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Sample spaces and events

Definition 1

A sample space is the set of all possible outcomes of an experiment.

Definition 2

An event is a subset of the sample space.

Naive definition of probability of an event A in sample space S :

P(A) =
# favorable outcomes
# possible outcomes

=
|A|
|S |

Assumptions:
• all outcomes equally likely
• finite sample space
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Counting sets

Multiplication rule

Consider i ∈ [m] experiments with ni possible outcomes. Then the
overall number of possible outcomes is

m∏
i=1

ni .

5 / 102



Sampling table

Given n objects, select k objects.

order ¬ order

replacement

nk
(n+k−1

k

)

¬ replacement

n!
(n−k)!

(n
k

)
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σ-algebras

Definition 3

Given the set S . The set A ⊆ P(S) is a σ-algebra over S if the
following properties are satisfied:

• S ∈ A;
• if A ∈ A, then Ā ∈ A; and
• ∀n ∈ N. An ∈ A =⇒

⋃∞
n=1 An ∈ A.

Why do we need σ-algebras?
To describe events in the context of a probability space.
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Probability spaces

Definition 4

Given the set S and the σ-algebra A over S .

The function

P : A → [0, 1]

is a probability measure on A if the Kolmogorov axioms are
satisfied:

• P(S) = 1;
• P(

⋃∞
i=1 Ai ) =

∑∞
i=1 P(Ai ) if ∀i ̸= j . Ai ∩ Aj = ∅.
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Definition 5

For an event A ∈ A, P(A) is the probability of A.

Definition 6

A probability space consists of
• a sample space S ;
• a σ-algebra A over S ; and
• a probability measure P on A.
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For a probability space the following properties hold:

• P(∅) = 0
• P(S) = 1
• 0 ≤ P(A) ≤ 1 for all A ∈ A
• P(Ā) = 1 − P(A) for all A ∈ A
• if A,B ∈ A and A ⊆ B , then P(A) ≤ P(B)
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Also the principle of inclusion-exclusion holds:

P(
n⋃

i=1

Ai ) =
∑

I⊆[n],I ̸=∅

(−1)|I |+1 · P(
⋂
i∈I

Ai ).

And Boole’s inequality holds:

P(
n⋃

i=1

Ai ) ≤
n∑

i=1

P(Ai ).
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Joint and marginal probabilities

A marginal probability is the probability of a single event
irrespective of other events.

A joint probability is the probability of two or more events occurring
simultaneously:

P(A,B) = P(A ∩ B).
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Prior and posterior

Conditional probability updates the probability of an event A given
some new information B .

P(A) is called the prior and P(A|B) the posterior probability.

P(A|B) = P(A,B)

P(B)
.

The posterior is the joint probability of the event A and the
information B relative to the probability of the information B .
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Independence

Two events are independent if the occurrence of one event does not
affect the probability of occurrence of the other event.

Two events A and B are independent
⇐⇒ P(A|B) = P(A) for P(B) > 0
⇐⇒ P(B|A) = P(B) for P(A) > 0
⇐⇒ P(A,B) = P(A)P(B).
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Conditioning

Some properties immediately follow from the definition of
conditional probability:

• P(A,B) = P(B)P(A|B) = P(A)P(B|A)
as A ∩ B = B ∩ A

• P(A1, . . . ,An) =
P(A1)P(A2|A1)P(A3|A1,A2) · · ·P(An|A1, . . . ,An−1)
(multiplication rule)

• P(A|B) = P(B|A)P(A)
P(B) (Bayes’ rule)

• P(A) = P(A,B) + P(A, B̄) = P(A|B)P(B) + P(A|B̄)P(B̄)
(law of total probability)
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Plan II
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Discrete random variables

Definition 7

A random variable X is a function

X : S → R.

A random variable is discrete if its domain S is finite or countable
infinite.

The range of a discrete random variable

X (S) = {x ∈ R. ∃A ∈ S . X (A) = x}

is also discrete.
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Cumulative Distribution Function

X ≤ x is an event.

Definition 8

The cumulative distribution function of a random variable X is
defined as FX (x) = P(X ≤ x) ∈ [0, 1].

Properties of CDFs:
• monotonically increasing
• right-continuous

• FX (x)
x→−∞−−−−→ 0

• FX (x)
x→∞−−−→ 1

Therefore, P(a < X ≤ b) = FX (b)− FX (a).
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Probability Mass Function

Definition 9

The probability mass function of a discrete random variable X is
defined as fX (x) = P(X = x) ∈ [0, 1] where∑

x∈X (S)

fX (x) = 1.
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The CDF of X can be obtained from the PDF of X by summing
over the PDF

FX (x) =
∑
x ′≤x

fX (x
′).

