
Probabilistic Generative Models
Jonas Hübotter

May 7th, 2022

This is intended as an introduction to the use of uncertainty in gen-
erative models. We will start without assuming any prior knowledge
of generative models and progress quickly to discuss the most funda-
mental ideas behind some of the most powerful generative models to
date.

1 Generative Models

A generative model is a model that learns to imitate some pattern-
generating process. That is, we have (high-dimensional) patterns
x ∈ X that are generated according to a probability distribution p on
X . We want to learn a model pθ that is indistinguishable from p. In
particular, our model should
(1) avoid missing patterns that are generated by p (this is called

mode collapse) and
(2) avoid generating patterns that are not supported by p.

A famous example is the example of generating human faces,
where we want to generate facial features proportional to how fre-
quently they occur in real human faces.

1.1 Density Estimation

The problem as stated is above is also called a density estimation prob-
lem, that is, we want to estimate a density p using a family of den-
sities pθ parametrized by θ. The canonical method for parameter
estimation (also called inference) is maximum likelihood estimation, for
short. In MLE, we pick θ such that it explains the patterns generated
by p best,

θ∗ = arg max
θ

Ex∼p[pθ(x)] (1)

= arg max
θ

Ex∼p[log pθ(x)]. using monotonicity of the logarithm(2)

pθ(x) is also called the evidence of x. So maximum likelihood estima-
tion corresponds to maximizing the evidence of x under the model pθ

when x is sampled according to the true distribution p.
Given that we can differentiate pθ(x) with respect to θ, we can

easily obtain unbiased gradient estimates, which we can use to find a
sample-based approximation of θ∗.1 1 Because we can only use finitely

many samples x, picking a single point
estimate of θ̂ might not be the best
choice. Often, it is helpful to encode the
uncertainty in our choice of θ∗ using a
distribution.

probabilistic generative models 2

Learning a density p directly — for example using standard tech-
niques from deep learning — is hard. This is because our model has
to fulfill structural constraints to be a valid density. Moreover, learn-
ing the densities directly does not allow us to efficiently sample from
the resulting distribution.

Simple parametric models such as autoregressive models, which
break down the problem of generating x into the problem of se-
quentially generating components x(i) given previously generated
components x(1), . . . , x(i − 1), turn out not to be expressive enough
for challenging, high-dimensional generative tasks.2 We have seen 2 Autoregressive models are very useful

for time-series prediction.that throwing deep neural networks (DNNs) at the task directly is
not very useful, but we do need their expressiveness for modeling p
accurately.

1.2 Implicit Models

A useful approach to make DNNs work in a constrained setting, is
to encode the constraints implicitly in our model. This idea leads to
the family of implicit models, where we generate x by first generating
a random vector z from a known distribution D and then use a deter-
ministic DNN fθ with parameters θ to “lift” z into the set of patterns
X . We can think of this as a transformation of random vectors,

X .
= fθ(Z), Z ∼ D. (3)

Often, we sample the encoding z according to the standard normal
distribution, D .

= N (0, I).

Figure 1: An implicit model ”lifts“ z
from the code space (also called latent
space) to the pattern space using a DNN
f parametrized by θ.

For general DNNs f , parameter estimation becomes intractable.
To perform parameter estimation, we need to recover the density pθ

of our model. This can be done using so-called pushforward measures
when f is invertible and it is easy to compute det J f , where J f is the
Jacobian of f . Such f are also called normalizing flows.3

3 We will not go into more depth on
normalizing flows here.

1.3 Outline

Normalizing flows restrict the architecture of the DNN f to ensure
that recovering the density, and thus inference, remains tractable. An
alternative approach is to perform inference approximately. This ap-
proach, we will discuss in the next section on variational autoencoders.

Finally, we will look at a different and very powerful class of mod-
els known as generative adversarial models.

2 Variational Autoencoders

One common approach to perform approximate inference is to
maximize a lower bound on the evidence instead of maximizing

probabilistic generative models 3

this evidence directly. To obtain a lower bound on the log-evidence
log pθ(x), we can relate this quantity back to the space of encodings:

log pθ(x) = log
∫

pθ(x | z)p(z) dz.

Intuitively, the probability of x is the probability of an encoding z
being “lifted” to x times the probability of the encoding z to be sam-
pled in the first place.4 4 The true distribution over the latent

space p(z) is not to be confused with
the true distribution over the pattern
space p(x).

We can rewrite this to,

= log
∫

pθ(x | z)
p(z)
q(z)

q(z) dz

= log Ez∼q

[
pθ(x | z)

p(z)
q(z)

]
,

where q is any density on the code space. Using Jensen’s inequality
and that log is concave, we obtain,

≥ Ez∼q[log pθ(x | z)]− Ez∼q

[
log

q(z)
p(z)

]
. (4)

This lower bound on the log-evidence is also known as the evidence
lower bound (or ELBO for short).

Figure 2: An illustration of Jensen’s
inequality.

