1/2 = A.

Proof. By the spectral theorem, A = VΛV⊤, where V is an orthonor-
mal matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues.
Let A1/2 .

= VΛ1/2V⊤, where Λ1/2 = diagi{Λ(i, i)1/2}. Then,

A1/2 A1/2 = VΛ
1/2V⊤VΛ

1/2V⊤

= VΛ
1/2Λ

1/2V⊤

= VΛV⊤ = A.

It is immediately clear from the definition that A1/2 is positive semi-
definite.
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2.2 Matrix Norms

Definition 2.9 (Matrix norm). Given a matrix A ∈ Rn×n and norms
∥·∥α and ∥·∥β on Rn, the (induced) norm of A is defined as,3 3 If you think of A as a linear map, you

can think of ∥·∥α as a norm of the input
space and ∥·∥β as a norm of the output
space.∥A∥α→β

.
= sup

x∈Rn

x ̸=0

∥Ax∥β

∥x∥α

. (2.5)

We write ∥A∥α
.
= ∥A∥α→α.

Lemma 2.10. For any matrix A ∈ Rn×n, any x ∈ Rn, and any norm ∥·∥
on Rn,

|x⊤Ax| ≤ ∥A∥ ∥x∥2 . (2.6)

Proof. We have,

|x⊤Ax| ≤ ∥x∥ ∥Ax∥ using Cauchy-Schwarz

≤ ∥A∥ ∥x∥2 . using the definition of the induced
matrix norm

Lemma 2.11. For a symmetric matrix A ∈ Rn×n,

∥A∥2 = max{|λmin(A)|, |λmax(A)|}. (2.7)

∥A∥2 is called the spectral norm of A.

Proof. We have,

∥A∥2
2 = sup

x∈Rn

x ̸=0

x⊤A⊤Ax
x⊤x

= sup
x∈Rn

x ̸=0

x⊤A2x
x⊤x

using that A is symmetric, A⊤ = A

= sup
x∈Rn

x ̸=0

x⊤VΛ2V⊤x
x⊤x

using that V is orthogonal, V⊤ = V−1

= sup
x∈Rn

x ̸=0

V⊤x⊤Λ2(V⊤x)
V⊤x⊤(V⊤x)

= sup
y∈Rn

y ̸=0

y⊤Λ2y
y⊤y

= ∥Λ∥2
2 . using that the columns of V form a

basis of Rn, set y .
= V⊤x

Finally,

∥Λ∥2
2 = sup

x∈Rn

x ̸=0

x⊤Λ2x
x⊤x

= sup
x∈Rn

x ̸=0

∑n
i=1 λ2

i x(i)2

∑n
i=1 x(i)2 = max

i∈[n]
λ2

i .
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2.3 Loewner Order

The Loewner order (or positive semi-definite order) is a partial order-
ing on symmetric matrices.

Definition 2.12 (Loewner order). Given symmetric matrices A, B ∈
Rn×n, A ⪯ B iff ∀x ∈ Rn : x⊤Ax ≤ x⊤Bx.

Remark 2.13. A ⪰ 0 iff A is positive semi-definite.

Lemma 2.14 (Properties of the Loewner order). We have that for any
symmetric A, B, C ∈ Rn×n,

1. A ⪯ A (reflexivity);
2. A ⪯ B, B ⪯ A =⇒ A = B (antisymmetry);
3. A ⪯ B, B ⪯ C =⇒ A ⪯ C (transitivity);
4. A ⪯ B =⇒ A + C ⪯ B + C;
5. if A ⪰ 0, then 1

α A ⪯ A ⪯ αA for any α ≥ 1; and
6. if A ⪯ B, then ∀i ∈ [n] : λi(A) ≤ λi(B), where λi(M) is the i-th

largest eigenvalue of M.4 4 The converse is false:

A .
=

[
2 0
0 1

]
, B .

=

[
1 0
0 2

]
have equal eigenvalues, but A ̸⪯ B and
B ̸⪯ A.

Remark 2.15. Properties (1), (2), and (3) together imply that the
Loewner order is a partial ordering of symmetric matrices.

Proof. Properties (1) through (5) follow directly from the defini-
tion using only elementary operations. For property (6), we have
by Courant-Fischer,

λi(A) = min
subspace W ⊆ Rn

dim(W)=i

max
x∈W
x ̸=0

x⊤Ax
x⊤x

≤ min
subspace W ⊆ Rn

dim(W)=i

max
x∈W
x ̸=0

x⊤Bx
x⊤x

= λi(B).

Loewner Order on Graphs

Definition 2.16. We write G ⪯ H iff we have for the Laplacian
matrices LG and LH that LG ⪯ LH . For any c > 0, we write cG in
place of cLG, which corresponds to scaling the weight of every edge
of G by c.

Lemma 2.17. For subgraphs H ⊆ G, we have H ⪯ G.

Proof. Dropping edges can only decrease the quadratic form of the
Laplacian of G (see eq. (1.11)).
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2.4 Kernel and Image

Definition 2.18 (Kernel). The kernel (or null space) of a linear map
A ∈ Rn×m is the linear subspace,

ker A .
= {x ∈ Rm | Ax = 0} ⊆ Rm. (2.8)

Definition 2.19 (Image). The image (or range) of a linear map A ∈
Rn×m is the linear subspace,

im A .
= {Ax | x ∈ Rm} = span{A(:, 1), . . . , A(:, m)} ⊆ Rn, (2.9)

where A(:, i) denotes the i-th column vector of A.

We have the following useful property relating image and kernel.

Lemma 2.20. For a matrix A ∈ Rn×m, we have im(A⊤)⊥ = ker A and
(im A)⊥ = ker(A⊤).5 5 Note that (W⊥)⊥ = W for any

subspace W.

Proof. If x ∈ im(A⊤)⊥, we have A(i, :)⊤x = 0 for all i ∈ [n]. Hence,
Ax = 0 and x ∈ ker A.

Conversely, if x ∈ ker A, then Ax = 0. Therefore, A(i, :)⊤x = 0 for
all i ∈ [n]. As im(A⊤) = span{A(1, :), . . . , A(n, :)}, we have z⊤x = 0
for any z ∈ im(A⊤), yielding, x ∈ im(A⊤)⊥.

The same argument goes through for the transpose of A on both
sides.

2.5 Matrix Functions

First, let us remind ourselves of the notion of the trace of a matrix.

Definition 2.21 (Trace). The trace of a symmetric matrix A ∈ Rn×n is
defined as,

tr A .
=

n

∑
i=1

A(i, i). (2.10)

Lemma 2.22. The trace is invariant under cyclic permutations. That is, for
any A, B ∈ Rn×n,

tr AB = tr BA. (2.11)

Proof. We have,

tr AB =
n

∑
i=1

(AB)(i, i)
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=
n

∑
i=1

n

∑
j=1

A(i, j)B(j, i)

=
n

∑
j=1

n

∑
i=1

B(j, i)A(i, j)

=
n

∑
j=1

(BA)(j, j)

= tr BA.

Lemma 2.23. For A ∈ Rn×n,

tr A =
n

∑
i=1

λi, (2.12)

where λi are the eigenvalues of A.

Proof. By the spectral theorem for symmetric matrices and using the
cycle property of the trace,

tr A = tr (VΛV⊤) = tr (Λ V⊤V︸ ︷︷ ︸
I

) = tr Λ =
n

∑
i=1

λi,

where Λ is a diagonal matrix of eigenvalues of A and V is an or-
thonormal matrix of the corresponding eigenvectors.

Definition 2.24 (Matrix function). A matrix function f : Sn → Sn given
the scalar function f : R→ R is defined as,

f (A)
.
= Vdiagi{ f (λi)}V⊤, (2.13)

where A = Vdiagi{λi}V⊤ is the spectral decomposition of A. We say,

1. a function f : S → R for S ⊆ Sn is monotonically increasing iff
A ⪯ B implies f (A) ≤ f (B); and similarly

2. a matrix function f : S → T for S , T ⊆ Sn is monotonically
increasing iff A ⪯ B implies f (A) ⪯ f (B).

Lemma 2.25. If f : T → R for T ⊆ R is monotone, then X 7→ tr f (X) is
monotone.

Proof. Let A ⪯ B. Then, λi(A) ≤ λi(B) for all i ∈ [n]. Thus,
f (λi(A)) ≤ f (λi(B)), and hence,

tr f (A) =
n

∑
i=1

f (λi(A)) ≤
n

∑
i=1

f (λi(B)) = tr f (B).

The analogous argument works when f is monotonically decreasing.
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Claim 2.26 (Facts about matrix functions).

1. X 7→ X−1 is monotonically decreasing on Sn
++;

2. log is monotonically increasing on Sn
++;

3. exp(A) ⪯ I + A + A2 for ∥A∥2 ≤ 1;
4. log(I + A) ⪯ A for A ⪰ −I; and
5. (Lieb’s theorem) if f (A) = tr(exp(H + log(A))) for A ∈ Sn

++ and
some H ∈ Sn, then − f is convex.

2.6 Pseudoinverses

We often want to solve systems of linear equations such as

Ax = b (2.14)

where A and b are given and we seek to identify x. If A is invertible,
a solution to eq. (2.14) is given by x .

= A−1b. Recall that a square
matrix A is invertible iff det A ̸= 0. Can we still explicitly write x
when A is not invertible?

When A is not invertible, the corresponding system of linear equa-
tions does not have a unique solution. However, we may still be able
to find some solution. The Moore-Penrose inverse is such a general-
ization of the inverse.

Definition 2.27 (Moore-Penrose inverse). Given a symmetric matrix
A ∈ Rn×n,6 its Moore-Penrose inverse (or simply pseudoinverse) is a 6 The Moore-Penrose inverse can also

be defined for non-symmetric and even
non-square matrices, but this will not
be important for us.

matrix A+ ∈ Rn×n such that

1. A+ is symmetric;
2. ker A+ = ker A;7 and 7 that is, for any v ∈ Rn,

A+v = 0 ⇐⇒ Av = 03. for v ⊥ ker A, A+Av = v and AA+v = v.

Thus, provided b ⊥ ker A, x .
= A+b is a solution to eq. (2.14).

Lemma 2.28. The pseudoinverse of the symmetric matrix A ∈ Rn×n is
(uniquely8) characterized as, 8 this we will not prove

A+ = VΛ+V⊤, (2.15)

where V is the matrix of orthogonal eigenvectors and

Λ+ = diagi∈[n]

λ−1
i λi ̸= 0

0 otherwise
(2.16)

for eigenvalues λi.

Proof. The properties of a pseudoinverse follow from the definition
immediately.

Corollary 2.29. A ⪰ B implies A+ ⪯ B+ when ker A = ker B.
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2.7 Solving Linear Systems

Linear systems such as eq. (2.14) can often be solved much faster
than by computing the pseudoinverse of A.

We first need to remind ourselves of the notion of a projection.

Definition 2.30 (Projection matrix). A projection matrix is a matrix
Π ∈ Rn×n such that Π2 = Π.9 We say that Π is orthogonal iff im Π ⊥ 9 This property is called idempotency.

ker Π.

Remark 2.31. Note that Π is the identity operator on im Π, i.e., for all
x ∈ im Π we have that Πx = x.

Definition 2.32 (Orthogonal projection to the complement of the
kernel). Given a matrix A, ΠA is the orthogonal projection to (ker A)⊥,
that is,

1. ΠAv = 0 if v ∈ ker A; and
2. ΠAv = v if v ∈ (ker A)⊥.10 10 Recall that (ker A)⊥ = im A⊤.

Claim 2.33. For A ∈ Sn with spectral decomposition A = VΛV⊤ =

∑i λiviv⊤i where V is orthonormal, we have,

ΠA = ∑
i

λi ̸=0

viv⊤i = A+/2 AA+/2 = AA+ = A+A. (2.17)

Corollary 2.34. In particular, Π+
A = ΠA.

Claim 2.35. Consider a real symmetric matrix A = XYX⊤, where X is
real and invertible and Y is real and symmetric. Then,

A+ = ΠA(X⊤)−1Y+X−1ΠA. (2.18)

Now, let us return to solving linear systems.

Lemma 2.36. Given an invertible square lower triangular matrix L or an
invertible square upper triangular matrix U , we can solve the linear systems
Ly = b and Uz = b in time O(nnzL) and O(nnzU ), respectively, where
nnz A denotes the number of non-zero entries of A.11 11 We need the matrices to be stored as

an adjacency list to have fast access to
their non-zero entries.

Proof sketch. We can iteratively solve the linear equations of Ly = b.
As L has full rank and is lower triangular, there is always one linear
equation in a single variable.

These algorithms are known as forward and back substitution for
lower and upper triangular matrices, respectively.
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Thus, if we can decompose A = LL⊤ such that L is invertible and
lower triangular, we can solve the linear system of eq. (2.14) in time
O(nnzL) by solving the two linear systems,

Ly = b and (2.19)

L⊤x = y. (2.20)

Fact 2.37 (Cholesky decomposition). For any positive semi-definite
matrix A ∈ Rn×n, there is a decomposition of the form A = LL⊤ where
L ∈ Rn×n is lower triangular and positive semi-definite.

We will see that the Cholesky decomposition can be computed
efficiently when A is a graph Laplacian.
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Probability

3.1 Random Walks

In this section, we study random walks on undirected weighted
graphs G = (V, E, w) with self-loops. A random walk visits a random
sequence of vertices X1, X2, . . . , where

P[Xt+1 = v | Xt = u] =
w({v, u})

d(u)
(3.1)

and d(u) is the weighted degree of vertex u, as we have defined
previously.

Remark 3.1. The random walks considered here satisfy the Markov
property, that is,

Xt+1 ⊥ X1, . . . , Xt−1 | Xt.1 1 So you can think of these random
walks as Markov chains.

(3.2)

Moreover, we restrict our attention to time-homogeneous random
walks, that is, the transition probabilities remain constant over time.

We can therefore model the update of a single round using the
linear map W ∈ R|V|×|V| (called transition matrix),

W .
=


w({1,1})

d(1) · · · w({n,1})
d(n)

...
. . .

...
w({1,n})

d(1) · · · w({n,n})
d(n)

 = AD−1. (3.3)

A probability distribution over vertices is a vector p ∈ R|V| such
that 1⊤p = 1 and p ≥ 0. If our initial distribution is p0, we have,

pt = W t p0. (3.4)

Observe that W t(u, v) denotes the probability to reach v from u in
exactly t steps.
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Definition 3.2 (Mixing). We say that a random walk W is mixing at
step t iff for each u, v ∈ V, W t(u, v) ≥ 1

2n .2 2 That is, the random walk is “half way”
to being completely mixed.

Definition 3.3 (Stationary distribution). A distribution π ∈ R|V| is
stationary iff π = Wπ.

Lemma 3.4. Every graph has the stationary distribution π
.
= d

1⊤d .

Proof. First, π is a distribution as,

1⊤π =
1⊤d
1⊤d

and clearly π ≥ 0. We have,

Wπ =
1

1⊤d
AD−1d =

1
1⊤d

A1 =
d

1⊤d
= π.