The PMF of X can be obtained from the CDF of X by identifying
the jumps in the CDF

fX (x) = FX (x)− FX (prev(x)).
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Independence

Two random variables are independent if knowledge about the value
of one random variable does not affect the probability distribution
of the other random variable.

Two discrete random variables X and Y are independent
⇐⇒ the events X = x and Y = y are independent
⇐⇒ the events X ≤ x and Y ≤ y are independent.
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Bernoulli

Definition 10 (X ∼ Bern(p))

A discrete random variable X is Bernoulli distributed with
parameter p when X (S) = {0, 1} and P(X = 1) = p.

Overview
• E (X ) = p

• Var(X ) = p(1 − p)

• GX (s) = 1 − p + ps

• MX (s) = 1 − p + pes
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Averages

Definition 11

The expected value E (X ) of a random variable X is the arithmetic
mean of a large number of a realizations of X .

E (X ) =
∑

x∈X (S)

x · P(X = x)

=
∑
A∈S

X (A) · P(A).

For infinite probability spaces absolute convergence of E (X ) is
necessary for the existence of E (X ).
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Properties of expected values:

• if ∀A ∈ S . X (A) ≤ Y (A), then E (X ) ≤ E (Y ) (monotonicity)
• E (a · X + b) = a · E (X ) + b, E (X + Y ) = E (X ) + E (Y )

(linearity)
• E (

∏n
i=1 Xi ) =

∏n
i=1 E (Xi ) if X1, . . . ,Xn independent

(multiplicativity).
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Definition 12

E (X i ) is called the i-th moment of the random variable X and
E ((X − E (X ))i ) is called the i-th central moment of X .

28 / 102



The law of the unconscious statistician (LOTUS) can be used to
find the expected value of transformed random variables.

E (g(X )) =
∑

x∈X (S)

g(x) · P(X = x).

29 / 102



Indicator variables

Definition 13

Given an event A, the random variable IA ∼ Bern(P(A)) is the
indicator variable of the event A.

Properties of indicator variables:
• E (IA) = P(A) (fundamental bridge)
• E (IA1 · · · IAn) = P(A1 ∩ · · · ∩ An).
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Binomial

Definition 14 (X ∼ Bin(n, p))

A discrete random variable X has the binomial distribution with
parameters n and p when X models the #successes in n
independent Bern(p) trials.

fX (k) =

(
n

k

)
pk(1 − p)n−k .

Overview
• E (X ) = np

• Var(X ) = np(1 − p)

• GX (s) = (1 − p + ps)n

• MX (s) = (1 − p + pes)n
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Variance

Definition 15

The variance Var(X ) of a random variable X is a measure of the
absolute deviation of a random variable from its mean.

Var(X ) = E ((X − E (X ))2)

= E (X 2)− E (X )2.

SD(X ) =
√
Var(X ) is the standard deviation of X .

Properties of variances:
• Var(a · X + b) = a2 · Var(X )

• Var(
∑n

i=1 Xi ) =
∑n

i=1 Var(Xi ) if X1, . . . ,Xn independent.
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Geometric

Definition 16 (X ∼ Geom(p))

A discrete random variable X has the geometric distribution with
parameter p when X models the #trials leading up to a success in
independent Bern(p) trials.

fX (k) = p(1 − p)k−1, k ∈ N. FX (k) = 1 − (1 − p)⌊k⌋.

Overview
• E (X ) = 1

p

• Var(X ) = 1−p
p2

• GX (s) =
ps

1−(1−p)s
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Memorylessness

Completing x trials that are all failures does not change the
probability of the next y trials to include a success.

This property can be formalized as follows:

P(X > y + x |X > x) = P(X > y).

The geometric distribution is the only memoryless discrete
distribution.
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Poisson

Definition 17 (X ∼ Po(λ))

A discrete random variable X has the Poisson distribution with
parameter λ when X models the #events in a fixed interval with
rate λ and with events independently occurring of the time since
the last event.

fX (k) =
e−λ · λk

k!
, k ∈ N0. FX (k) = e−λ ·

⌊k⌋∑
i=0

λi

i !
.

Overview
• E (X ) = λ

• Var(X ) = λ

• GX (s) = exp(λ(s − 1))
• MX (s) = exp(λ(es − 1))
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Poisson approximation to the Binomial

Let X ∼ Bin(n, λ/n).

Then the distribution of X converges to Po(λ) as n → ∞
(i.e. for small λ/n).
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Probability-generating functions

Definition 18

Given a discrete random variable X with X (S) ⊆ N0 the
probability-generating function is defined as

GX (s) =
∑

x∈X (S)

sx · P(X = x)

= E (sX ).

