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Setting

Distribution D over independent Σ-valued coordinates X1, . . . ,Xn.
“Bad-events” B = {B1, . . . ,Bm}, each a boolean function of some
subset of coordinates var(Bi ) ⊆ {X1, . . . ,Xn} with law p.

Example (3-SAT)
B1

.
= f1(X1,X3,X5)

B2
.
= f2(X2,X3,X6)

B3
.
= f3(X1,X5,X6)

B4
.
= f4(X2,X4,X7)

B1

B2

B3

B4

Theorem ((Symmetric) Lovász Local Lemma)

If for any i , p(Bi ) ≤ pmax and Bi affects at most d bad-events,
then epmaxd ≤ 1 implies Pr [all Bi avoided] > 0.

For k-SAT and Xi ∼ Unif({0, 1}), p ≡ 2−k .
⇝ satisfiable if any variable appears in at most 2k/ke clauses!
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Applications

Example (k-Coloring)
Choose Cv ∼ Unif([k]) independently.
Bv ,c

.
= “Cv = c and v has neighbor with color c”.

Bv ,c affects Bv ′,c ′ iff v and v ′ have distance ≤ 2 ⇝ d ≤ k∆2.
p(Bv ,c) =

1
k (
∑

u∈N(v)
1
k ) ≤

∆
k2 ⇝ if e∆3 ≤ k , has k-coloring!

More applications:
1. Defective coloring
2. Hypergraph coloring
3. Strong coloring
4. Non-repetitive coloring
5. Finding directed cycles of certain length (see exam, task 2 :))
6. Independent transversals
⇝ algorithmic versions of the Lovász Local Lemma yield automatic
algorithms for these problems!
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Prior Work

Algorithm: MT-Algorithm
Draw X from distribution D
while some bad-event is true on X do

Select any true bad-event B
For each i ∈ var(B), draw Xi from its distribution in D

end

⇝ converges within expected polynomial time.2

2Robin A Moser and Gábor Tardos. “A constructive proof of the general Lovász local lemma”. In:
Journal of the ACM (JACM) 57.2 (2010), pp. 1–15.
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Prior Work

Paper Criterion Det.? Parallel?
3 asymmetric LLL ✗ (✓)
3 asymmetric LLL and d ≤ O(1) ✓ (✓)
4 symmetric LLL with ϵ-exponential slack ✓ (✓)
5 Shearer criterion with ϵ-slack ✗ ✓
5 symmetric LLL with ϵ-exponential slack

and atomic bad-events
✓ ✓

6 symmetric LLL and bad-events
depend on polylog(n) variables

✓ ✓

(✓) : under more complex conditions

3Robin A Moser and Gábor Tardos. “A constructive proof of the general Lovász local lemma”. In:
Journal of the ACM (JACM) 57.2 (2010), pp. 1–15.

4Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler. “Deterministic algorithms for
the Lovász local lemma”. In: SIAM Journal on Computing 42.6 (2013), pp. 2132–2155.

5Bernhard Haeupler and David G Harris. “Parallel algorithms and concentration bounds for the
Lovász local lemma via witness-DAGs”. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM. 2017, pp. 1170–1187.

6David G Harris. “Deterministic parallel algorithms for fooling polylogarithmic juntas and the Lovász
local lemma”. In: ACM Transactions on Algorithms (TALG) 14.4 (2018), pp. 1–24.
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Contributions

1. Deterministic algorithm with a simpler & more general
condition that is satisfied by most variants of the LLL.

2. Faster parallel algorithm with simpler conditions.
3. We can ensure that the final distribution of the deterministic

algorithm is not “far off” from the distribution at the end of
the MT algorithm.
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Alternative Characterization of MT Algorithm

Consider the resampling table R drawn according to distribution D:

∗ ∗ ∗

∗ ∗ ∗

...

X1

Xn

...
...

...

1 · · · t · · ·

· · ·

· · ·
· · ·

resampling X1⇝

∗ ∗ ∗

∗ ∗ ∗

...

X1

Xn

...
...

...

1 · · · t · · ·

· · ·

· · ·
· · ·

∗

When resampling Bi , shift rows var(Bi ) to left.

⇝ MT algorithm deterministic with respect to resampling table!
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Counting Resamples

Want to find an encoding of resamples such that we do not lose
much information.

Why may executions be long?

Given a resampling table R , a (partial) execution of the MT
algorithm is described by the sequence of resampled bad-events.

B1,B2,B3,B4 7→

B4

B2

B3

B1

Witness DAG Ĝ
Bi −→ Bj iff i < j
and Bi affects Bj

⇝ Ĝ is always a DAG! But why are DAGs a good encoding?
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Counting Resamples

Witness DAGs encode the final configuration of the MT algorithm!

B4B4

B2B2

B3B3

B1B1

Ĝ (B4)

var(B1) = {X1,X3,X5}
var(B2) = {X2,X3,X6}
var(B3) = {X1,X5,X6}
var(B4) = {X2,X4,X7}

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

X1

X2

X3

X4

X5

X6

X7

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

∗

∗

∗

∗
∗

∗

∗

∗
∗

∗

∗

∗

fixed resampling table R
resamples: B1, B2, B3, B4,

B3

⇝ may encode multiple executions, but all lead to the same final
configuration!
⇝ resampled bad-events depend on disjoint entries of R!
⇝ configuration at step t is drawn according to D! 10 / 19



Analyzing the MT Algorithm

Are all witness DAGs used as an encoding of a resample?
No! ⇝ we can improve our counting!