Remark 3.5. When the graph is connected, this is the unique station-
ary distribution.3 3 In the context of Markov chains,

irreducibility is sufficient for a unique
stationary condition and equivalent to
the transition graph being connected.Lazy Random Walk

Figure 3.1: Consider the initial distri-
bution p0(1) = 1, p0(2) = 0. Clearly,
the random walk will forever oscillate
between the two states.

We would also like to have that we converge to this stationary dis-
tribution regardless of the initial distribution p0, but this is not true
for general graphs, as is shown in fig. 3.1. A sufficient condition for
convergence to the stationary distribution is, however, that all vertices
have self-loops.4

4 It is easy to check that this ensures
that the Markov chain is aperiodic,
which together with irreducibility
implies convergence to the unique
stationary distribution.

Given the random walk W , the associated lazy random walk is given
by,

W̃ .
=

1
2

I +
1
2

W ,

that is, we add self-loops to each vertex with weight 1/2 and halve
all other weights. Observe that this does not change the stationary
distribution of the random walk. This ensures that the following
holds.

Theorem 3.6 (Convergence of lazy random walk). For a connected
graph, the lazy random walk converges to its unique stationary distribution
irrespectively of the initial distribution p0,

lim
t→∞

W̃ t p0 = π̃ = π. (3.5)

To prove this theorem, let us first understand the transition matrix
in terms of the graph Laplacian.
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Lemma 3.7. When ν1, . . . , νn are the eigenvalues and ψ1, . . . , ψn the
corresponding eigenvectors of the normalized Laplacian matrix N, then
W̃ has eigenvalues 1− νi/2 and (not necessarily orthogonal) eigenvectors
D1/2ψi.

Proof. Let us first express the transition matrix of the original ran-
dom walk in terms of the normalized graph Laplacian,

W = AD−1 = D1/2(D−1/2 AD−1/2)D−1/2

= I + D1/2 (D−1/2 AD−1/2 − I)︸ ︷︷ ︸
−N

D−1/2

= I − D1/2ND−1/2 (3.6)

= D1/2(I − N)D−1/2.

By claim 2.7, D1/2(I − N)D−1/2 and I − N have the same eigenvalues,
namely 1− νi. We also have,

W̃ =
1
2

I +
1
2
(I − D1/2ND−1/2) = I − 1

2
D1/2ND−1/2, (3.7)

implying that the eigenvalues of W̃ are 1− νi/2. Finally, we have,

W̃ D1/2ψi = (I − 1
2

D1/2ND−1/2)D1/2ψi

= D1/2ψi −
1
2

D1/2Nψi

= D1/2ψi −
νi
2

D1/2ψi using that ψi is an eigenvector of N
with corresponding eigenvalue νi

=
(

1− νi
2

)
D1/2ψi.

Proof of theorem 3.6. TBD

Theorem 3.8 (Convergence rate of lazy random walk). For any un-
weighted connected graph G, we have that at time step t,5 5 We will later see that ν2 is an indicator

of the “connectedness” of G.

∥pt −π∥∞ ≤ e−ν2t/2
√

n. (3.8)

Proof. TBD

Hitting Time

Definition 3.9 (Hitting time). The hitting time,

Ha,s
.
= min{t ≥ 1 | Xt = s, X0 = a}, (3.9)

is the number of steps to reach s starting from a. We have,

hs(a) .
= E[Ha,s] = 1 + ∑

b∼a

w({a, b})
d(a)

hs(b). (3.10)
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Lemma 3.10. If x̃ is a solution to Lx̃ = d− ∥d∥1 1s,6 then 6 We use 1s as a shorthand notation for
1{s}.

hs = x̃− x̃(s)1. (3.11)

Proof. For any a ̸= s, we can equivalently write eq. (3.10) as,

1⊤a hs = 1 + (W1a)
⊤hs ⇐⇒ 1⊤a (I −W⊤)hs = 1.

This yields a linear system of n− 1 equations,

1− α1s = (I − W⊤︸︷︷︸
D−1 A

)hs, (3.12)

where α is due to the remaining degree of freedom, as the entry
corresponding to s is not fixed. Multiplying from the left with D, we
obtain,

d− αd(s)1s = (D− A)hs = Lhs.

Recall that ker L = span{1}, and hence, for hs to exist, we must
choose α such that d− αd(s)1s ⊥ 1. We have,

1⊤(d− αd(s)1s) = ∥d∥1 − αd(s) !
= 0 ⇐⇒ α =

∥d∥1
d(s)

.

Finally, note that the solution x̃ to Lx̃ = d − ∥d∥1 1s is not unique.
Given that hs is one solution, we have that any x̃ = hs + c1 for c ∈ R

is also a solution.7 Yet, we know that hs(s) = 0, implying that hs = 7 This follows directly from the fact that
ker L = span{1}.x̃− x̃(s)1.

Commute Time TBD
Figure 3.2: Example where hitting times
are not symmetric.

An issue with hitting times is that they do not need to be symmetric.
This motivates the consideration of commute times, which corre-
spond to the number of steps it takes to reach b from a and return to
a.

Definition 3.11 (Commute time). The commute time between a and b
is defined as,

Ca,b
.
= Ha,b + Hb,a. (3.13)

Remark 3.12. By definition, commute times are symmetric.

Lemma 3.13. If x̃ is a solution to Lx̃ = ∥d∥1 (1a − 1b), then

E[Ca,b] = (1a − 1b)
⊤ x̃ = x̃(a)− x̃(b). (3.14)

The x̃ can be interpreted as electrical voltages inducing flow that
routes ∥d∥1 units from a to b.
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Proof. We write bv
.
= d− ∥d∥1 1v and let Lỹ = bb and Lz̃ = ba. Then,

E[Ca,b] = hb(a) + ha(b)

= ỹ(a)− ỹ(b) + z̃(b)− z̃(a)

= (1a − 1b)
⊤(ỹ− z̃).

Observe that x̃ .
= ỹ− z̃ solves Lx̃ = bb − ba = ∥d∥1 (1a − 1b).

We will see in chapter 12 that the expected commute time is inti-
mately related to the electrical energy required to route flow from a
to b, also called the effective resistance between a and b.

3.2 Concentration

Theorem 3.14 (Markov’s inequality). For any random variable X ≥ 0
and t > 0,

P[X ≥ t] ≤ E[X]

t
. (3.15)

Proof. We have,

E[X] =
∫ ∞

0
x f (x) dx ≥

∫ ∞

t
x f (x) dx ≥ t

∫ ∞

t
f (x) dx = tP[X ≥ t],

where f is the probability density function of X.

Fact 3.15 (Jensen’s inequality). For a random variable X, if f is convex,
then E[ f (X)] ≥ f (E[X]).8 8 We prove the finite form in theo-

rem A.1.

TBD
Figure 3.3: Jensen’s inequality.

Theorem 3.16 (Bernstein concentration bound). Given independent
real-valued random variables X1, . . . , Xk ∈ R such that E[Xi] = 0 and
|Xi| ≤ R. Let X .

= ∑i Xi and σ2 .
= Var[X] = ∑i E

[
X2

i
]
. Then, for t > 0,

P[|X| ≥ t] ≤ 2 exp
(

−t2

2Rt + 4σ2

)
. (3.16)

Proof. TBD

Corollary 3.17 (Chernoff bound). TBD

Proof. TBD

Theorem 3.18 (Bernstein matrix concentration bound). Suppose
X1, . . . , Xk ∈ Rn×n are independent symmetric matrix-valued random
variables satisfying E[Xi] = 0 and ∥Xi∥2 ≤ R. Let X .

= ∑i Xi and
σ2 .

= Var[X] = ∑i E
[
X2

i
]
. Then, for t > 0,

P[∥X∥2 ≥ t] ≤ 2n exp
(

−t2

2Rt + 4σ2

)
. (3.17)
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Proof. TBD

3.3 Martingales

Definition 3.19 (Martingale). A martingale is a sequence of random
variables Z0, . . . , Zk such that

E[Zi | Z0, . . . , Zi−1] = Zi−1. (3.18)

That is, conditional on the outcome of all the previous random vari-
ables, the expectation of Zi equals Zi−1.

Typically, we use martingales to show a statement such as “Zk is
concentrated around E[Zk]”.

We can alternatively think of a martingale as the sequence of
changes in {Zi}i. Let Xi

.
= Zi − Zi−1. The sequence of {Xi}i is called

martingale difference sequence. The martingale condition is equivalent
to,

E[Xi | Z0, . . . , Zi−1] = E[Xi | Z0, X1, . . . , Xi−1] = 0. (3.19)

We can write,

Zk = Z0 +
k

∑
i=1

Zi − Zi−1 = Z0 +
k

∑
i=1

Xi. (3.20)

Theorem 3.20. Suppose that {Xi}i form a scalar martingale difference
sequence and |Xi| ≤ R. Define the “pseudo-variance”,

Wi
.
=

i

∑
j=1

E
[

X2
j | X1, . . . , Xj−1

]
, (3.21)

Then,

P

[∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ ≥ k and Wk ≤ σ2

]
≤ C2 exp

(
−C1

t2

Rt + σ2

)
, (3.22)

for constants C1, C2.

By a simple union bound,

P

[∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ ≥ k

]
≤ P

[∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ ≥ k and Wk ≤ σ2

]
+ P

[
Wk > σ2

]
.

(3.23)

Proof. TBD
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Analysis

In this chapter, we study functions f : S→ R where S ⊆ Rn.

4.1 First-order Taylor Approximations

Definition 4.1 (Gradient). The gradient of a function f : S → R at
point x ∈ S is,

∇∇ f (x) .
=
[

∂ f (x)
∂x(1) · · · ∂ f (x)

∂x(n)

]⊤
. (4.1)

For a single-variable function f : R → R that is differentiable, we
have for any x, δ ∈ R,

f (x + δ) = f (x) +
d f (x)

dx
+ o(|δ|), where lim

δ→0

o(|δ|)
|δ| = 0,

using a first-order Taylor approximation around x. We can use a
similar approximation when f is a multi-variable function.

Definition 4.2 (Fréchet differentiable). A function f : S → R is
(Fréchet) differentiable at x ∈ S if there exists g ∈ Rn such that,1 1 Here, g can be understood as a can-

didate for ∇∇ f (x) and f (x) + g⊤δ is a
linear approximation of f around x.

lim
δ∈Rn

δ→0

| f (x + δ)− [ f (x) + g⊤δ]|
∥δ∥2

= 0. (4.2)

This is equivalent to,

f (x + δ) = f (x) + g⊤δ + o(∥δ∥2), (4.3)

for any x ∈ S and δ ∈ Rn where limδ→0
o(∥δ∥2)
∥δ∥2

= 0. This is also
called a first-order expansion of f around x.

Remark 4.3. If this holds, g = ∇∇ f (x).
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Definition 4.4 (Continuously differentiable). We say that f : S→ R is
continuously differentiable on S if it is differentiable and its gradient is
continuous on S.

Fact 4.5 (Taylor’s theorem, first-order form). If f : S → R is continu-
ously differentiable, then for all x, y ∈ S,

f (y) = f (x) +∇∇ f (z)⊤(y− x), (4.4)

for some z ∈ [x, y] .
= {θx + (1− θ)y | θ ∈ [0, 1]}.

Figure 4.1: Illustration of Taylor’s
theorem. The affine approximation is
shown in orange.

Taylor’s theorem implies that f can be approximated by the affine
function,

y→ f (x) +∇∇ f (x)⊤(y− x),

when y is “close to” x.

First-order Optimality Conditions

Definition 4.6 (Stationary point). Given a function f : S → R, a point
x ∈ S where ∇∇ f (x) = 0 is called a stationary point of f .2 2 Being a stationary point is not suffi-

cient for optimality. Take for example
the point x .

= 0 of f (x) .
= x3.Theorem 4.7 (First-order optimality condition). If x ∈ S is a local

extremum of a differentiable function f : S→ R, then ∇∇ f (x) = 0.3 3 Here it is important that we have
chosen S ⊆ Rn to be open. When S
is not open, an extremum could be on
the boundary of the domain, where the
gradient is non-zero.

Proof. Assume x is a local minimum of f . Then, for all d ∈ Rn and
for all small enough λ ∈ R, we have f (x) ≤ f (x + λd), so,

0 ≤ f (x + λd)− f (x)

= λ∇∇ f (x)⊤d + o(λ ∥d∥2). using a first-order expansion of f
around x

Dividing by λ and taking the limit λ→ 0, we obtain,

0 ≤ ∇∇ f (x)⊤d + lim
λ→0

o(λ ∥d∥2)

λ
= ∇∇ f (x)⊤d.

Take d .
= −∇∇ f (x).4 Then, 0 ≤ −∥∇∇ f (x)∥2

2, so ∇∇ f (x) = 0. 4 We can only take this step because we
assumed that S is open.

4.2 Directional Derivatives

Definition 4.8 (Jacobian). Given a vector-valued function,

g : Rn → Rm, x 7→


g1(x)

...
gm(x)

 ,

where gi : Rn → R, the Jacobian of g at x ∈ Rn is,

Dg(x) .
=


Dg1(x)

...
Dgm(x)

 .
=
[

∂g(x)
∂x(1) · · · ∂g(x)

∂x(n)

]
. (4.5)
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Remark 4.9. For f : S→ R and any x ∈ S, D f (x) = ∇∇ f (x)⊤.

Definition 4.10. For a vector-valued function g : Rn → Rm, we
define,

∇∇g(x) .
= Dg(x)⊤ =

[
∇∇g1(x) · · · ∇∇gm(x)

]
. (4.6)

Definition 4.11 (Directional derivative). Let f : S → R be differen-
tiable at x ∈ Rn. Given d ∈ Rn, the directional derivative of f at x in
the direction d is,

D f (x)[d] .
= lim

λ→0

f (x + λd)− f (x)
λ

. (4.7)

Lemma 4.12. D f (x)[d] = ∇∇ f (x)⊤d = D f (x)d.

Proof. Using a first-order expansion, we have,

f (x + λd) = f (x) + λ∇∇ f (x)⊤d + o(λ ∥d∥2).

Dividing by λ yields,

f (x + λd)− f (x)
λ

= ∇∇ f (x)⊤d +
o(λ ∥d∥2)

λ︸ ︷︷ ︸
→0

.

Taking the limit λ→ 0 gives the desired result.

4.3 Second-order Taylor Approximations

Example 4.13. Given f : S → R and any x ∈ S, consider the vector-
valued function ∇∇ f . We have,

D∇∇ f (x) =
[

∂∇∇ f (x)
∂x(1) · · · ∂∇∇ f (x)

∂x(n)

]
=


∂2 f (x)

∂x(1) ∂x(1) · · · ∂2 f (x)
∂x(n) ∂x(1)

...
. . .

...
∂2 f (x)

∂x(1) ∂x(n) · · · ∂2 f (x)
∂x(n) ∂x(n)

 .