The PGF of a random variable X generates the PMF of X :

P(X = i) =
G

(i)
X (0)
i !

.
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Properties of probability-generating functions:

• E (X ) = G ′
X (1)

• Var(X ) = G ′′
X (1) + G ′

X (1)− (G ′
X (1))

2

• GX+t(s) = st · GX (s), t ∈ N0

• GX+Y (s) = GX (s) · GY (s) if X ,Y independent
• GZ (s) = GN(GX (s)) for Z = X1 + · · ·+ XN , Xi i.i.d. with

PGF GX , and N independent.
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Moment-generating functions

Definition 19

Given a random variable X the moment-generating function is
defined as

MX (s) =
∑

x∈X (S)

esx · P(X = x)

= E (esX )

=
∞∑
i=0

E (X i )

i !
· s i .

The MGF of a random variable X generates the i-th moment of X :

E (X i ) = M
(i)
X (0).
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Properties of moment-generating functions:

• MX (s) = GX (e
s) if X (S) ⊆ N0

• MX+Y (s) = MX (s) ·MY (s) if X ,Y independent.

40 / 102



Properties of moment-generating functions:
• MX (s) = GX (e

s) if X (S) ⊆ N0

• MX+Y (s) = MX (s) ·MY (s) if X ,Y independent.

40 / 102



Properties of moment-generating functions:
• MX (s) = GX (e

s) if X (S) ⊆ N0

• MX+Y (s) = MX (s) ·MY (s) if X ,Y independent.

40 / 102



Joint distributions

Definition 20

A joint distribution is the distribution of two or more random
variables.

fX ,Y (x , y) = P(X = x ,Y = y).

The marginal distribution of a random variable can be obtained
from a joint distribution by summing over all other random
variables:

fX (x) =
∑

y∈Y (S)

fX ,Y (x , y).
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Conditional distributions

Definition 21

Given the joint distribution of two random variables X and Y the
conditional distribution of X given Y is the distribution of X when
Y is known to be a particular value.

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
=

fY |X (y |x) · fX (x)
fY (y)

.

The conditional expectation of the random variables X |Y = y is
the expected value of the distribution fX |Y=y :

E (X |Y = y) =
∑

x∈X (S)

x · fX |Y (x |y).
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Convolutions

Definition 22

Let X and Y be independent and Z = X + Y . Then

fZ (z) =
∑

x∈X (S)

fX (x) · fY (z − x).

The derivation of the distribution of a sum of random variables
given the marginal distributions is called convolution.
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More distributions

Definition 23 (X ∼ HypGeom(r , a, b))

A discrete random variable X has the hypergeometric distribution
with parameters r , a and b when X models the # of drawn objects
that have a specified feature in r draws without replacement from
a+ b objects where b objects have the specified feature.

fX (x) =

(b
x

)( a
r−x

)(a+b
r

) .

Overview
• E (X ) = r · b

a+b
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Definition 24 (Z ∼ NegBin(n, p))

A discrete random variable Z has the negative binomial distribution
with parameters n and p when Z models the # of independent
Bern(p) trials before the n-th success.

fZ (z) =

(
z − 1
n − 1

)
pn(1 − p)z−n.

Example 25
Let X1, . . . ,Xn ∼ Geom(p) i.i.d.
Then Z = X1 + · · ·+ Xn ∼ NegBin(n, p).
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Inequalities

Inequalities vs approximations

Approximations allow us to model more complex problems but you
usually don’t know how good the approximation is.

Inequalities allow us to prove definite facts (i.e. bounds) about
probabilities of certain events.
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Definition 26 (Markov)

Given a random variable X ≥ 0 and t > 0

P(X ≥ t) ≤ E (X )

t
.

Definition 27 (Chebyshev)

Given a random variable X and t > 0

P(|X − E (X )| ≥ t) ≤ Var(X )

t2
.
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Definition 28 (Chernoff)

Let X1, . . . ,Xn be independent, Bernoulli-distributed random
variables with Xi ∼ Bern(pi ). Then the following inequalities hold
for X =

∑n
i=1 Xi and µ = E (X ) =

∑n
i=1 pi .

• P(X ≥ (1 + δ)µ) ≤
(

eδ

(1+δ)1+δ

)µ
for all δ > 0;

• P(X ≤ (1 − δ)µ) ≤
(

e−δ

(1−δ)1−δ

)µ
for all 0 < δ < 1;

• P(X ≥ (1 + δ)µ) ≤ e−µδ2/3 for all 0 < δ ≤ 1;
• P(X ≤ (1 − δ)µ) ≤ e−µδ2/2 for all 0 < δ ≤ 1;
• P(|X − µ| ≥ δµ) ≤ 2e−µδ2/3 for all 0 < δ ≤ 1;

• P(X ≥ (1 + δ)µ) ≤
(

e
1+δ

)(1+δ)µ
; and

• P(X ≥ t) ≤ 2−t for all t ≥ 2eµ.
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Plan I

Continuous random variables
Measure Theory
Continuous probability spaces
Uniform
Normal (Gaussian)
γ-quantiles
Exponential
Joint distributions
More distributions
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Continuous random variables

Definition 29

A continuous random variable X is a function

X : S → R

where X (S) is uncountable.