• Ĝ (Bi ) always has a single sink (set denoted G)
• If we fix a resampling table R , do we need to consider all

single-sink witness DAGs G?
⇝ No! G & R must be compatible (set denoted G[R])

Note: PrR∼D [G & R compatible] =
∏

B∈G p(B)
.
= wp(G ).

⇝ for fixed resampling table R , at most |G[R]| resamplings

E|G[R]| =
∑
G∈G

Pr [G & R compatible] =
∑
G∈G

wp(G )
.
= wp(G) < ∞.︸ ︷︷ ︸

Shearer Criterion
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Likely & Unlikely Resamples

Want to find resampling table R such that |G[R]| is polynomial.
But, |G| = ∞!

Example
wp(G ) = 1/21/41/8.

B1 B2 B3

wp(G ) ≥ τ

wp(G ) < τ

For a threshold τ ∈ [0, 1],
• let Lτ ⊆ GC be the set of

likely witness DAGs,
wp(G ) ≥ τ ;

• let Uτ ⊆ GC be the set of
(most likely) unlikely witness
DAGs, wp(G ) < τ such that
all strict prefixes are likely.

Lτ

Uτ

Need to consider all witness DAGs attainable by removing the sink
of some single-sink witness DAG (set denoted C).

⇝ fixing resampling table R , if Uτ [R] = ∅, then C[R] ⊆ Lτ [R].

13 / 19



Finding Resampling Table avoiding Uτ

Using the method of conditional expectation, we find R such that

|Uτ [R]| ≤ ER∼D |Uτ [R]| = wp(Uτ ).

⇝ if we choose τ such that wp(Uτ ) < 1,
then Uτ [R] = ∅ and G[R] ⊆ Lτ [R].

What is the effect of changing τ?

Lτ

Uτ

large τ

small |Lτ | and |Uτ |,
but large wp(Uτ )

small τ

large |Lτ | and |Uτ |,
but small wp(Uτ )

if wp(C) < ∞
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Choosing the Threshold

Can we choose τ such that wp(Uτ ) < 1 and Uτ and Lτ are of
polynomial size?
What is the largest τ guaranteeing wp(Uτ ) < 1?

wp(G ) = wp1−ϵ(G )
1

1−ϵ = wp1−ϵ(G )1+ϵ′ = wp1−ϵ(G )︸ ︷︷ ︸
<τ

ϵ′wp1−ϵ(G ).
⇝ wp(Uτ ) < τ ϵ

′
wp1−ϵ(Uτ ).

⇝ for τ ≤ τmax, we have wp(Uτ ) < 1.

How do we compute τ?
Use exponential backoff!
Example τ = 20 = 12−1 =
1/22−2 = 1/42−3 = 1/8.

Are Uτ and Lτ of polynomial
size?

0

1

τmax

1/2

1/4

1/8

?
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Is Uτ ∪ Lτ of polynomial size?

Need to bound # of multi-sink witness DAGs
and # of single-sink witness DAGs# of single-sink witness DAGs.

Lτ

Uτ

wp1−ϵ(G ) ≥ τp1−ϵ(B)

⇝
wp1−ϵ (G)

τp1−ϵ(B)
≥ 1.

⇝ |Uτ ∪ Lτ | ≤
∑

B∈B
wp1−ϵ (GB)

τp1−ϵ(B)

.
= Wϵ

τ ,
where Wϵ is the work parameter.

Wϵ is polynomial under common LLL conditions!
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The Algorithm

Algorithm: Deterministic MT-Algorithm
Using exponential backoff, select “large” τ such that wp(Uτ ) < 1
Using method of conditional expectations, find resampling table
R avoiding Uτ

Run the deterministic MT algorithm on R

We have seen that the final step takes at most |G[R]| ≤ |Lτ [R]|
iterations!
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Limitations

This algorithm does not cover some scenarios:
• superpolynomial |B| and |Σ|
• non-variable probability spaces
• does not cover lopsidependency
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Thanks for your attention! Questions?
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Computing the Resampling Table

Can R be computed efficiently?

Observe: The MT algorithm uses at most as many columns as the
size of the largest witness DAG in Lτ , which is at most |Lτ |.

For each cell of R , choose one of |Σ| values to minimize the
conditional probability of G & R being compatible for each G ∈ Uτ .

⇝ O(n|Lτ | · |Σ| · |Lτ |T · |Uτ |), where T is the runtime of
computing conditional probabilities of bad-events given a partial
resampling table.
Also need to generate Uτ , which can be done in poly(|Uτ |) time.
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Polynomial Bound of wp1−ϵ(GB)/p1−ϵ(B)

µ(h)(I ) = w({G | sink I , max. depth h}) ⇝ µ(B) = w(GB).

We have,
1. µ(h+1)(I ) = p(I )

∑
J∈Stab(I ) µ

(h)(J)

2. µ(h)(I ) ≤
∏

B∈I µ
(h)(B) if µ(B) .

= ep(B)

µ(h+1)(B) = p(B)
∑

J∈Stab(B)

µ(h)(J)

≤ p(B)
∑

J⊆Γ̄(B)

∏
B′∈J

µ(h)(B ′)

∑
J⊆Γ̄(B)

∏
B′∈J

ep(B ′) ≤
∑

J⊆Γ̄(B)

(epmax)
|J| ≤

d∑
k=0

(
d

k

)
(epmax)

k

= (1 + epmax)
d ≤ exp(epmaxd︸ ︷︷ ︸

≤1

) ≤ e.
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