(4.8)

Definition 4.14 (Hessian). Given f : S→ R that is twice differentiable
coordinatewise, we define the Hessian H f (x) ∈ Rn×n of f at a point
x ∈ S as,

H f (x)(i, j) .
=

∂2 f (x)
∂x(i) ∂x(j)

(4.9)

Remark 4.15. By eq. (4.8), H f (x) = (D∇∇ f (x))⊤.5 5 Sometimes, H f (x) = ∇∇2 f (x) is written
(informally!).
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Definition 4.16 (Twice Fréchet Differentiable). We say a function
f : S → R is twice (Fréchet) differentiable at x ∈ S if there exists g ∈ Rn

and a matrix M ∈ Rn×n such that,6 6 You can think of g as a candidate for
∇∇ f (x), M as a candidate for H f (x), and
f (x) + g⊤δ + 1

2 δ⊤Mδ is a quadratic
approximation of f around x.lim

δ∈Rn

δ→0

| f (x + δ)− [ f (x) + g⊤δ + 1
2 δ⊤Mδ]|

∥δ∥2
2

= 0. (4.10)

This is equivalent to,

f (x + δ) = f (x) + g⊤δ +
1
2

δ⊤Mδ + o(∥δ∥2
2), (4.11)

for any x ∈ S and δ ∈ Rn where limδ→0
o(∥δ∥2

2)

∥δ∥2
2

= 0. This is also called

a second-order expansion of f around x.

Remark 4.17. If this holds,

1. g = ∇∇ f (x),
2. M = H f (x), and
3. H f (x) = H f (x)⊤.

Definition 4.18 (Twice continuously differentiable). We say that
f : S → R is twice continuously differentiable on S if it is twice differen-
tiable and the gradient and Hessian are continuous on S.

Fact 4.19 (Taylor’s theorem, second-order form). If f : S → R is twice
continuously differentiable, then for all x, y ∈ S,

f (y) = f (x) +∇∇ f (x)⊤(y− x) +
1
2
(y− x)⊤H f (z)(y− x), (4.12)

for some z ∈ [x, y].

Second-order Optimality Conditions

Theorem 4.20 (Necessary second-order optimality condition). Let
f : S → R be twice continuously differentiable at x ∈ S and S be open.
Then, if x is a local minimum, H f (x) is positive semi-definite.7

7 In other words, if H f (x) has a negative
eigenvalue, x cannot be a minimum. In-
tuitively, you can think of H f (x) as the
curvature of f around x, and therefore,
a negative eigenvalue indicates that
the function value can be decreased by
moving in some direction.

Proof. Suppose x ∈ S is a local minimum. By the first-order optimal-
ity condition, ∇∇ f (x) = 0. For any direction d ∈ Rn and small enough
λ ∈ [−ϵ, ϵ] \ {0},

0 ≤ f (x + λd)− f (x) using that f is locally minimized at x

=
1
2

λ2d⊤H f (x)d + o(λ2 ∥d∥2
2). using a second-order expansion

Multiplying both sides by 2/λ2 and taking the limit λ→ 0, we obtain,

0 ≤ d⊤H f (x)d + lim
λ→0

o(λ2 ∥d∥2
2)

λ2 = d⊤H f (x)d.
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Theorem 4.21 (Sufficient second-order optimality condition). Let
f : S → R be twice continuously differentiable at x ∈ S and S be open.
Then, if x is a stationary point and H f (x) is positive definite, x is a local
minimum.

Proof. Suppose that x ∈ S is stationary, i.e., ∇∇ f (x) = 0, and H f (x)
is positive definite. For any direction d ∈ Rn and small enough
λ ∈ [−ϵ, ϵ] \ {0},

f (x + λd) = f (x) +∇∇ f (x)⊤d︸ ︷︷ ︸
0

+
1
2

λ2d⊤H f (x)d + o(λ2 ∥d∥2
2) using a second-order expansion

≥ f (x) +
1
2

λ2λmin(H f (x)) ∥d∥2
2 + o(λ2 ∥d∥2

2) by corollary 2.6

≥ f (x) +
1
4

λmin(H f (x)) ∥d∥2
2 for small enough λ

> f (x) using positive definiteness of H f (x)





part II

Convex Optimization





5

Convex Geometry

We want to develop a better understanding of optimization problems.
The general form of an optimization problem is,

min
y∈Rn

g(y)≤b

f (y), (5.1)

where f : Rn → R is the function to be minimized, g : Rn → Rm is a
vector-valued function of m constraints with thresholds b ∈ Rm.1 1 It suffices to consider minimization

problems. If we want to maximize
a function f , this is equivalent to
minimizing the function − f .

Definition 5.1 (Feasible set). We call

F .
= {x ∈ Rn | g(x) ≤ b} (5.2)

the feasible set. We call

• x ∈ F a feasible point; and
• x ̸∈ F an infeasible point.

Definition 5.2 (Optimal solution). We say that x∗ ∈ Rn is optimal if
x∗ ∈ F and ∀x ∈ F : f (x∗) ≤ f (x).

Figure 5.1: Examples of optimization
problems without an optimal solution.

Let us look at a sufficient condition for optimal solutions.

Theorem 5.3 (Extreme value theorem). Let f : Rn → R be continuous,
and let F ⊆ Rn be non-empty, bounded, and closed. Then, f is bounded on
F and has an optimal solution.

5.1 Convex Sets & Functions

Definition 5.4 (Convex set). A set S ⊆ Rn is convex iff

∀x, y ∈ S : ∀θ ∈ [0, 1] : θx + (1− θ)y ∈ S. (5.3)

Figure 5.2: Example of a non-convex
and a convex set.
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Definition 5.5 (Convex function). For a convex set S ⊆ Rn, a function
f : S→ R is convex on S iff

∀x, y ∈ S : ∀θ ∈ [0, 1] : f (θx + (1− θ)y) ≤ θ f (x) + (1− θ) f (y). (5.4)

Similarly, we call f strictly convex on S iff

∀x, y ∈ S : ∀θ ∈ [0, 1] : f (θx + (1− θ)y) < θ f (x) + (1− θ) f (y). (5.5)

Figure 5.3: Example of a convex func-
tion. Any line between two points on
f , lies “above” f . The epigraph of f is
shown in blue.

Remark 5.6. If the function f is convex on S, we say that the function
− f is concave on S.

Remark 5.7. We call the optimization problem from eq. (5.1) convex iff
f and gi are convex functions. Sometimes it is useful to equivalently
write

min
y∈S

f (y) for S .
= {y ∈ Rn | g(y) ≤ b}. (5.6)

Observe that these characterizations are equivalent, as any convex set
S can be characterized in terms of convex constraints.

Fact 5.8. A differentiable and convex function f , whose domain S ⊆ Rn is
open and convex, is always continuously differentiable.

In the following, we will assume that S ⊆ Rn is open.

Definition 5.9 (Epigraph). The epigraph of a function f : S→ R is

epi( f ) .
= {(x, y) | f (x) ≤ y} ⊆ Rn+1. (5.7)

Exercise 5.10. The function f : S→ R is convex iff epi( f ) is convex.

Definition 5.11 ((Sub-)level set). Given a function f : S→ R, we call,

Sα( f ) .
= {x ∈ S | f (x) ≤ α}, (5.8)

Lα( f ) .
= {x ∈ S | f (x) = α}, (5.9)

its α-sub-level set and α-level set, respectively.

Exercise 5.12. Any α-sub-level set of a convex function is convex.2 2 Note that the other direction does not
hold! Take f (x) .

= x3 as an example.
Functions whose sub-level sets are
convex are called quasiconvex.5.2 First-order Characterization of Convexity

Figure 5.4: The first-order characteriza-
tion characterizes convexity in terms of
affine lower bounds.

Theorem 5.13 (First-order characterization of convexity). Consider a
differentiable function f : S→ R. Then, f is convex iff

f (y) ≥ f (x) +∇∇ f (x)⊤(y− x) (5.10)

for all x, y ∈ S. Moreover, f is strictly convex iff

f (y) > f (x) +∇∇ f (x)⊤(y− x) (5.11)
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Proof. We first prove the statement about convexity.

• “⇒”: Fix any x, y ∈ S. As f is convex,

f ((1− θ)x + θy) ≤ (1− θ) f (x) + θ f (y),

for all θ ∈ [0, 1]. We can rearrange to,

f ((1− θ)x + θy︸ ︷︷ ︸
x+θ(y−x)

)− f (y) ≤ θ( f (x)− f (y)).

Dividing by θ yields,

f (x + θ(y− x))− f (x)
θ

≤ f (y)− f (x).

Taking the limit θ → 0 on both sides gives the directional deriva-
tive at x in direction y− x,

∇∇ f (x)⊤(y− x) = D f (x)[y− x] ≤ f (y)− f (x).

• “⇐”: Fix any x, y ∈ S and let z .
= θy + (1− θ)x. We have,

f (y) ≥ f (z) +∇∇ f (z)⊤(y− z), and

f (x) ≥ f (z) +∇∇ f (z)⊤(x− z).

We also have (1− θ)(y− x) = y− z and θ(y− x) = x− z. Hence,

θ f (y) + (1− θ) f (x) ≥ f (z) +∇∇ f (z)⊤(θ(y− z) + (1− θ)(x− z)︸ ︷︷ ︸
0

)

= f (θy + (1− θ)x).

Finally, observe that the statement about strict convexity can be
proven analogously by making the inequalities strict.

Theorem 5.14. Let f : S → R be a convex and differentiable function.
Then, if x ∈ S is a stationary point of f , then x is a global minimum of f .

Proof. By the first-order characterization of convexity, we have for
any y ∈ S,

f (y) ≥ f (x) +∇∇ f (x)⊤︸ ︷︷ ︸
0

(y− x) = f (x).

5.3 Second-order Characterization of Convexity

Theorem 5.15 (Second-order characterization of convexity). Consider
a twice continuously differentiable function f : S→ R.3 3 Here we need our assumption that S is

open.1. f is convex iff H f (x) is positive semi-definite for all x ∈ S.
2. f is strictly convex iff H f (x) is positive definite for all x ∈ S.
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Proof. We first prove the statement about convexity.

• “⇐”: Fix any x, y ∈ S. By the second-order form of Taylor’s
theorem,

f (y) = f (x) +∇∇ f (x)⊤(y− x) +
1
2
(y− x)⊤H f (z)(y− x)︸ ︷︷ ︸

≥0

≥ f (x) +∇∇ f (x)⊤(y− x),

for some z ∈ [x, y]. This coincides with the first-order characteriza-
tion of convexity.

• “⇒”: Fix any x ∈ S and d ∈ Rn. Note that, as S is open, for small
enough λ ∈ [−ϵ, ϵ] \ {0}, x + λd ∈ S. We have,

0 ≤ f (x + λd)− [ f (x) + λ∇∇ f (x)⊤d] using the first-order characterization of
convexity

=
1
2

λ2d⊤H f (x)d + o(λ2 ∥d∥2
2). using a second-order expansion

Multiplying both sides by 2/λ2 and taking the limit λ → 0, we
obtain,

0 ≤ d⊤H f (x)d + lim
λ→0

o(λ2 ∥d∥2
2)

λ2 = d⊤H f (x)d.

The statement about strict convexity follows by using the first-
order characterization of strict convexity instead and replacing in-
equalities with strict inequalities.



6

Gradient Descent

Gradient descent is a method for solving minimization problems
such as eq. (5.1).

Definition 6.1 (Approximate solution). We say that a solution xk to
the optimization problem minx∈S f (x) is ϵ-approximate iff

f (xk)− f (x∗) ≤ ϵ (6.1)

for some ϵ > 0, where x∗ ∈ arg minx∈S f (x).

For this chapter, we assume that the optimization problem is un-
constrained, i.e., S = Rn. In chapter 8, we explore how we can solve
constrained optimization problems using Lagrange multipliers.

The idea of gradient descent is to iteratively take a step in the
opposite direction of the gradient starting from some initial point
x0 ∈ Rn,

xi+1 ← xi − α∇∇ f (xi), (6.2)

where α > 0 is some learning rate. TBD
Figure 6.1: Non-convex function.

When does gradient descent work? Clearly, we need that f is
convex, otherwise gradient descent might not converge to the global
minimum at all. But this is not enough! We also need to ensure that
the gradient of f does not change arbitrarily when making very small
steps, else the gradient direction would not be useful for us. This
property is often called smoothness.

TBD
Figure 6.2: Function whose gradient is
close to zero at a non-optimal point.

Finally, it is intuitively clear that we can do much better when we
can ensure that the gradient of f is only close to zero around its min-
imum. If not, that is, we (almost) have “saddle points”, the step size
of gradient descent will slow down and depending on the stopping
criterion we might even return a point that is not the minimizer. To
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exclude such functions from our analysis, we often assume that f
satisfies the PL condition, or else is strongly convex.

You can think of smoothness as providing a quadratic upper
bound to our function, whereas strong convexity provides a quadratic
lower bound.

6.1 Smoothness

Definition 6.2 (Smoothness). Let f : S → R be continuously differen-
tiable. We say, f is β-smooth for some β > 0 iff for any x, y ∈ S

∥∇∇ f (x)−∇∇ f (y)∥2 ≤ β ∥x− y∥2 . (6.3)

In other words, the gradient of f is β-Lipschitz.

Lemma 6.3. A twice continuously differentiable function f : S → R is
β-smooth iff for any x ∈ S, λmax(H f (x)) ≤ β.

Proof. TBD

Lemma 6.4. A continuously differentiable function f : S → R is β-smooth
iff for any x, y ∈ S,

f (y) ≤ f (x) +∇∇ f (x)⊤(y− x) +
β

2
∥y− x∥2

2 . (6.4)

In words, f (y) is upper bounded by a quadratic approximation
based at f (x).

Proof. TBD

Analysis of Gradient Descent

A natural approach is to choose the gradient step of each iteration
such that we minimize the upper bound (due to smoothness) based
at the current solution,

∇∇δ

(
f (xi) +∇∇ f (xi)

⊤δ +
β

2
∥δ∥2

2

)
= ∇∇ f (xi) + βδ

!
= 0, (6.5)

which is achieved for δ = − 1
β∇∇ f (xi). Thus,

f (xi+1)− f (xi) ≤ ∇∇ f (xi)
⊤δ︸ ︷︷ ︸

− 1
β ∥∇∇ f (xi)∥2

2

+
β

2
∥δ∥2

2︸ ︷︷ ︸
1

2β ∥∇∇ f (xi)∥2
2

= − 1
2β
∥∇∇ f (xi)∥2

2 . (6.6)

Moreover, due to the first-order characterization of convexity,

f (xi)− f (x∗) ≤ ∇∇ f (xi)
⊤(xi − x∗) ≤ ∥∇∇ f (xi)∥2 ∥xi − x∗∥2 , (6.7)
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where the second inequality follows from Cauchy-Schwarz. Combin-
ing the previous two inequalities,

f (xi+1)− f (xi) ≤ −
1

2β

(
f (xi)− f (x∗)
∥xi − x∗∥2

)2

≤ − 1
2β

(
f (xi)− f (x∗)
∥x0 − x∗∥2

)2

. using that ∥xi − x∗∥2 ≤ ∥x0 − x∗∥2,
which follows from f decreasing in
every iteration and convexity(6.8)

Theorem 6.5 (Convergence of gradient descent). Suppose f : Rn → R

is convex and β-smooth. The gradient descent scheme,

xi+1
.
= xi −

1
β
∇∇ f (xi), (6.9)

yields an ϵ-approximate solution xk for any

k ≥ 2β ∥x0 − x∗∥2
2

ϵ
.

