Implementation of Algorithms for Right-Sizing Data Centers

Author: Jonas Hübotter Supervisor: Prof. Dr. Susanne Albers Advisor: Jens Quedenfeld

> Department of Informatics Technical University of Munich

> > August 13, 2021

Outline

Motivation

Problem

Model

Algorithms

Results

Future work

Motivation

- data centers use between 1% and 3% of global energy $^1\!\!\!\! ,$ which is estimated to increase $^2\!\!\!\!$
- most data centers are statically provisioned, leading to average utilization levels between 12% and 18%³
- typically servers operate at energy efficiency levels between 20% and $30\%^4$
- when idling, servers consume half of their peak power⁴

¹Arman Shehabi et al. *United States Data Center Energy Usage Report*. Tech. rep. Lawrence Berkeley National Laboratory, June 2016.

 $^{^2} Nicola$ Jones. "How to stop data centres from gobbling up the world's electricity". In: Nature 561.7722 (2018), pp. 163–167.

³Josh Whitney and Pierre Delforge. *Data Center Efficiency Assessment*. Natural Resources Defense Council, Aug. 2014.

⁴Luiz André Barroso and Urs Hölzle. "The case for energy-proportional computing". In: *Computer* 40.12 (2007), pp. 33–37.

Model

What is the cost of operating a data center with $x_t \in \mathbb{N}_0$ active servers and under load $\lambda_t \in \mathbb{N}_0$?

- How to distribute jobs across the active servers? Distribute evenly across all servers of the same type⁵.
- What is the cost associated with such an assignment? Consisting of energy costs and the revenue loss incurred by a delayed processing of jobs.

Algorithms need to *balance* energy costs and revenue loss.

Movement costs are on the order of operating an idling server for 1-4 hours⁶.

⁵Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

⁶Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

Algorithms for one dimension

problem	algorithm	results
fractional	Lazy Capacity Provisioning ⁷	3-competitive
	Memoryless ⁸	3-competitive
	Probabilistic ⁸	2-competitive
	Randomly Biased Greedy ⁹ ,	(1+ heta)-competitive,
	$ heta \geq 1$	$\mathcal{O}(\max\{T/ heta, heta\})$ -regret
integral	Lazy Capacity Provisioning ¹⁰	3-competitive
	Randomized ¹⁰	2-competitive

⁷Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: *IEEE/ACM Transactions on Networking* 21.5 (2012), pp. 1378–1391.

⁸Nikhil Bansal et al. "A 2-competitive algorithm for online convex optimization with switching costs". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

 ⁹Lachlan Andrew et al. "A tale of two metrics: Simultaneous bounds on competitiveness and regret".
In: Conference on Learning Theory. PMLR. 2013, pp. 741–763.

¹⁰Susanne Albers and Jens Quedenfeld. "Optimal algorithms for right-sizing data centers". In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures. 2018, pp. 363–372.

Algorithms for multiple dimensions

problem	algorithm	results
integral; linear,	Lazy Budgeting ¹¹	2 <i>d</i> -competitive
time-indep. cost	(deterministic)	
	Lazy Budgeting ¹¹	pprox 1.582 d-competitive
	(randomized)	
integral; hom. load	Lazy Budgeting ¹²	$(2d+1+\epsilon)$ -competitive
fractional; α -loc.	Primal OBD ¹³	$3 + \mathcal{O}(1/lpha)$ -competitive
polyhedral costs;	Dual OBD ¹³	$\mathcal{O}(\sqrt{T})$ -regret
ℓ_2 movement		
fractional;	RHC ¹⁴	$(1+\mathcal{O}(1/w))$
prediction window		-competitive in 1d
	AFHC ¹⁴	$(1+\mathcal{O}(1/w))$ -competitive

¹¹Susanne Albers and Jens Quedenfeld. "Algorithms for Energy Conservation in Heterogeneous Data Centers.". In: CIAC. 2021, pp. 75–89.

¹²Susanne Albers and Jens Quedenfeld. "Algorithms for Right-Sizing Heterogeneous Data Centers". In: Proceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures. 2021, pp. 48–58.

¹³Niangjun Chen, Gautam Goel, and Adam Wierman. "Smoothed online convex optimization in high dimensions via online balanced descent". In: *Conference On Learning Theory*. PMLR. 2018, pp. 1574–1594.

¹⁴Minghong Lin et al. "Online algorithms for geographical load balancing". In: 2012 international green computing conference (IGCC). IEEE. 2012, pp. 1–10. Traces

Performance metrics

- normalized cost: c(ALG)/c(OPT)
- cost reduction:

$$\frac{c(OPT_s) - c(ALG)}{c(OPT_s)}$$

• static/dynamic ratio: $c(OPT_s)/c(OPT)$

Results in one dimension

Results in one dimension

Other results

Multiple dimensions

- lazy budgeting algorithms perform nearly optimally (normalized $cost \in [1.05, 1.25]$), without consideration of revenue loss
- descent methods achieve normalized costs of ≈ 2.5

With predictions

- even a short prediction window of several hours can significantly improve the results (by $\approx 5\%)$
- robust to imperfect (realistic) predictions

Future work

- compare performance to algorithms for convex body chasing
- performance of algorithms in other applications
- better algorithms to make use of predictions

Thanks for your attention! Questions?

Smoothed online convex optimization (or convex function chasing)¹⁵: Given a convex decision space $\mathcal{X} \subset \mathbb{R}^d$, a norm $\|\cdot\|$ on \mathbb{R}^d , and a sequence F of non-negative convex functions $f_t : \mathcal{X} \to \mathbb{R}_{\geq 0}$, find $x \in \mathcal{X}^T$ such that

$$\sum_{t=1}^{T} f_t(x_t) + \|x_t - x_{t-1}\|$$

is minimized where T is the time horizon and $x_0 = 0$.

¹⁵Minghong Lin et al. "Dynamic right-sizing for power-proportional data centers". In: IEEE/ACM Transactions on Networking 21.5 (2012), pp. 1378–1391.

- similar to *online convex optimization* with movement costs and lookahead 1
- equivalent to convex body chasing in d + 1
- fundamental incompatibility between competitive ratio and regret even for linear hitting costs in one dimension