The regularization term Ez∼q

[
log q(z)

p(z)

]
is also called (reverse)

Kullback-Leibler divergence, KL(q∥p), and measures how well q approx-
imates the true distribution of encodings p. Maximizing ELBO there-
fore corresponds to maximizing the likelihood of x given samples of
encodings z, while z are sampled according to a distribution q, which
is close to p. When q is from a class of distributions parametrized by
ψ, then qψ is also called a variational distribution.

Figure 3: A variational autoencoder
learns an inference model and genera-
tive model simultaneously. The learned
inference model is used to produce
encodings from which the generative
model should produce patterns.

The key idea of variational autoencoders is to simultaneously learn
a generative model pθ and inference model qψ. So given a pattern x

probabilistic generative models 4

sampled according to the true distribution of patterns p, the objective
to be maximized is,

log pθ(x) ⪆ Ez∼qψ(·|x)[log pθ(x | z)]− KL
(
qψ(· | x)∥p

) .
= ℓ(θ, ψ; x).

(5)

The KL-divergence can often be expressed analytically, and we can
use a sample-based approximation for the expectation.

2.1 The Inference Model

You may (rightfully) object that we have simply extended our task
of finding a generative model pθ by finding yet another generative
model gψ. However, the latter generative model is from a high- to a
low-dimensional space, namely from the pattern space to the code
space. It turns out that this task is much simpler than the task that
we started with.

Typically, the inference model is chosen to be a non-isotropic sta-
tistical transformation of the outputs of a DNN. More concretely, we
use a DNN gψ to first transform the high-dimensional pattern x to a
low-dimensional feature representation and then to outputs µψ and
Σψ.5 We then choose qψ to be a simple distribution with mean µψ

5 For example, by using a convolutional
neural network to obtain the feature
representation and a fully connected
neural network to learn mappings to µψ

and Σψ.
and covariance Σψ (i.e., N (µψ, Σψ)) that is easy to sample from.

Figure 4: Illustration of a typical infer-
ence model. First, a pattern is trans-
formed into a feature representation,
which is then used to obtain statistics
µ and Σ that parametrize a distribution
over encodings.

We call such a model non-isotropic because the statistics µψ and Σψ

depend on the pattern x.

2.2 Inference

Now, to perform inference, we need to be able to obtain gradients
with respect to θ and ψ of ℓ(θ, ψ; x). As we mentioned, the KL-
divergence can usually be expressed analytically. This is also true

probabilistic generative models 5

for its gradient. The gradient of pθ(x | z) can be computed using
backpropagation. The difficulty lies in finding the gradient of the
expectation Ez∼qψ(·|x)[log pθ(x | z)] with respect to ψ. Because the ex-
pectation integrates over a measure that depends on the parameters
ψ, we cannot simply draw the gradient into the expectation using
linearity.

Here, we can use the so-called reparameterization trick by writing
z ∼ qψ(·, x) = N (µψ, Σψ) as,

z = µψ + Σ
1/2
ψ ϵ, ϵ ∼ N (0, I), (6)

where µψ and Σψ are the outputs of the DNN gψ. We obtain,

Ez∼qψ(·|x)[log pθ(x | z)] = Eϵ∼N (0,I)

[
log pθ(x | µψ + Σ

1/2
ψ ϵ)

]
. (7)

Of this expectation, we can now easily obtain unbiased gradient
estimates, which we can use to maximize the ELBO using stochastic
gradient descent. For more details on the reparameterization trick for
Gaussians or other distributions and the computation of gradients of
the ELBO, refer to section 5.2.7 of my notes on probabilistic artificial
intelligence.

Figure 5: An example of faces recon-
structed by a variational autoencoder.
Taken from [3].

3 Generative Adversarial Models

We will now introduce a different class of models that are based on
a very simple and beautiful idea, and which are powerful enough to
yield models that produce faces that are visually indistinguishable
from real faces.

Recall that our original goal was to find a distribution pθ that is in-
distinguishable from the distribution p. Our initial instinct was to use
density estimation to find pθ, but we have seen that we either have
to limit the expressiveness of our model to retain tractability of the
inference problem or we have to perform inference approximately. It
is therefore useful to think whether we can characterize our problem
in a different way.

probabilistic generative models 6

The notion of indistinguishability leads to a very natural charac-
terization: our goal is to make it virtually impossible for an agent to
distinguish between the patterns produced by p and the patterns pro-
duced by pθ. From the perspective of such an agent, this is a simple
binary classification problem. Our original task can be interpreted as
maximizing the loss of this agent, as a large loss corresponds to the
scenario where the patterns produced by pθ cannot be distinguished
from the patterns produced by p.