Proof. We prove f (xk) − f (x∗) ≤ 2β∥x0−x∗∥2
2

k+1 by induction on the
length of the computation k. Suppose k = 0, then by the smoothness
of f ,

f (x0) ≤ f (x∗)−∇∇ f (x∗)⊤︸ ︷︷ ︸
0

(x0 − x∗) +
β

2
∥x0 − x∗∥2

2 .

For the induction step, suppose that the statement holds for the k-th
iterate. We write gapi

.
= f (xi)− f (x∗). Using eq. (6.8),

gapk+1 − gapk ≤ −
gap2

k

2β ∥x0 − x∗∥2
2

.

Dividing by gapk · gapk+1 and using that gapk+1 > 0 and gapk ≥
gapk+1, we have,

1
gapk

− 1
gapk+1

≤ −
gap2

k

2β ∥x0 − x∗∥2
2 gapkgapk+1

≤ − 1

2β ∥x0 − x∗∥2
2

.

Thus,

1
gapk+1

≥ 1

2β ∥x0 − x∗∥2
2

+
1

gapk
≥ (k + 1) + 1

2β ∥x0 − x∗∥2
2

using the induction hypothesis

6.2 Strong Convexity

We can improve our analysis, when we assume that f is strongly
convex, that is lower bounded by a quadratic. Intuitively, this ensures
that our steps are large when we are far away from the optimum.
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Definition 6.6 (Strong convexity). Let f : S → R be continuously
differentiable. We say, f is µ-strongly convex for some µ > 0 iff for any
x, y ∈ S,

f (y) ≥ f (x) +∇∇ f (x)⊤(y− x) +
µ

2
∥y− x∥2

2 . (6.10)

Lemma 6.7. A twice continuously differentiable function f : S → R is
µ-strongly convex iff for any x ∈ S, λmin(H f (x)) ≥ µ.

Proof. TBD

Corollary 6.8. If f is β-smooth and µ-strongly convex, then µ ≤ β.

Definition 6.9 (Condition number). We call κ
.
= β

µ the condition
number of a function f that is β-smooth and µ-strongly convex.

Often, a weaker condition known as PL condition is sufficient to
design fast algorithms.

Definition 6.10 (Polyak-Łojasiewicz inequality). A continuously
differentiable function f : S → R satisfies the PL inequality with
parameter µ > 0 iff

1
2
∥∇∇ f (x)∥2

2 ≥ µ( f (x)− f (x∗)), (6.11)

where x∗ ∈ arg minx∈S f (x).

Intuitively, the norm of the gradient is tied to the suboptimality of the
current solution.

Lemma 6.11. Let f : S → R be continuously differentiable and µ-strongly
convex. Then, f satisfies the PL condition.

Proof. As f is µ-strongly convex,

f (y) ≥ f (x) +∇∇ f (x)⊤(y− x) +
µ

2
∥y− x∥2

2 ,

for any x, y ∈ S. Taking the minimum with respect to y on both sides
yields,

f (x∗) ≥ f (x)− 1
2µ
∥∇∇ f (x)∥2

2 ,

as the right-hand side is minimized for y = x − 1
µ∇∇ f (x). The PL

inequality follows from rearranging the terms.
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Analysis of Gradient Descent

Theorem 6.12 (Convergence of gradient descent with a strongly
convex objective). Suppose f : Rn → R is µ-strongly convex and
β-smooth. The gradient descent scheme,

xi+1
.
= xi −

1
β
∇∇ f (xi), (6.12)

yields an ϵ-approximate solution xk for any

k ≥ κ log

(
β ∥x0 − x∗∥2

2
2ϵ

)
.

Proof. See the first graded homework.

Remark 6.13. It turns out that the PL condition is sufficient to estab-
lish this convergence rate.

6.3 Acceleration

We can get an algorithm that converges substantially faster than
vanilla gradient descent, using a method known as accelerated gradi-
ent descent. The key idea is to — instead of only tracking the upper
bound that is due to smoothness — also use track lower bounds. In
one iteration we might not make much progress in terms of reduc-
ing the upper bound (that is, improving our current solution), but
instead increase the upper bound, which still reduces the error.

Theorem 6.14 (Convergence of accelerated gradient descent). Suppose
f : Rn → R is convex and β-smooth. The accelerated gradient descent
scheme,

ai
.
=

i + 1
2

, Ai
.
=

(i + 1)(i + 2)
4

v0
.
= x0 −

1
2β
∇∇ f (x0)

yi
.
= xi −

1
β
∇∇ f (xi)

xi+1
.
=

Aiyi + ai+1vi
Ai+1

vi+1
.
= vi −

ai+1

β
∇∇ f (xi+1),

(6.13)

yields an ϵ-approximate solution xk for any

k ≥

√
2β ∥x0 − x∗∥2

2
ϵ

.
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Here, yi is the current solution (i.e., an upper bound), vi is a
lower bound, and xi a point that trades improving the lower/upper
bounds.

Proof. TBD

Acceleration with Strongly Convex Objectives

Theorem 6.15 (Convergence of accelerated gradient descent with a
strongly convex objective). Suppose f : Rn → R is µ-strongly convex
and β-smooth. The accelerated gradient descent scheme,

y0
.
= x0

yi+1
.
= xi −

1
β
∇∇ f (xi)

xi+1
.
= (1 + θ)yi+1 + θyi

(6.14)

for θ
.
=
√

κ−1√
κ+1 yields an ϵ-approximate solution xk for any

k ≥
√

κ log

(
β ∥x0 − x∗∥2

2
ϵ

)
.

Proof. See the first graded homework.
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Non-Euclidean Geometries

7.1 Mirror Descent
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Lagrange Multipliers and Duality

8.1 Separating Hyperplanes

Definition 8.1 (Hyperplane). A hyperplane of dimension n is the
subset,

H(n, µ)
.
= {x ∈ Rn | n⊤x = µ}, (8.1)

for some normal n ∈ Rn \ {0} and threshold µ ∈ R.

Every hyperplane divides Rn into two half-spaces {x | n⊤x ≤ µ}
and {x | n⊤x ≥ µ}. It separates two sets, if they lie in different
half-spaces.

Definition 8.2 (Separating hyperplane). We say a hyperplane H
separates two sets A, B iff

∀a ∈ A : n⊤a ≤ µ and

∀b ∈ B : n⊤b ≥ µ.
(8.2)

If the inequalities are strict, we say that H strictly separates A and B.

If A, B are non-convex, we are not guaranteed that a separating hy-
perplane exists (e.g., a point cannot be separated from a ring around
it). However, if we assume that A and B are convex, a separating
hyperplane always exists.

Fact 8.3 (Separating hyperplane theorem). Given two disjoint and non-
empty convex subsets A, B ⊆ Rn, there exists a separating hyperplane.

However, it is not true that there always exists a strictly separating
hyperplane. Consider A .

= {(x, y) | x ≤ 0} and B .
= {(x, y) | x >

0 and y ≥ 1
x}. Clearly they are disjoint and convex; however, the only

separating hyperplane is H = {(x, y) | x = 0}, which intersects A.
TBD
Figure 8.1: Example where no strictly
separating hyperplane exists.

When we also assume that A and B are closed and bounded, a
strictly separating hyperplane always exists.
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Theorem 8.4 (Separating hyperplane theorem; closed, bounded sets).
Given two disjoint, closed, bounded, and non-empty convex subsets A, B ⊆
Rn, there exists a strictly separating hyperplane.

If c ∈ A, d ∈ B are minimizers of mina∈A, b∈B ∥a− b∥2, then one such
hyperplane is given by,

n .
= d− c and µ

.
=

1
2

(
∥d∥2

2 − ∥c∥
2
2

)
. (8.3) TBD

Figure 8.2: Illustration of strictly sepa-
rating hyperplane.

Proof. We want to show that n⊤b > µ for all b ∈ B. Then, n⊤a < µ

for all a ∈ A follows by symmetry. We have,

n⊤d− µ = (d− c)⊤d− 1
2

(
∥d∥2

2 − ∥c∥
2
2

)
= ∥d∥2

2 − d⊤c− 1
2
∥d∥2

2 +
1
2
∥c∥2

2

=
1
2
∥d− c∥2

2 > 0. using the asusmption that A, B are
disjoint, close, and bounded, their
distance is positiveSuppose for a contradiction that there exists a u ∈ B such that n⊤u−

µ ≤ 0.

Consider the line defined by the distance minimizer d and the
point on the “wrong side” u, b(λ) .

= d + λ(u− d). Taking the deriva-
tive of the distance between b(λ) and c and evaluating it at λ = 0
(which is when b(λ) = d), we obtain,

d
dλ
∥b(λ)− c∥2

2

∣∣∣∣
λ=0

= 2(d− λd + λu− c)⊤(u− d)
∣∣∣
λ=0

= 2(d− c)⊤(u− d).

However,

n⊤u− µ = (d− c)⊤(u− d) + n⊤d− µ︸ ︷︷ ︸
>0

≤ 0,

implies that (d − c)⊤(u − d), and hence, the gradient are negative,
which contradicts the minimality of d.

8.2 Lagrange Multipliers and KKT Conditions

We will now discuss how we can treat constraints in a convex opti-
mization problem,

α∗
.
= min

y∈Rn

Ay=b
g(y)≤0

f (y), (8.4)

where f : Rn → R is convex, A ∈ Rm×n, b ∈ Rm, and we have k
convex constraints gi : Rn → R.
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Remark 8.5. The linear constraints Ay = b are not necessary, as they
can also be modeled using the (convex) constraints Ay− b ≤ 0 and
b − Ay ≤ 0. We include them here to see later that programs with
only linear constraints can be handled in a slightly different way.

We call this optimization problem the primal program and we will
later see that it has an associated dual problem. We say that y ∈ Rn is
primal feasible iff Ay = b and g(y) ≤ 0.

An Intuition TBD
Figure 8.3: Illustration of simple con-
strained optimization.

In the following, we want to answer the question: “When is a fea-
sible point optimal?” To simplify things a bit, let us consider the
optimization problem of minimizing f under the single constraint g.
Suppose we know the feasible optimum y∗. Then for infinitesimal
δ, if δ ⊥ ∇∇g(y∗), then y∗ + δ and y∗ − δ are feasible. But then we
must have that δ ⊥ ∇∇ f (y∗), or else one direction would improve the
objective. This tells us that,

δ⊤∇∇ f (y∗) = 0 = δ⊤∇∇g(y∗),

and hence, there exists some λ ∈ R such that ∇∇ f (y∗) = λ∇∇g(y∗).
This is the fundamental intuition behind a Lagrange multiplier: the
gradient of the objective at an optimal point is a linear combination
of the gradients of the (tight) constraints.

We say that the constraint gi is tight at y iff gi(y) = 0. We know
that if y is feasible, then y + δ is feasible for some infinitesimal δ if
for all constraints i ∈ [k] we have that either the constraint is not
tight, gi(y) < 0, or y + δ is “more” feasible, δ⊤∇∇gi(y) ≤ 0. The last
condition tells us that for each tight constraint gi, we get a half-space
of feasible directions.

TBD
Figure 8.4: Each tight constraint yields a
half-space of feasible directions.

On the other hand, if y∗ + δ is feasible, then the objective f must
“worsen”, δ⊤∇∇ f (y∗) ≥ 0.

We can therefore write the gradient of f at y∗ as a linear combina-
tion of the gradients of tight constraints.1 Therefore, for some x ∈ Rm 1 Note that linear constraints are always

tight.and s ∈ Rk with s(i) ≥ 0 if gi(y∗) = 0 and s(i) = 0 otherwise,

−∇∇ f (y∗) =
k

∑
i=1

s(i)∇∇gi(y∗) +
m

∑
j=1

x(j)A(j, :). (8.5)

The variables s and x are called the dual variables and are said to be
dual feasible iff s ≥ 0. If y is also primal feasible, we say that (y, x, s)
are primal-dual feasible. Equation (8.5) is equivalent to

∇∇ f (y∗) +∇∇g(y∗)⊤s + A⊤x = 0 (8.6)



54 graph algorithms and optimization

along with the condition g(y∗)⊤s = 0, ensuring that s(i) = 0 when
constraint gi is not tight.

Definition 8.6 (Karush-Kuhn-Tucker (KKT) conditions and La-
grangian). Points y ∈ Rn, x ∈ Rm, s ∈ Rk satisfy the Karush-Kuhn-
Tucker conditions iff,

∇∇yL(y, x, s) = 0 gradient condition (8.7)

g(y)⊤s = 0 complementary slackness ensures that s(i) is forced to 0 when
constraint gi is not tight

(8.8)

g(y) ≤ 0 and Ay = b primal feasibility (8.9)

s ≥ 0 dual feasibility, (8.10)

where

L(y, x, s) .
= f (y) + s⊤g(y) + x⊤(b− Ay) (8.11)

is the Lagrangian of the optimization problem.

Remark 8.7. Note that,

∇∇yL(y, x, s) = ∇∇ f (y) +∇∇g(y)⊤s + A⊤x,

which coincides with our intuition from eq. (8.6).

Intuitively, if (y, x, s) satisfy the KKT conditions, then y is optimal.
It turns out that this intuition is correct, and we will prove this in the
following section.

8.3 Lagrangian Duality

We have that if (y, x, s) are primal-dual feasible,

L(y, x, s) = f (y) + s⊤︸︷︷︸
≥0

g(y)︸︷︷︸
≤0

+x⊤(b− Ay︸ ︷︷ ︸
0

) ≤ f (y). (8.12)

We can also write the primal problem as a two-player game in terms
of the Lagrangian,

α∗ = min
y∈Rn

Ay=b
g(y)≤0

f (y) = min
y∈Rn

max
x∈Rm

s∈Rk
s≥0

L(y, x, s). (8.13)

This is because for a minimizing y all constraints have to be satisfied
and the Lagrangian simplifies to L(y, x, s) = f (y). If b − Ay = 0
was violated, making x large sends L(y, x, s) → ∞. If g(y) ≤ 0 was
violated, making s large sends L(y, x, s)→ ∞.

We therefore have for any dual feasible (x, s),

α∗ = f (y∗) ≥ L(y∗, x, s) ≥ min
y∈Rn

L(y, x, s) .
= L(x, s). (8.14)
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Definition 8.8 (Dual program). The dual program is given as,

β∗
.
= max

x∈Rm

s∈Rk
s≥0

L(x, s) = max
x∈Rm

s∈Rk
s≥0

min
y∈Rn

L(y, x, s). (8.15)

Theorem 8.9 (Weak duality). β∗ ≤ α∗.

