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Motivation

• data centers use between 1% and 3% of global energy1, which
is estimated to increase2

• most data centers are statically provisioned, leading to average
utilization levels between 12% and 18%3

• typically servers operate at energy efficiency levels between 20%
and 30%4

• when idling, servers consume half of their peak power4

1Arman Shehabi et al. United States Data Center Energy Usage Report. Tech. rep. Lawrence Berkeley
National Laboratory, June 2016.

2Nicola Jones. “How to stop data centres from gobbling up the world’s electricity”. In: Nature
561.7722 (2018), pp. 163–167.

3Josh Whitney and Pierre Delforge. Data Center Efficiency Assessment. Natural Resources Defense
Council, Aug. 2014.

4Luiz André Barroso and Urs Hölzle. “The case for energy-proportional computing”. In: Computer
40.12 (2007), pp. 33–37.
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Model

What is the cost of operating a data center with xt ∈ N0 active
servers and under load λt ∈ N0?

• How to distribute jobs across the active servers?
Distribute evenly across all servers of the same type5.

• What is the cost associated with such an assignment?
Consisting of energy costs and the revenue loss incurred by a
delayed processing of jobs.
Algorithms need to balance energy costs and revenue loss.

Movement costs are on the order of operating an idling server for 1-4
hours6.

5Susanne Albers and Jens Quedenfeld. “Algorithms for Right-Sizing Heterogeneous Data Centers”. In:
Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021,
pp. 48–58.

6Minghong Lin et al. “Dynamic right-sizing for power-proportional data centers”. In: IEEE/ACM
Transactions on Networking 21.5 (2012), pp. 1378–1391.
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Algorithms for one dimension

problem algorithm results

fractional

Lazy Capacity Provisioning7 3-competitive
Memoryless8 3-competitive
Probabilistic8 2-competitive
Randomly Biased Greedy9,
θ ≥ 1

(1 + θ)-competitive,
O(max{T/θ, θ})-regret

integral Lazy Capacity Provisioning10 3-competitive
Randomized10 2-competitive

7Minghong Lin et al. “Dynamic right-sizing for power-proportional data centers”. In: IEEE/ACM
Transactions on Networking 21.5 (2012), pp. 1378–1391.

8Nikhil Bansal et al. “A 2-competitive algorithm for online convex optimization with switching costs”.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

9Lachlan Andrew et al. “A tale of two metrics: Simultaneous bounds on competitiveness and regret”.
In: Conference on Learning Theory. PMLR. 2013, pp. 741–763.

10Susanne Albers and Jens Quedenfeld. “Optimal algorithms for right-sizing data centers”. In:
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018,
pp. 363–372.
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Algorithms for multiple dimensions

problem algorithm results
integral; linear,

time-indep. cost
Lazy Budgeting11

(deterministic)
2d-competitive

Lazy Budgeting11

(randomized)
≈ 1.582d-competitive

integral; hom. load Lazy Budgeting12 (2d + 1 + ϵ)-competitive
fractional; α-loc.
polyhedral costs;

ℓ2 movement

Primal OBD13 3 +O(1/α)-competitive
Dual OBD13 O(

√
T )-regret

fractional;
prediction window

RHC14 (1 +O(1/w))
-competitive in 1d

AFHC14 (1 +O(1/w))-competitive

11Susanne Albers and Jens Quedenfeld. “Algorithms for Energy Conservation in Heterogeneous Data
Centers.”. In: CIAC. 2021, pp. 75–89.

12Susanne Albers and Jens Quedenfeld. “Algorithms for Right-Sizing Heterogeneous Data Centers”. In:
Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021,
pp. 48–58.

13Niangjun Chen, Gautam Goel, and Adam Wierman. “Smoothed online convex optimization in high
dimensions via online balanced descent”. In: Conference On Learning Theory. PMLR. 2018,
pp. 1574–1594.

14Minghong Lin et al. “Online algorithms for geographical load balancing”. In: 2012 international green
computing conference (IGCC). IEEE. 2012, pp. 1–10.
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Performance metrics

• normalized cost: c(ALG )/c(OPT )

• cost reduction:

c(OPTs)− c(ALG )

c(OPTs)

• static/dynamic ratio: c(OPTs)/c(OPT )
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Results in one dimension
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Results in one dimension
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Other results

Multiple dimensions

• lazy budgeting algorithms perform nearly optimally (normalized
cost ∈ [1.05, 1.25]), without consideration of revenue loss

• descent methods achieve normalized costs of ≈ 2.5

With predictions

• even a short prediction window of several hours can significantly
improve the results (by ≈ 5%)

• robust to imperfect (realistic) predictions
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Future work

• compare performance to algorithms for convex body chasing
• performance of algorithms in other applications
• better algorithms to make use of predictions
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Thanks for your attention! Questions?
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Problem

Smoothed online convex optimization (or convex function chasing)15:
Given a convex decision space X ⊂ Rd , a norm ∥·∥ on Rd , and a
sequence F of non-negative convex functions ft : X → R≥0, find
x ∈ XT such that

T∑
t=1

ft(xt) + ∥xt − xt−1∥

is minimized where T is the time horizon and x0 = 0.

15Minghong Lin et al. “Dynamic right-sizing for power-proportional data centers”. In: IEEE/ACM
Transactions on Networking 21.5 (2012), pp. 1378–1391.
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Problem

• similar to online convex optimization with movement costs and
lookahead 1

• equivalent to convex body chasing in d + 1
• fundamental incompatibility between competitive ratio and

regret even for linear hitting costs in one dimension
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