We write Y .
= 1{pattern is “natural”}. Assuming that the classi-

fication problem is balanced,6 it can be characterized using the joint 6 That is, we present the agent with
labels such that P[Y = 1] = P[Y = 0] =
1/2.

density,

p(x, y; θ) = P[Y = y]︸ ︷︷ ︸
= 1

2

p(x) y = 1

pθ(x) y = 0.
(8)

A classifier π : Rn → [0, 1], π(x) ≈ P[Y = 1 | x] is also called a
discriminator. Intuitively, the discriminator provides an error signal
to the generative model, hinting at promising regions in the pattern
space.

The canonical approach is to model the loss of a discriminator π

using binary cross-entropy (also called a logistic loss),

ℓ(θ, π)
.
= Ex,y∼p(·;θ)[y log π(x) + (1 − y) log(1 − π(x)] (9)

=
1
2

∫
p(x) log π(x) dx +

1
2

∫
pθ(x) log(1 − π(x)) dx. (10)

Our optimization problem is then given as,

min
θ

max
π

ℓ(θ, π). (11)

In words, we want to make the classification task as difficult as possi-
ble for the best-possible classifier π by tuning θ.

The optimal discriminator is a Bayes-optimal classifier π∗,

π∗(x) = P[Y = 1 | x] =
p(x)

p(x) + pθ(x)
. (12)

In practice, we do not have access to this discriminator, as it depends
on the true distribution p. Nevertheless, we can compute the ex-
pected loss of this classifier to confirm our intuition that when this
quantity is large, pθ must be “almost indistinguishable” from p. For
the Bayes-optimal discriminator π∗, we obtain,

ℓ(θ, π∗) = Ex,y∼p(·;θ)[y log π∗(x) + (1 − y) log(1 − π∗(x)]

=
1
2

∫
p(x)[log p(x)− log(p(x) + pθ(x))] dx

+
1
2

∫
pθ(x)[log pθ(x)− log(p(x) + pθ(x))] dx

probabilistic generative models 7

=
1
2

∫
p(x) log p(x) dx +

1
2

∫
pθ(x) log pθ(x) dx

−
∫ p(x) + pθ(x)

2
log

(
p(x) + pθ(x)

2

)
dx − log 2

=
1
2

Ex∼p[log p(x)] +
1
2

Ex∼pθ [log pθ(x)]

− Ex∼ 1
2 p+ 1

2 pθ

[
log

(
1
2

p(x) +
1
2

pθ(x)
)]

− log 2

= −1
2

H(p)− 1
2

H(pθ) + H
(

1
2

p +
1
2

pθ

)
− log 2, (13)

where H(p) .
= Ex∼p[− log p(x)] is the entropy of distribution p and

1
2 p + 1

2 pθ is a convex combination of the distributions p and pθ. The
sum of entropies is also known as the Jensen-Shannon divergence,

JS(p, q) =
1
2

KL
(

p∥1
2

p +
1
2

q
)
+

1
2

KL
(

q∥1
2

p +
1
2

q
)

(14)

= −1
2

H(p)− 1
2

H(q) + H
(

1
2

p +
1
2

q
)

. (15)

Consider the case where p and q are the same distribution, then the
JS-divergence is zero. The described optimization problem minimizes
the JS-divergence, and hence, the “distance” between p and pθ.

As mentioned, we cannot compute π∗ directly, nor can we com-
pute the Jensen-Shannon divergence. Nevertheless, the above deriva-
tion motivates that replacing arg maxπ ℓ(θ, π) by a learned discrim-
inator that is close to the true optimum π∗ yields a loss that can be
used to estimate a good generator. Let us consider a class of dis-
criminators πϕ that is parametrized by ϕ. Assuming this class is
expressive enough to cover π∗, we have,

ℓ(θ, π∗) = max
ϕ

ℓ(θ, ϕ), (16)

yielding the saddle point problem,

θ∗ = arg min
θ

max
ϕ

ℓ(θ, ϕ), ϕ∗ = arg max
ϕ

ℓ(θ∗, ϕ). (17)

Under conditions of Nash’s existence theorem for Nash equilibria,
the above is equivalent to,

θ∗ = arg min
θ

ℓ(θ, ϕ∗), ϕ∗ = arg max
ϕ

ℓ(θ∗, ϕ). (18)

This formulation of generative models is known as Generative Adver-
sarial Networks (GANs). We can think of this problem as a two player
game with the generator trying to choose θ so as to minimize the loss
and the adversary (i.e., the discriminator) trying to choose ϕ so as to
maximize the loss.

probabilistic generative models 8

Figure 6: An example of faces con-
structed by a generative adversarial
model, StyleGAN. Taken from [2].

References

[1] Thomas Hofmann. Computational intelligence lab, 2021.

[2] Tero Karras, Samuli Laine, and Timo Aila. A style-based gen-
erator architecture for generative adversarial networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4401–4410, 2019.

[3] Rafael S Toledo and Eric A Antonelo. Face reconstruction
with variational autoencoder and face masks. arXiv preprint
arXiv:2112.02139, 2021.

	Generative Models
	Variational Autoencoders
	Generative Adversarial Models