Proof. This follows immediately from eq. (8.14).

Remark 8.10. Observe that the dual program is a convex optimization
problem in disguise. We can equivalently consider the optimization
problem,

−β∗ = min
x∈Rm

s∈Rk
s≥0

−L(x, s) = min
x∈Rm

s∈Rk
s≥0

max
y∈Rn

−L(y, x, s). (8.16)

Note that −L(y, x, s) is a linear function in the dual variables, hence
convex, and −L(x, s) is a maximum of these functions, so also con-
vex.

Definition 8.11 (Strong duality). If α∗ = β∗, we say that strong duality
holds.

Remark 8.12. It is immediately clear that if we consider linear pro-
grams, that is, we have only linear constraints, strong duality always
holds. This is because at any primal-dual feasible point (y, x), we
have that by definition L(y, x) = f (y).

Before we analyze when strong duality holds, let us return to the
KKT conditions and confirm our intuition from the previous section.

Theorem 8.13 (KKT conditions are necessary). If strong duality holds,
then the KKT conditions hold for primal-dual optimal (y∗, x∗, s∗).

Proof. By strong duality,

L(y∗, x∗, s∗) = α∗ = β∗.

As L(y, x∗, s∗) is a convex function in y, we have that

∇∇yL(y, x∗, s∗)
∣∣
y=y∗ = 0,

so the gradient condition is satisfied. Moreover, we have,

f (y∗) = α∗ = L(y∗, x∗, s∗) = f (y∗) + s⊤g(y∗) + x⊤(b− Ay︸ ︷︷ ︸
0

),

so s⊤g(y∗) = 0 (complementary slack) holds. By assumption,
(y∗, x∗, s∗) are primal-dual feasible.
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Theorem 8.14 (KKT conditions are sufficient). If the KKT conditions
hold at (ŷ, x̂, ŝ), then they are primal-dual optimal and strong duality holds.

Proof. Because L(y, x̂, ŝ) is a convex function, by the gradient condi-
tion, ŷ is its global minimizer. Therefore,

L(ŷ, x̂, ŝ) = min
y∈Rn

L(y, x̂, ŝ) = L(x̂, ŝ) ≤ β∗.

At the same time, using primal-dual feasibility and complementary
slack,

L(ŷ, x̂, ŝ) = f (ŷ) + ŝ⊤g(ŷ)︸ ︷︷ ︸
0

+x̂⊤(b− Aŷ︸ ︷︷ ︸
0

) = f (ŷ) ≥ α∗.

Therefore, α∗ ≤ β∗. By weak duality, we get the opposite inequality,
and hence strong duality holds.

8.4 Slater’s Condition

We will now discuss under which circumstances strong duality
holds. In general, we can have that strong duality does not hold.

Example 8.15. TBD

Definition 8.16 (Slater’s condition). Slater’s condition is satisfied iff
there exists some y ∈ Rn such that Ay = b and g(y) < 0.2 We say 2 This is satisfied by most useful opti-

mization problems.that y is strictly feasible.

Theorem 8.17. If Slater’s condition holds, then strong duality holds.

Proof. TBD

8.5 Example: Duality of Maximum Flow and Minimum Cut

We can write the (directed) maximum flow problem in a graph G as,

max
F∈R

f∈R|E|

B f=F(1t−1s)
0≤ f≤c

F = − min
F∈R

f∈R|E|

B f=F(1t−1s)
0≤ f≤c

−F. (8.17)

Here, 0 ≤ f ensures that directions are respected, and f ≤ c ensures
that edge capacities are respected. F(1t − 1s) is the demand of a
flow routing F units from t to s. Observe that when there exists an
s-t path, then there are flows f strictly satisfying the constraint 0 ≤
f ≤ c, and hence, Slater’s criterion is satisfied. By strong duality, the
above program is equivalent to its dual program,

− max
x∈R|V|

s∈R|E|
s≥0

min
F∈R

f∈R|E|

f≥0

−F + s⊤( f − c) + x⊤(F(1t − 1s)− B f ) (8.18)
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= min
x∈R|V|

s∈R|E|
s≥0

(1t−1s)⊤x=1
s≥B⊤x

s⊤c (8.19)

= min
x∈R|V|

(1t−1s)⊤x=1

∑
e∈E

max{(B⊤x)(e), 0} · c(e). (8.20)

Observe that the dual program is a linear program computing the
minimum cut.

8.6 Fenchel Conjugates

Definition 8.18 (Fenchel conjugate). Given a function f : S → R, its
Fenchel conjugate is the function f ∗ : Rn → R,3 3 In principle, f ∗ is a function defined

over the dual space of S, but this will
not be very important to us.f ∗(z) .

= sup
y∈S

z⊤y− f (y). (8.21)

Remark 8.19. f ∗ is convex, as it is the maximum of linear functions.

Example 8.20. Let us consider the function f (y) .
= ∥y∥. Then we have,

f ∗(z) = sup
y∈Rn

z⊤y− ∥y∥︸︷︷︸
.
=θ

Recall that

θ ∥z∥∗ = max
y∈Rn

∥y∥=θ

z⊤y.
= sup

θ≥0
θ(∥z∥∗ − 1)

=

∞ ∥z∥∗ > 1

0 otherwise.
(8.22)

Example 8.21. For the function f (y) .
= 1

p ∥y∥
p
p, we have that f ∗(z) =

1
q ∥z∥

q
q, where 1

p + 1
q = 1.

Example 8.22. When we have a primal program with only linear
constraints,

min
y∈Rn

Ay=b

f (y),

we can write the dual program as,

max
x∈Rm

min
y∈Rn

f (y) + x⊤(b− Ay) = max
x∈Rm

b⊤x−max
y∈Rn

(x⊤Ay− f (y))

= max
x∈Rm

b⊤x− f ∗(A⊤x). (8.23)

Lemma 8.23 (Properties of the Fenchel conjugate). If f is strictly convex
(i.e., H f ≻ 0) and ∇∇ f is a surjective mapping onto Rn,
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1. ∇∇ f (∇∇ f ∗(z)) = z and ∇∇ f ∗(∇∇ f (y)) = y;
2. ( f ∗)∗ = f ; and
3. H f ∗(∇∇ f (y)) = H−1

f (y).4 4 Thus, if f is β-smooth, f ∗ is β-strongly
convex. In other words, f ∗ has the
“opposite” curvature of f .

Proof. TBD
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Introduction to Spectral Graph Theory

Spectral graph theory studies graphs through linear algebra. The
fundamental object that we will work with is the Laplacian matrix
that we introduced in definition 1.4.

10.1 Eigenvalues of the Laplacian Matrix

Lemma 10.1. Denote by X1 ∪ · · · ∪ Xk = V the connected components of a
graph G. Then we have for the Laplacian matrix L of G,

ker L = span{1X1 , . . . , 1Xk}, (10.1)

where 1X(v) = 1{v ∈ X}. In particular, ker L = span{1} if G is con-
nected.

Proof. TBD

Corollary 10.2. When G has k connected components, then λi(L) = 0 for
all i ∈ [k].

In the following, we will study connected graphs. If a graph con-
sists of multiple connected components, we may study each individu-
ally.

Lemma 10.3. L ⪯ 2D.

Proof. It can be shown that D + A ⪰ 0,1 so, D ⪰ −A, and hence, 1 The proof is similar to the proof that
L = D − A ⪰ 0. D + A is also called
the signless Laplacian matrix and is an
interesting object in its own right: its
eigenvalues can be used to count edges
and identify bipartite components.

L ⪯ 2D.

Electrical Energy

Lemma 10.4. For any voltages x ∈ R|V|,

λ2(L) ∥x∥2
2 ≤ E(x) ≤ λn(L) ∥x∥2

2 . (10.2)
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Proof. TBD

Lemma 10.5. Voltages x ∈ R|V| routing demands d ⊥ 1 satisfy,

∥d∥2
2

λn(L)
≤ E(x) ≤ ∥d∥

2
2

λ2(L)
. (10.3)

Proof. Recall from eq. (1.18) that E(x) = d⊤L+d. Using Courant-
Fischer,

λn(L+) = max
x ̸=0

x⊤L+x

∥x∥2
2

≥ d⊤L+d

∥d∥2
2

λ2(L+) = min
x ̸=0
x⊥1

x⊤L+x

∥x∥2
2

≤ d⊤L+d

∥d∥2
2

, using that ker L+ = ker L = span{1}

using that d ̸= 0 and d ⊥ 1. Rearranging the inequalities, we obtain,

λ2(L+) ∥d∥2
2 ≤ d⊤L+d ≤ λn(L+) ∥d∥2

2 .

Finally, recall from eq. (2.16) that λ2(L+) = λn(L)−1 and λn(L+) =

λ2(L)−1.

Useful Inequalities

Lemma 10.6 (Path inequality). We have that

(n− 1)Pn ⪰ G1,n, (10.4)

where Pn is the unit weight path graph on n vertices and Gi,j is the unit
weight graph on n vertices with the single edge {i, j}.

Proof. Fix any x ∈ Rn and let

∇

(i) .
= x(i + 1)− x(i). We have,

x⊤G1,nx = (x(n)− x(1))2

=

(
n−1

∑
i=1

∇

(i)

)2

= (1⊤n−1

∇

)2

≤ ∥1n−1∥2
2 ∥

∇

∥2
2 using Cauchy-Schwarz

= (n− 1)
n−1

∑
i=1

∇

(i)2

= (n− 1)
n−1

∑
i=1

(x(i + 1)− x(i))2

= (n− 1)x⊤Pnx.
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Lemma 10.7. For any unit weight graph G on n vertices with diameter2 D, 2 The diameter of a graph is the maxi-
mum shortest distance between any two
vertices.λ2(G) ≥ 1

nD
. (10.5)

Proof. We denote by Gi,j the subgraph of G consisting of the shortest
i− j path. We have,

Kn = ∑
i<j

Gi,j ⪯∑
i<j

(j− i)︸ ︷︷ ︸
≤D

Gi,j︸︷︷︸
⊆G

analogously to the path inequality

⪯ n2DG.

Thus, n2Dλ2(G) ≥ λ2(Kn) = n, and hence, λ2(G) ≥ 1
nD .

10.2 Examples

Lemma 10.8 (Spectrum of the complete graph).

λ2(Kn) = · · · = λn(Kn) = n. (10.6)

Proof. We have, A = 11⊤ − I and D = (n− 1)I, so L = nI − 11⊤. For
any x ⊥ 1, Lx = nx.

We now want to better understand λ2 and λn for some common
graphs. The tools we will use are the following:

• to lower bound λ2(G): Relate the eigenvalues of Kn and G, yield-
ing Kn ⪯ f (n)G. Knowing that λ2(Kn) = n, we have, f (n)λ2(G) ≥
n, and hence, λ2(G) ≥ n

f (n) .
• to upper bound λ2(G): Due to Courant-Fischer,

λ2(G) = min
x⊥1
x ̸=0

x⊤Lx
x⊤x

≤ y⊤Ly
y⊤y

,

for any y ⊥ 1, y ̸= 0. We can therefore find a so-called test vector y
with these properties.

• to lower bound λn(G): Similarly, due to Courant-Fischer,

λn(G) = max
x ̸=0

x⊤Lx
x⊤x

≥ y⊤Ly
y⊤y

,

for any y ̸= 0.
• to upper bound λn(G): Using that L ⪯ 2D, we have, λn(G) ≤

2 maxv∈V d(v), where d(v) is the weighted degree of v.

Path Graph

Exercise 10.9. λ2(Pn) = Θ
(

1
n2

)
.

Exercise 10.10. λn(Pn) ∈ [1, 4].
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Complete Binary Tree

Exercise 10.11. λ2(Td) = Θ
(

1
n

)
.

Exercise 10.12. λn(Td) ∈ [1, 6].
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Conductance and Expanders

11.1 Conductance

Definition 11.1 (Volume). The volume of a set of vertices S ⊆ V is the
sum of weighted degrees,

vol(S) .
= ∑

v∈S
d(v) = 1⊤S d = 1⊤S D1S. (11.1)

A cut (S, V \ S) is a proper subset of vertices, ∅ ⊂ S ⊂ V partition-
ing vertices into two sets S and V \ S.

Definition 11.2 (Value of a cut). The value of a cut (S, V \ S) is the
sum of weights of crossing edges,

c(S) .
= ∑

{a,b}∈E
a∈S, b∈V\S

w({a, b})

= ∑
{a,b}∈E

w({a, b})[1S(a)− 1S(b)]2 = 1⊤S L1S.
(11.2)

Definition 11.3 (Conductance of a cut). The conductance of a cut
(S, V \ S) is,

ϕ(S) .
=

c(S)
min{vol(S), vol(V \ S)} = ϕ(V \ S) ∈ [0, 1], (11.3)

where, if the graph has unit weights, c(S) = |E(S, V \ S)| counts the
number of crossing edges.

Remark 11.4. If vol(S) ≤ vol(V \ S), then we can write

ϕ(S) =
1⊤S L1S

1⊤S D1S
. (11.4)
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Definition 11.5 (Conductance of a graph). The conductance of a graph
G is the smallest conductance of all cuts,

ϕ(G)
.
= min

∅⊂S⊂V
ϕ(S). (11.5)

Thus, ϕ(G) is small if there is a “good” cut (with few crossing
edges relative to the volume of the parts). In contrast, if ϕ(G) is large,
then G is well-connected, i.e., there is no “good” cut.

Definition 11.6 (Expander and expander decomposition). For any
ϕ ∈ (0, 1], if ϕ(G) ≥ ϕ, then G is called a ϕ-expander.

A ϕ-expander decomposition of quality q is a partition of the vertex
set V = X1 ∪ · · · ∪ Xk such that

1. G[Xi] is a ϕ-expander; and
2. the number of edges not contained in any G[Xi] is at most qϕm, i.e.

only “few” edges cross the parts.

In chapter 17, we discuss how we can efficiently find an expander
decomposition. Let us consider a few examples.

Exercise 11.7. ϕ(Kn) =
n

2(n−1) . So Kn is a 1
2 -expander.

Exercise 11.8. ϕ(Pn) =
1

n−1 . So Pn is a 1
n -expander.

Lemma 11.9. If G is a connected ϕ-expander with unit weights, then we
have for the diameter D of G,

D = O
(

log m
ϕ

)
. (11.6)

Proof. Fix any pair of vertices s, t ∈ V. Let B(s, d) be the closed ball
around s of radius d. Let E(B(s, d)) be the internal edge set of B(s, d).

Observe that since G is connected, we have |E(B(s, 0))| ≥ 1. More-
over, for each d ≥ 0 where |E(B(s, d))| ≤ m

2 , we have by the definition
of a ϕ-expander that

|E(B(s, d), V \ B(s, d))| ≥ ϕ · |E(B(s, d))|.

Thus, |E(B(s, d + 1))| ≥ (1 + ϕ)|E(B(s, d))|. Let dmax be the largest
integer such that |E(B(s, dmax))| ≤ m/2. We have dmax ≤ 2 log m/ϕ as
otherwise,

|E(B(s, dmax))| > (1 + ϕ)
2 log m/ϕ ≥ (1 + ϕ/2 + (ϕ/2)2)

2 log m/ϕ ≥ elog m = m, using ex < 1 + x + x2 for x < 1.79

which gives a contradiction to the fact that the number of edges in G
is m. Thus, for a radius of 2 log m/ϕ + 1, the ball centered at s has more
than m/2 edges.
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Finally, follow the same argument from t. As both balls contain
more than m/2 edges, they must intersect in at least one edge. But this
implies that there is a s-t path of length O(log m/ϕ).

11.2 Cheeger’s Inequality

Theorem 11.10 (Cheeger’s inequality). We have for a graph G and its
normalized Laplacian matrix N,

λ2(N)

2
≤ ϕ(G) ≤

√
2λ2(N). (11.7)

In words, λ2(N) approximates the conductance ϕ(G) up to a square
root. This is why we say that λ2(N) is a measure of connectivity of a
graph.

Proof. TBD

11.3 Sparsity

A concept related to conductance is the notion of sparsity.

Definition 11.11 (Sparsity). The sparsity of a cut (S, V \ S) is,

ψ(S) .
=

c(S)
min{|S|, |V \ S|} = ψ(V \ S) ∈ [0, max

v∈V
d(v)]. (11.8)

The sparsity of a graph is again defined as the smallest sparsity of all
cuts.

Remark 11.12. If |S| ≤ |V \ S|, then we can write

ψ(S) =
1⊤S L1S

1⊤S 1S
. (11.9)

Intuitively, sparsity corresponds to a non-normalized variant of
conductance. Sometimes it is easier to reason about sparsity than it is
to reason about conductance.

Lemma 11.13. We have for any cut (S, V \ S) in a connected unit weight
graph that ψ(S) ≥ ϕ(S).

Proof. As the graph is connected and has unit weights, vol(S) =

∑v∈S d(v) ≥ |S|.

An alternative version of Cheeger’s inequality relates the second
eigenvalue of L (not N!) to the sparsity of the graph.
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Fact 11.14 (Cheeger’s inequality for sparsity). We have for a graph G
and its Laplacian matrix L,

λ2(L)
2
≤ ψ(G) ≤

√
2λ2(L)max

v∈V
d(v). (11.10)
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Effective Resistance

Definition 12.1 (Effective resistance). The effective resistance,

Reff(a, b) .
= min

f∈R|E|

B f=1b−1a

E( f ) = min
f∈R|E|

B f=1b−1a

f⊤R f , (12.1)

is the minimum electrical energy required to route one unit of flow
from a to b.

Remark 12.2. Per definition of electrical energy, routing F units of flow
from a to b costs F2Reff(a, b).

Let us first consider a few examples. TBD
Figure 12.1: Sequential resistors.

Example 12.3. For the graph of fig. 12.1, Reff(1, k + 1) = ∑k
i=1 r(i).

Proof sketch. For the flow to be 1, by Ohm’s law, the voltage differ-
ence across edge i must be r(i). TBD

Figure 12.2: Parallel resistors.

Example 12.4. For the graph of fig. 12.2, Reff(1, 2) = 1
∑k

i=1 1/r(i)
.

Proof sketch. For the flow to be 1, by Ohm’s law, we must have,

1 =
k

∑
i=1

x̃({1, 2})
r(i)

,

where x̃({1, 2}) is the voltage difference between vertices 1 and 2.
Note that Reff(1, 2) = x̃({1, 2}).

Lemma 12.5. Reff(a, b) =
∥∥∥L+/2(1b − 1a)

∥∥∥2

2
.

Proof. As the electrical flow f̃ is energy-minimizing, we have that
Reff(a, b) = f̃⊤R f̃ . Recall that by Ohm’s law this flow corresponds to
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voltages x̃ solving Lx̃ = 1b − 1a, that is, x̃ = L+(1b − 1a). We obtain,

Reff(a, b) = f̃⊤R f̃ = x̃⊤Lx̃ = (1b − 1a)
⊤L+LL+(1b − 1a)

= (1b − 1a)
⊤L+(1b − 1a) using that 1b − 1a ⊥ 1

=
∥∥∥L+/2(1b − 1a)

∥∥∥2

2
.

Lemma 12.6. If G is a ϕ-expander, then

Reff(a, b) ≤ 2ϕ−2
(

1
d(b)

+
1

d(a)

)
. (12.2)

Proof. By Cheeger’s inequality,

ϕ ≤ ϕ(G) ≤
√

2λ2(N) =⇒ ϕ2

2
≤ λ2(N).

By Courant-Fischer, we have that for any y ⊥ ker N,

ϕ2

2
≤ λ2(N) ≤ y⊤Ny

y⊤y
=⇒ ϕ2

2
y⊤y ≤ y⊤Ny.

Equivalently,

ϕ2

2
ΠN ⪯ N, using that ΠN v = v for v ⊥ ker N, and

ΠN v = 0 if v ∈ ker N

where ΠN is the projection orthogonal to the kernel of N. From this
we conclude that

2ϕ−2ΠN = 2ϕ−2Π+
N ⪰ N+, using Π+

N = ΠN

as A ⪰ B implies A+ ⪯ B+ when ker A = ker B. By eq. (2.18),

N+ = (D−1/2LD−1/2)+ = ΠN D1/2L+D1/2ΠN (12.3)

Therefore, for any y ⊥ ker N,

2ϕ−2y⊤y ≥ y⊤N+y = y⊤D1/2L+D1/2y.

Substituting z .
= D−1/2y, we obtain,

2ϕ−2z⊤D−1z ≥ z⊤L+z.

Finally, observe that for z .
= 1b − 1a, we have that y = D1/2(1b − 1a) ⊥

ker N as 1b − 1a ⊥ ker L and therefore,1 1 We have for the kernel of the
normalized Laplacian matrix,
N = D−1/2 LD−1/2, that ker N =
D1/2 ker L = span{D1/21}.Reff(a, b) = z⊤L+z ≤ 2ϕ−2z⊤D−1z = 2ϕ−2

(
1

d(b)
+

1
d(a)

)
.

Lemma 12.7. E[Ca,b] = ∥d∥1 Reff(a, b).
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Proof. Recall that E[Ca,b] = (1a − 1b)
⊤ x̃ for a solution x̃ to Lx̃ =

∥d∥1 (1a − 1b), that is, x̃ = ∥d∥1 L+(1a − 1b). Now, observe that,

Reff(b, a) = (1a − 1b)
⊤L+(1a − 1b) =

1
∥d∥1

(1a − 1b)
⊤ x̃.

Thus, E[Ca,b] = ∥d∥1 Reff(b, a). Using symmetry of the commute time,
E[Ca,b] = E[Cb,a] = ∥d∥1 Reff(a, b).

Corollary 12.8. Effective resistance is symmetric.

Remark 12.9. For an edge e = {a, b} ∈ E, we write,

Reff(e)
.
= Reff(a, b) = Reff(b, a). (12.4)

12.1 Effective Resistance as a Metric

Before showing that effective resistance is a metric on the set of ver-
tices, we consider the following lemma. We will write,

x̃a,b
.
= L+(1b − 1a), (12.5)

for the electrical voltages required to route one unit of current from a
to b.

Lemma 12.10. If x̃a,b is a solution to Lx̃a,b = 1b − 1a, then we have for all
c ∈ V that x̃a,b(b) ≥ x̃a,b(c) ≥ x̃a,b(a).

Proof sketch. Consider any c ∈ V \ {a, b}. Then, (Lx̃a,b)(c) = 0. Thus,(
∑
v∼c

w({v, c})
)

x̃a,b(c)−
(

∑
v∼c

w({v, c})x̃a,b(v)

)
= 0.

So, we have,

x̃a,b(c) =
∑v∼c w({v, c})x̃a,b(v)

∑v∼c w({v, c}) .

In words, the electrical voltage of c is a weighted average of the volt-
ages of its neighbors. It follows that the voltages of a and b take the
largest absolute values.

Definition 12.11 (Metric). A metric on a set S is a function d : S× S→
R such that for any a, b, c ∈ S,

1. d(a, b) = 0 ⇐⇒ a = b;
2. d(a, b) ≥ 0;
3. d(a, b) = d(b, a); and
4. d(a, b) ≤ d(a, c) + d(c, b).
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Lemma 12.12. Effective resistance is a metric on V.

Proof. It is easy to check that properties (1) and (2) are satisfied. We
have that property (3) is satisfied by corollary 12.8.

Let us therefore consider property (4), the triangle inequality. We
have,

x̃a,b = L+(1b − 1a) = L+(1c − 1a + 1b − 1c) = x̃a,c + x̃c,b,

This we can use to rephrase the effective resistance,

Reff(a, b) = (1b − 1a)
⊤ x̃a,b = (1b − 1a)

⊤(x̃a,c + x̃c,b)

= x̃a,c(b)− x̃a,c(a) + x̃c,b(b)− x̃c,b(a)

≤ x̃a,c(c)− x̃a,c(a) + x̃c,b(b)− x̃c,b(c) using lemma 12.10

= (1c − 1a)
⊤ x̃a,c + (1b − 1c)

⊤ x̃c,b

= Reff(a, c) + Reff(c, b).
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Spectral Graph Sparsification

Many combinatorial graph algorithms perform better on sparse
graphs. In this chapter, we will see that for any dense graph, we can
find a sparse graph with approximately the same Laplacian matrix as
measured by quadratic forms.

Definition 13.1 (Matrix approximation). Given A, B ∈ Sn
+ and ϵ > 0,

we say,

A ≈ϵ B iff
1

1 + ϵ
A ⪯ B(1 + ϵ)A. (13.1)

Given some graph G = (V, E, w), our goal is to find a graph
G̃ = (V, Ẽ, w̃) such that |Ẽ| ≪ |E| and LG ≈ϵ LG̃. We will write
L .
= LG and L̃ .

= LG̃.

Lemma 13.2. If L ≈ϵ L̃, then for any cut (S, V \ S),

1
1 + ϵ

cG(S) ≤ cG̃(S) ≤ (1 + ϵ)cG(S). (13.2)

Proof. Recall that cG(S) = 1⊤S L1S. The statement follows immediately
by comparing the quadratic forms.

Theorem 13.3 (Spectral graph approximation by sampling). For any
ϵ, δ ∈ (0, 1) and sampling probabilities,

pe
.
= min{αw(e)Reff(e), 1}, (13.3)

of each edge e ∈ E for some scaling parameter α > 0 such that if e ∈ Ẽ with
probability pe and w̃(e) .

= w(e)/pe, then with probability at least 1− δ the
graph G̃ = (V, Ẽ, w̃) satisfies,1 1 Daniel A Spielman and Nikhil Srivas-

tava. Graph sparsification by effective
resistances. SIAM Journal on Computing,
40(6):1913–1926, 2011

L ≈ϵ L̃ and |Ẽ| = O
(n

ϵ
log
(n

δ

))
.
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Proof. TBD

Remark 13.4. It can be shown that to compute the sampling prob-
abilities pe, it is sufficient to solve Laplacian linear systems to find
sufficiently good approximations to the effective resistances.
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Solving Laplacian Linear Systems

We have seen by now that many problems can be reduced to solving
a Laplacian linear system Lx = d where d ∈ im L = (ker L)⊥. Re-
call that we can obtain a Cholesky decomposition L = LL⊤ where
L is lower-triangular and positive semi-definite. If L (and therefore
L) were invertible, then we have seen that the linear system can be
solved in time O(nnzL). However, we know that L is not invertible
as ker L ̸= {0}. It turns out that we can still use of a Cholesky de-
composition in solving Laplacian linear systems because we have a
simple characterization of the kernel of L. This we will discuss first,
then we discuss how to efficiently compute the Cholesky decomposi-
tion.

Theorem 14.1. We can solve the linear system Lx = d where d ⊥ 1
in time O

(
n3) by first computing a Cholesky decomposition of L using

Gaussian elimination and then applying the pseudoinverse L+ to d.

Finally, we will see that we can find approximate solutions in
almost linear time.

14.1 Dealing with pseudoinverses

A natural approach is to characterize the pseudoinverse L+ in terms
of the lower triangular matrix L.

Lemma 14.2. Given a factorization L = LL⊤ where L is lower triangular
and all diagonal entries are strictly non-zero except that L(n, n) = 0, we
can apply L+ in time O(n).

Proof. Consider the matrix L̂, which is identical to L except that
L̂(n, n) = 1. Let D be the diagonal matrix with D(i, i) = 1 for i < n
and D(n, n) = 0. Then, LL⊤ = L̂DL̂⊤ and L̂ is invertible. By
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claim 2.35, we have

L+ = ΠL(L̂⊤)−1D+L̂−1ΠL,

where ΠL is the orthogonal projection to the kernel of L. Note that
ΠL = I − 1

n 11⊤, as this satisfies ΠLv = v for v ⊥ 1 and ΠLv = 0 for
v ∈ span{1}. We also have D+ = D.

Finally, observe that ΠL and D can be applied in time O(n); and
by lemma 2.36, we can apply L̂−1 and (L̂⊤)−1 in time O(nnzL).

14.2 Computing the Cholesky Decomposition

Theorem 14.3 (Cholesky decomposition on graph Laplacians). Us-
ing Gaussian elimination, we can compute in O

(
n3) time a factorization

L = LL⊤, where L is lower triangular and has positive diagonal entries
except that L(n, n) = 0.

Proof. Let L(0) .
= L. For i ∈ [n− 1], we define,

li
.
=

1√
L(i−1)(i, i)

L(i−1)(:, i) and

L(i) .
= L(i−1) − lil⊤i .

Claim 14.4. Fix some i < n. Let U .
= {i + 1, . . . , n}. Then, L(i)(i, j) = 0

if i ̸∈ U or j ̸∈ U; and L(i) is a graph Laplacian matrix of a connected graph
on the vertex set U.

It follows that L(n−1) = 0n×n because the only graph on a single
vertex is the empty graph. From this, we have that L = ∑n−1

i=1 lil⊤i , so
L = [l1 · · · ln−1 0], provided that li is well-defined, i.e., L(i−1)(i, i) ̸= 0
for all i < n. But this follows immediately from the claim, as the
diagonal of the Laplacian matrix of a connected graph on more than
one vertex must be strictly positive (as the degrees must be non-zero).

In each iteration, we compute L(i) in time O
(
n2) and we proceed

for O(n) iterations.

Proof sketch of claim 14.4. We focus on the first elimination, the re-
maining are similar. We write,

L(0) = L .
=

[
w −a⊤

−a diag(a) + L−1

]
,

where L−1 is defined to make the equality work. We have that,

l1 =
1√
w

[
w
−a

]
and l1l⊤1 =

[
w −a⊤

−a 1
w aa⊤

]
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Therefore,

L(1) = L(0) − l1l⊤1 =

[
0 0⊤

0 S(1)

]
,

where S(1) .
= L+1 + L−1 and L+1

.
= diag(a) − 1

w aa⊤. S(1) is also
called the Schur complement. We can also phrase it differently as,

l1l⊤1 =

[
w −a⊤

−a diag(a)

]
−
[

0 0⊤

0 diag(a)− 1
w aa⊤

]
(14.1)

.
= Star(1, L)− Clique(1, L). (14.2)

It remains to show that S(1) is the Laplacian matrix of a connected
graph on the vertex set {2, . . . , n}.

TBD
Figure 14.1: S(1) is the Laplacian matrix
of the graph, where the first vertex was
removed and all of its neighbors are
made to be in a clique.Observe that the sum of two Laplacian matrices is a again a graph

Laplacian. Therefore, L−1 is a graph Laplacian by definition. It is
easy to check that by the characterization of exercise 1.12, L+1 also
is a graph Laplacian, which represents a clique formed by the neigh-
bors of vertex 1. Hence, S(1) = L+1 + L−1 is a graph Laplacian.

It remains to show that the underlying graph is connected. Con-
sider any i, j ∈ V \ {1}. There exists an i-j path P in the graph of L.
If P does not use vertex 1, then P is a path in the graph of L−1. If P
does use vertex 1, it does so using some edges (u, 1) and (1, v). Re-
placing the two edges with the edge (u, v), which appears in L+1 as
L+1(u, v) < 0, yields a path in the graph of S(1).

14.3 Approximate Almost Linear-Time Solvers

Definition 14.5 (Approximate solution to linear system). We say that
x̃ is an ϵ-approximate solution to the linear system Ax = b iff

∥x̃− x∗∥2
A ≤ ϵ ∥x∗∥2

A , (14.3)

where x∗ is a solution and ∥y∥A
.
=
√

y⊤Ay denotes the Mahalanobis
norm with respect to A.

The fast algorithm has two main steps.

Theorem 14.6 (Approximate Cholesky decomposition on graph
Laplacians). We can find LL⊤ ≈1/2 L such that L is lower triangular
and nnzL = O

(
m log3 n

)
, with probability at least 1 − 3/n5 in time

O
(

m log3 n
)

.1 1 Rasmus Kyng and Sushant Sachdeva.
Approximate gaussian elimination for
laplacians-fast, sparse, and simple. In
2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS),
pages 573–582. IEEE, 2016

Proof. TBD
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Here, the main idea is to replace the clique of the neighbors of the
eliminated vertex in each round of Gaussian elimination by a sparse
approximation.

Theorem 14.7. We can find an ϵ-approximate solution x̃ to Lx = d,
using an algorithm that takes O

(
m log3 n log(1/ϵ)

)
time and succeeds with

probability at least 1− 1/n10.

Proof. TBD
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Algorithms for Maximum Flow

In this chapter, we study classical combinatorial algorithms for the
maximum flow problem. Many of the algorithms can be adapted to
solve the more general minimum-cost flow problem. In recent years,
significant progress was made by using convex optimization and
interior point methods. To begin with, we will derive a combinatorial
proof for the strong duality of maximum flow and minimum cut.1 1 We have already seen a proof of this in

section 8.5.
We consider directed graphs G = (V, E, c) with edge capacities

c ∈ R|E|. Recall that a flow is a vector f ∈ R|E| and f routes demands
d iff B f = d. We say that f is feasible iff 0 ≤ f ≤ c, where 0 ≤ f
ensures that the flow respects edge directions and f ≤ c ensures that
the flow respects edge capacities.

We call a flow f that routes demands F(1t − 1s) for some F ∈ R

and vertices s, t ∈ V, so F units of flow from s to t, an s-t flow with
value val( f ) = F. We say that f is optimal iff there is no feasible s-t
flow f ′ such that val( f ′) > val( f ).

We can decompose any s-t flow into two kinds of flows: path flows
and cycle flows.

Definition 15.1 (Path flow). An s-t path flow f is an s-t flow with
val( f ) = α for some α > 0 that can be expressed as,

f = α ∑
e∈P

1e, (15.1)

for some s-t path P.
TBD
Figure 15.1: Example of an s-t path
flow.

Definition 15.2 (Cycle flow). A cycle flow f is a flow routing demands
0 that can be expressed as,

f = α ∑
e∈C

1e, (15.2)

for some α > 0, and cycle C.
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TBD
Figure 15.2: Example of a cycle flow.

Lemma 15.3 (Path-cycle decomposition). Any s-t flow f ≥ 0 can be
decomposed into k ≤ m s-t path flows and l cycle flows.

Proof. TBD

Lemma 15.4. There exists an optimal flow with a path-cycle decomposition
that has only paths and no cycles.

Proof. TBD

Lemma 15.5. There exists an s-t flow f ≥ 0 iff there exists a directed s-t
path.

Proof. TBD

Recall that a cut is a proper subset of vertices ∅ ⊂ S ⊂ V. An s-t
cut is a cut (S, V \ S) separating s and t, i.e., s ∈ S, t ∈ V \ S. We say
that the capacity of a cut is the sum of capacities of crossing edges,

cap(S) .
= ∑

{a,b}∈E
a∈S, b∈V\S

c({a, b}). (15.3)

Theorem 15.6 (Weak duality of maximum flow/minimum cut). For
any feasible s-t flow f and any s-t cut (S, V \ S),

val( f ) ≤ cap(S). (15.4)

Proof. Let (S, V \ S) be any s-t cut. Suppose for a contradiction that
val( f ) > cap(S) for some flow f . But this contradicts feasibility of f
because the crossing edges of the cut form a bottleneck.

An important concept in the analysis of flow algorithms is the
so-called residual graph.

Definition 15.7 (Residual graph). The residual graph G f of some s-t
flow f ≥ 0 is the graph G with edge capacities [− f , c− f ]. That is, we
say that a flow f̂ is feasible in the residual graph iff − f ≤ f̂ ≤ c− f .

Intuitively, sending positive flow c− f along an edge in G f corre-
sponds to sending the maximum additional flow without violating
the capacity constraint within G, whereas sending negative flow − f
along an edge in G f corresponds to “undoing” the flow that was
send along this edge by f . This simple argument shows that if f̂ is
feasible in G f , then f + f̂ is feasible in G.

We call an s-t flow f̂ in G f an augmenting flow of f .
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Lemma 15.8 (Flow optimality condition). A feasible s-t flow f in G
is optimal iff there is no s-t path in G f , or equivalently, iff there is no f -
augmenting flow.

Proof. TBD

Theorem 15.9 (Strong duality of maximum flow/minimum cut). We
have that,

max
F∈R, f∈R|E|

B f=F(1t−1s)

F = min
s-t cut (S, V \ S)

cap(S). (15.5)

Proof. By weak duality of maximum flow and minimum cut, we have
the direction ≤. For the direction ≥, let f ∗ be an optimal flow and
consider the cut,

S .
= {v ∈ V | there exists an s-v path in G f ∗}.

We make two observations.

1. By definition, there are no edges from S to V \ S in G f ∗ , that is, f ∗

saturates2 all crossing edges of the cut. 2 That is, f ∗ sends flow equal to the
capacity of the edge.

2. By definition, f ∗ routes no flow from V \ S to S.

This implies that val( f ∗) ≥ cap(S) for this cut (S, V \ S).

15.1 The Ford-Fulkerson Algorithm

Our prior discussion gives rise to a very natural algorithm.

Algorithm 15.10: FordFulkerson(G)

1 f ← 0
2 while there exists any s-t path flow f̂ in G f do

3 f ← f + f̂

4 return f

Given a feasible flow f , we can find an f -augmenting flow, or
determine that none exists, in time O(m) using breadth-first search
or depth-first search.

Theorem 15.11 (Ford-Fulkerson). If capacities are integral, FordFulk-
erson converges to an optimal flow f ∗ in val( f ∗) iterations.

Proof. Observe that the initial flow 0 is trivially feasible. In each
iteration, we add the augmenting flow f̂ with val( f̂ ) > 0, and due to
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the integral capacities, val( f̂ ) ≥ 1. Therefore, the flow value val( f )
increases in each iteration by at least one.

Improving Ford-Fulkerson

It turns out that if we always choose the shortest augmenting path,
we converge in time O

(
nm2). This is known as the Edmonds-Karp

algorithm.

We can do still better, by choosing that path with the maximum
bottleneck capacity. That is, we choose,

P∗ = arg max
augmenting paths P

min
e∈P

c(e). (15.6)

Within the framework of Ford-Fulkerson this corresponds to the
augmenting path that allows us to route the most additional flow.

Theorem 15.12. FordFulkerson, where in each iteration we choose
the augmenting path with maximum bottleneck capacity, converges in time
O
(
m2 log mU

)
.

Proof. We can find P∗ using a binary search on [1, U], where U .
=

maxe c(e), by removing all edges with absolute capacity in G f be-
low the current threshold and testing if an s-t path in G f exists: if it
does, we increase the threshold; if it does not, we decrease the thresh-
old. This procedure takes O(m log U) time. If we only consider the
occurring capacities, the runtime improves to O(m log m).

Suppose F̂ is the flow left in G f . By the path decomposition
lemma, this flow can be decomposed into at most m path flows (the
“best” of which is P∗) and P∗ must route at least the average amount
of flow. Hence, P∗ routes at least F̂/m units of flow. Thus, the algo-
rithm converged if, (

1− 1
m

)T
F∗ < 1,

where T is the number of augmentations and F∗ is the value of an
optimal flow. So, some T = O(m log F∗) is sufficient.

Overall, we get,

O(m log m · T) = O
(

m2 log(m + F∗)
)
= O

(
m2 log mU

)
using F∗ ≤ mU

15.2 Dinitz’s Algorithm

We will now look at Dinitz’s algorithm, which also belongs to the
family of Ford-Folkerson algorithms. That is, we still start with the
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initial feasible flow f ← 0 and iteratively improve this flow by find-
ing an augmenting flow in G f .

In Dinitz’s algorithm, our strategy to finding an augmenting
path is to find so-called blocking flows in G f , which in each itera-
tion “block” one shortest s-t path in G f . Dinitz’s algorithm runs in

O
(

n2 + nm log2 n
)

time in general graphs and in time O
(

min{m3/2, mn2/3}
)

in unit capacity graphs.

Remark 15.13. It can also be shown that Dinitz’s algorithm converges
in time O

(
m
√

n
)

in bipartite matching graphs, but we will not show
this here.

Definition 15.14 (Level). The level ℓ(v) of a vertex v ∈ V in G f is the
length (i.e., number of edges) of the shortest s-v path in G f .

We call an edge e = (u, v) in G f admissible iff ℓ(v) = ℓ(u) + 1.
Intuitively, e is admissible iff it is part of a shortest s-u path.

The level graph L f of G f is the subgraph of only admissible edges.
TBD
Figure 15.3: Illustration of admissible
edges.

Definition 15.15 (Blocking flow). A blocking flow in G f is a flow f̂
such that

1. f̂ is feasible;
2. f̂ uses only admissible edges; and
3. for every s-t path in the level graph, f̂ saturates at least one edge.

Remark 15.16. By definition, a blocking flow in G f is a f -augmenting
flow.

TBD
Figure 15.4: Examples of blocking
flows.

Algorithm 15.17: Dinitz(G)

1 f ← 0
2 repeat

3 f̂ ← blocking flow in G f

4 f ← f + f̂
5 until G f is disconnected

6 return f

Lemma 15.18. Let f be a feasible flow, f̂ a blocking flow in G f , and let
f ′ .
= f + f̂ . Then ℓG f ′

(t) > ℓG f (t).

Proof. TBD

Theorem 15.19 (Dinitz). Dinitz’s algorithm converges in O(n) iterations.
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Proof. By the previous lemma, ℓ(t) increases in every iteration by at
least one. As path can contain each vertex at most once, the level of
any vertex can never be larger than n.

Finding Blocking Flows

A naïve approach is to repeatedly use depth-first search to find an
unsaturated s-t path in the level graph L f . Whenever we find such a
path, we route the maximum possible flow along this path, saturating
at least one of its edges.

Algorithm 15.20: FindBlockingFlow(L f )

1 f̂ ← 0
2 while there exists an s-t path P in L f do

3 Let f̂ ′ be a flow saturating P
4 f̂ ← f̂ + f̂ ′

5 Remove all edges saturated by f̂ ′ from L f

6 return f̂

Lemma 15.21. FindBlockingFlow returns a blocking flow in O(mn)
time.

Remark 15.22. This can be improved to O
(

m log2 n + n
)

by using
link-cut trees, which we will discuss in the next chapter.

Proof. TBD

Unit Capacity Graphs

Lemma 15.23. In unit capacity graphs, FindBlockingFlow returns a
blocking flow in O(m) time.

Proof. TBD

Theorem 15.24. In unit capacity graphs, Dinic’s algorithm terminates in
O
(

min{m1/2 , n2/3}
)

time.

Proof. TBD
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15.3 The Push-Relabel Algorithm

15.4 Outlook

We have seen two approaches to solving maximum flow problems:
Ford-Fulkerson maintains a feasible flow and augments this flow
until it is optimal. In contrast, Push-Relabel maintains that there is no
augmenting path and terminates when the flow is feasible.

Currently, the best known algorithm for real-valued capacities is
due to Orlin and takes O(mn) time.3 3 James B Orlin. Max flows in o (nm)

time, or better. In Proceedings of the forty-
fifth annual ACM symposium on Theory of
computing, pages 765–774, 2013

Geometrically speaking, Ford-Fulkerson is analogous to a simplex
method and Push-Relabel is analogous to an exterior-point method.
In recent years, interior-point methods were used to find efficient
algorithms when capacities are integral, the best known algorithm

taking O
(

m1+o(1) log U
)

time.4 4 Li Chen, Rasmus Kyng, Yang P Liu,
Richard Peng, Maximilian Probst
Gutenberg, and Sushant Sachdeva.
Maximum flow and minimum-cost flow
in almost-linear time. arXiv preprint
arXiv:2203.00671, 2022
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Link-Cut Trees
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Finding Expanders using Maximum Flow

17.1 Graph Embedding
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Interior Point Methods for Maximum Flow





A

Solutions

A.1 Part I

Electrical Flows

Solution to exercise 1.12. TBD

Proof of claim 1.15. We have that Hc(x) = L(x) ⪰ 0.

Solution to exercise 1.17. Consider any f ∈ R|E| satisfying B f = d. We
have for any x ∈ R|V|,

1
2

f⊤R f =
1
2

f⊤R f − x⊤ (B f − d)︸ ︷︷ ︸
0

≥ min
f ′∈R|E|

1
2

f ′⊤R f ′ − x⊤(B f ′ − d)︸ ︷︷ ︸
.
=g( f ′)

.

Note that g is convex. Taking the gradient gives,

∇∇ f ′g( f ′) = R f ′ − B⊤x.

So f ′ = R−1B⊤x is the minimizer of g. We obtain,

1
2

f⊤R f ≥ −1
2

x⊤Lx + d⊤x,

but f̃⊤R f̃ = x̃⊤Lx̃ = d⊤ x̃ for electrical voltages x̃ and electrical flow
f̃ (see eq. (1.18)). Thus,

1
2

f⊤R f ≥ 1
2

x̃⊤Lx̃ =
1
2

f̃⊤R f̃ .

Hence, f̃ is the minimum electrical energy flow among all flows
routing d.
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Solution to exercise 1.18. TBD

Solution to exercise 1.19. TBD

Linear Algebra

Proof of claim 2.1. Because the characteristic polynomial of A is of
degree n, it has n complex roots, which are the eigenvalues λ1, . . . , λn

of A. We will first prove that the λi are real. Then, we will prove that
the corresponding eigenvectors vi are orthogonal.

1. Let λ be any eigenvalue of A. We denote by λ̄ the complex conju-
gate of λ. Clearly, if λ = λ̄, then λ ∈ R. By the definition of the
eigenvalue λ with associated eigenvector v, we have,

λv̄⊤v = v̄⊤Av.

Taking the complex conjugate and transpose of both sides gives,

λ̄v̄⊤v = v̄⊤ Ā⊤v = v̄⊤Av = λv̄⊤v. using that A is real and symmetric,

Ā⊤ = A

We have λ = λ̄ as desired.
2. It remains to show that for eigenvalues λi, λj with associated

eigenvectors vi, vj and i ̸= j, we have v⊤i vj = 0. By the defini-
tion of an eigenvalue, we have,

λiv⊤j vi = v⊤j Avi = (v⊤i A⊤vj)
⊤

= (v⊤i Avj)
⊤ = λj(v⊤i vj)

⊤ = λjv⊤j vi. using that A is symmetric

We get that v⊤j vi = 0 if λi ̸= λj.

Proof of claim 2.7. Suppose λ is an eigenvalue of M with associated
eigenvector v. Also suppose that Tv = w. Then,

T MT−1w = T Mv = λTv = w.

It is easy to check that the other direction holds too.

Proof of claim 2.26. TBD

Proof of claim 2.33. TBD

Proof of claim 2.35. TBD
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Probability

Theorem A.1 (Jensen’s inequality, finite form). Let f : S → R be a
convex function on the convex set S ⊆ Rn. Suppose that x1, . . . , xkS and
θ1, . . . , θk ≥ 0 with θ1 + · · ·+ θk = 1. Then,

f (θ1x1 + · · ·+ θkxk) ≤ θ1 f (x1) + · · ·+ θk f (xk). (A.1)

Proof. We prove the statement by induction on k. The base case,
k = 2, follows trivially from the convexity of f . For the induction
step, suppose that the statement holds for some k ≥ 2. Assume
w.l.o.g. that θk+1 ∈ (0, 1). We have,

k+1

∑
i=1

θi f (xi) = (1− θk+1)

(
k

∑
i=1

θi
1− θk+1

f (xi)

)
+ θk+1 f (xk+1)

≥ (1− θk+1) f

(
k

∑
i=1

θi
1− θk+1

xi

)
+ θk+1 f (xk+1) using the induction hypothesis

≥ f

(
k+1

∑
i=1

θixi

)
. using convexity of f

A.2 Part II

Convex Geometry

Proof of theorem 5.3. In our proof, we will use the following two theo-
rems.

Fact A.2 (Bolzano-Weierstrass theorem). Every bounded sequence in Rn

has a convergent subsequence.

Fact A.3 (Boundedness theorem). Let f : Rn → R be a continuous
function and F ⊆ Rn be non-empty, bounded, and closed. Then f is
bounded on F .

Let α be the infimum of f over F , i.e., the largest value for which
any x ∈ F satisfies f (x) ≥ α. By the boundedness theorem, the
infumum exists, as f is lower bounded and the set of lower bounds
has a greatest lower bound, α.

Let Fk
.
= {x ∈ F | α ≤ f (x) ≤ α + 2−k}. Fk cannot be empty,

since if it were, then α + 2−k would be a strictly greater lower bound
on f than α. For each k, let xk be some x ∈ Fk. {xk}∞

k=1 is a bounded
sequence as Fk ⊆ F , so by the Bolzano-Weierstrass theorem, there
exists a convergent subsequence, {yk}∞

k=1, with limit ȳ. Because the
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set is closed, ȳ ∈ F . By continuity, f (ȳ) = limk→∞ f (yk), and by
construction, limk→∞ f (yk) = α.

Thus, the optimal solution is ȳ.

Solution to exercise 5.10. TBD

Solution to exercise 5.12. TBD

A.3 Part III

Introduction to Spectral Graph Theory

Solution to exercise 10.9. TBD

Solution to exercise 10.10. TBD

Solution to exercise 10.11. TBD

Solution to exercise 10.12. TBD

Conductance and Expanders

Solution to exercise 11.7. TBD

Solution to exercise 11.8. TBD



Summary of Notation

We follow these general rules:

• uppercase italic for constants N
• lowercase italic for indices i and scalar variables x
• lowercase italic bold for vectors x
• uppercase italic bold for matrices M
• uppercase italic for random variables X
• uppercase bold for random vectors X
• uppercase italic for sets A

.
= equality by definition
iff if and only if
N set of natural numbers {1, 2, . . . }
N0 set of natural numbers, including 0, N∪ {0}
R set of real numbers
C set of complex numbers
[m] set of natural numbers from 1 to m, {1, 2, . . . , m− 1, m}
(a, b] real interval between a and b including b but not including a
f : A→: B function f from elements of set A to elements of set B
1{predicate} indicator function (1{predicate} .

= 1 if the predicate is true, else 0)
← assignment

linear algebra

Sn set of symmetric n× n matrices
Sn
+ set of symmetric and positive semi-definite n× n matrices

Sn
++ set of symmetric and positive definite n× n matrices

A ⪯ B Loewner order on symmetric matrices, ∀x ∈ Rn : x⊤Ax ≤ x⊤Bx

x ⊥ y x and y are orthogonal, i.e., x⊤y = 0
x ⊥W x is orthogonal to every vector y in subspace W
W⊥ orthogonal complement of subspace W, {x ∈ Rn | x ⊥W}
span{x1, . . . , xn} smallest subspace containing x1, . . . , xn

dim(W) number of vectors in a basis of a subspace W
H(n, µ) hyperplane with normal n and threshold µ
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1S vector such that 1S(i) = 1{i ∈ S}
A⊤ transpose of matrix A
A−1 inverse of matrix A
A+ pseudoinverse of matrix A
A1/2 square root of symmetric positive semi-definite matrix A
ΠA orthogonal projection to (ker A)⊥

nnz A number of non-zero entries of A
tr A trace of A, ∑i A(i, i)
diagi∈I{ai} diagonal matrix with elements ai, indexed according to the set I
ker A kernel (or null space) of A, {x ∈ Rn | Ax = 0}
im A image of A, span{A(:, i)}i∈[n]
λi(A) i-th smallest eigenvalue of A
∥A∥α→β matrix norm of A induced by norms ∥·∥α and ∥·∥β

probability

P[X = x] probability of a random variable X taking on the value x
X ∼ F random variable X follows the distribution F
x ∼ F value x is sampled according to distribution F
X ⊥ Y random variable X is independent of random variable Y
X ⊥ Y | Z random variable X is conditionally independent of random variable Y

given random variable Z
E[X] expected value of random variable X
Var[X] variance of random variable X

W ∈ R|V|×|V| transition matrix of random walk, AD−1 = I − D1/2ND−1/2

W̃ ∈ R|V|×|V| transition matrix of lazy random walk, I
2 + W

2 = I − 1
2 D1/2ND−1/2

pt ∈ R|V| probability distribution of a random walk at time t, W t p0

Ha,s hitting time of s starting from a
hs ∈ R|V| expected hitting times of s, hs(a) = E[Ha,s]

Ca,b commute time between a and b, Ha,b + Hb,a

analysis

∇∇ f (x) ∈ Rn×1 gradient of a function f at a point x,
[

∂ f (x)
∂x(1) · · · ∂ f (x)

∂x(n)

]⊤
[x, y] set of convex combinations of x and y, {θx + (1− θ)y | θ ∈ [0, 1]}
D f (x)[d] directional derivative of f at x in direction d, limλ→0

f (x+λd)− f (x)
λ

Dg(x) ∈ Rm×n Jacobian of vector-valued function g : Rn → Rm,
[

∂g(x)
∂x(1) · · · ∂g(x)

∂x(n)

]
H f (x) ∈ Rn×n Hessian of f , (D∇∇ f (x))⊤

epi( f ) epigraph of a function f , {(x, y) | f (x) ≤ y} ⊆ Rn+1
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Sα( f ) α-sub-level set of a function f , {x ∈ S | f (x) ≤ α}
Lα( f ) α-level set of a function f , {x ∈ S | f (x) = α}

graphs

V set of vertices
E set of edges
n number of vertices, |V|
m number of edges, |E|

G[X] subgraph of G induced by X ⊆ V
u ∼ v vertices u and v are adjacent
deg(v) degree of vertex v

r ∈ R|E| resistances
w ∈ R|E| weights, 1/r(e)

d ∈ R|V| weighted degrees, ∑{u,v}∈E w({u, v})
Ã ∈ R|V|×|V| adjacency matrix
A ∈ R|V|×|V| weighted adjacency matrix
B ∈ R|V|×|E| incidence matrix
R ∈ R|E|×|E| diagonal matrix of resistances, diag{r(e)}e∈E

W ∈ R|E|×|E| diagonal matrix of weights, diag{w(e)}e∈E

D ∈ R|V|×|V| diagonal matrix of weighted degrees, diag{w(v)}v∈V

L ∈ R|V|×|V| Laplacian matrix, BR−1B⊤ = BW B⊤ = D− A

vol(S) volume of a set of vertices S, ∑v∈S d(v) = 1⊤S D1S

c(S) value of a cut S, ∑{a,b}∈E: a∈S, b∈V\S w({a, b}) = 1⊤S L1S

ϕ(S) conductance of a cut S, c(S)
min{vol(S),vol(V\S)}

ϕ(G) conductance of a graph G, min∅⊂S⊂V ϕ(S)
ψ(S) sparsity of a cut S, c(S)

min{|S|,|V\S|}
ψ(G) sparsity of a graph G, min∅⊂S⊂V ψ(S)

Kn unit weight complete graph on n vertices
Pn unit weight path graph on n vertices
Td unit weight complete binary tree with d levels
Gi,j unit weight graph with single edge {i, j}
Gi,j subgraph of G consisting of the shortest i, j path

flows

x ∈ R|V| voltages
x(e) voltage difference of edge e = {u, v}, x(u)− x(v)
f ∈ R|E| flow
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d ∈ R|V| demands, modeling the net flow

x̃ ∈ R|V| electrical voltages
x̃a,b ∈ R|V| electrical voltages routing demands 1b − 1a

f̃ ∈ R|E| electrical flow
E( f̃ ), E(x̃), E(d) electrical energy, f̃⊤B⊤ x̃ = f̃⊤R f̃ = x̃⊤Lx̃ = d⊤x = d⊤L+d

c ∈ R|E| edge capacities
val( f ) value (routed units of flow) of an s-t flow f
G f residual graph with respect to the flow f
f̂ flow within the residual graph G f

U maximum edge capacity, maxe c(e)
L f level graph of residual graph G f

optimization

L(y, x, s) Lagrangian of an optimization problem with primal variables y and dual variables x, s
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s-t path flow, 83

accelerated gradient descent, 47

adjacency matrix, 9

approximate solution, 43

approximate solution to linear system, 79

augmenting flow, 84

Bernstein concentration bound, 29

Bernstein matrix concentration bound, 29

blocking flow, 87

Bolzano-Weierstrass theorem, 103

Boundedness theorem, 103

Cheeger’s inequality, 69

Chernoff bound, 29

Cholesky decomposition, 24

commute time, 28

complementary slackness, 54

concave function, 40

condition number, 46

conductance, 67

continuously differentiable, 32

convex function, 40

convex optimization, 40

convex set, 39

Courant-Fischer min-max theorem, 15

cut, 67, 84

cut value, 67

cycle flow, 83

demand, 9

diameter, 65

Dinitz’s algorithm, 87

directional derivative, 33

dual feasible, 53

dual program, 55

dual variables, 53

Edmonds-Karp algorithm, 86

effective resistance, 71

electrical energy, 13

electrical energy-minimizing flow, 13

electrical flow, 9

electrical voltages, 9

epigraph, 40

expander, 68

expander decomposition, 68

extreme value theorem, 39

feasible flow, 83

feasible point, 39

feasible set, 39

Fenchel conjugate, 57

first-order expansion, 31

flow, 9, 83

flow value, 83

Ford-Fulkerson algorithm, 85

Fréchet differentiable, 31

gradient, 31

gradient condition, 54

gradient descent, 43

Hessian, 33

hitting time, 27
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hyperplane, 51

idempotency, 23

image, 20

incidence matrix, 10

indefinite matrix, 15

infeasible point, 39

Jacobian, 32

Jensen’s inequality, 29

Joule’s law, 13

Karush-Kuhn-Tucker conditions, 54

kernel, 20

Kirchhoff’s current law, 9

Lagrangian, 54

Laplacian matrix, 10

lazy random walk, 26

level, 87

level graph, 87

level set, 40

Lieb’s theorem, 22

Loewner order, 19

Mahalanobis norm, 79

Markov property, 25

Markov’s inequality, 29

martingale, 30

martingale difference sequence, 30

matrix approximation, 75

matrix function, 21

matrix norm, 18

metric, 73

mixing random walk, 26

Moore-Penrose inverse, 22

net flow, 9

net flow constraint, 10

normal vector, 51

normalized Laplacian matrix, 12

null space, 20

Ohm’s law, 9, 10

optimal point, 39

optimization problem, 39

path inequality, 64

Polyak-Łojasiewicz inequality, 46

positive definite matrix, 15

positive semi-definite matrix, 15

primal feasible, 53

primal program, 53

primal-dual feasible, 53

projection matrix, 23

pseudoinverse, 22

quality, 68

quasiconvex function, 40

random walk, 25

range, 20

residual graph, 84

s-t cut, 84

s-t flow, 83

Schur complement, 79

second-order expansion, 34

separating hyperplane, 51

Separating hyperplane theoerm, 51

signless Laplacian matrix, 63

Slater’s condition, 56

smoothness, 44

sparsity, 69

spectral matrix norm, 18

spectral theorem for symmetric matrices, 15

stationary distribution, 26

stationary point, 32

strictly convex function, 40

strictly feasible, 56

strong convexity, 46

strong duality, 55

sub-level set, 40

Taylor’s theorem (first-order), 32

Taylor’s theorem (second-order), 34

test vector, 65

tight constraint, 53



index 113

trace, 20

transition matrix, 25

twice continuously differentiable, 34

twice Fréchet differentiable, 34

volume, 67

weak duality, 55

weight (of an edge), 10

weighted adjacency matrix, 11

weighted degree, 11
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