The distribution of X is defined by the probability density function
fX : R → R+

0 with the property∫ +∞

−∞
fX (x) dx = 1.
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Measure Theory

Definition 30

• A Borel set of R is any subset A ⊆ R which can be
represented as countably many unions and intersections of
intervals (open, half-open, or closed) on R.

• A function f : R → R is (Borel-)measurable if the preimage of
any Borel set also is a Borel set.

• For a measurable function f we denote the Lebesgue integral
by
∫
f dλ.

Example 31 (Examples of measurable functions)

• the characteristic function 1A of the set A,
• continuous functions, and
• sums and products of measurable functions.

51 / 102



Measure Theory

Definition 30

• A Borel set of R is any subset A ⊆ R which can be
represented as countably many unions and intersections of
intervals (open, half-open, or closed) on R.

• A function f : R → R is (Borel-)measurable if the preimage of
any Borel set also is a Borel set.

• For a measurable function f we denote the Lebesgue integral
by
∫
f dλ.

Example 31 (Examples of measurable functions)

• the characteristic function 1A of the set A,
• continuous functions, and
• sums and products of measurable functions.

51 / 102



Measure Theory

Definition 30

• A Borel set of R is any subset A ⊆ R which can be
represented as countably many unions and intersections of
intervals (open, half-open, or closed) on R.

• A function f : R → R is (Borel-)measurable if the preimage of
any Borel set also is a Borel set.

• For a measurable function f we denote the Lebesgue integral
by
∫
f dλ.

Example 31 (Examples of measurable functions)

• the characteristic function 1A of the set A,
• continuous functions, and
• sums and products of measurable functions.

51 / 102



Measure Theory

Definition 30

• A Borel set of R is any subset A ⊆ R which can be
represented as countably many unions and intersections of
intervals (open, half-open, or closed) on R.

• A function f : R → R is (Borel-)measurable if the preimage of
any Borel set also is a Borel set.

• For a measurable function f we denote the Lebesgue integral
by
∫
f dλ.

Example 31 (Examples of measurable functions)

• the characteristic function 1A of the set A,
• continuous functions, and
• sums and products of measurable functions.

51 / 102



Probability spaces over Borel sets

The set of Borel sets A is a σ-algebra over R.

A Borel-measurable function f with the properties of a PDF defines
the probability space (R,A,P) with

P : A 7→
∫

f · 1A dλ.

Especially, P satisfies the Kolmogorov axioms.
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Continuous probability spaces

Definition 32

An event is a set A =
⋃

k Ik ⊆ R that can be resembled as the
union of countably many pairwise disjunct intervals. The probability
of A is given as

P(A) =

∫
A
fX (x) dx =

∑
k

∫
Ik

fX (x) dx .

The probability of the event A = {x}, x ∈ R is always 0.
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Cumulative distribution functions

The cumulative distribution function of a continuous random
variable X is given as

FX (x) = P(X ≤ x)

= P(X < x)

=

∫ x

−∞
fX (t) dt.

The PDF of X can be obtained from the CDF of X by finding its
derivative with respect to x :

fX (x) =
dFX
dx

.
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Intervals

By the fundamental theorem of calculus, the probability of X being
in the interval between a and b is given as

P(a ≤ X ≤ b) = FX (b)− FX (a) =

∫ b

a
fX (x) dx .
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Expected values

The expected value of a continuous random variable X is given as

E (X ) =

∫ +∞

−∞
x · fX (x) dx .

The law of the unconscious statistician still holds in the continuous
case:

E (g(X )) =

∫ +∞

−∞
g(x) · fX (x) dx .
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Uniform

Definition 33 (X ∼ Unif (a, b))

A continuous random variable X is uniformly distributed with
parameters a and b when X models the outcome of an experiment
where all outcomes that lie in the interval [a, b] are equally likely.

fX (x) =

{
1

b−a for x ∈ [a, b]

0 otherwise
. FX (x) =


0 for x < a
x−a
b−a for x ∈ [a, b]

1 for x > b

.

Overview
• E (X ) = a+b

2

• Var(X ) = (a−b)2

12
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Universality of the Uniform

Let X ∼ F . Then F (X ) ∼ Unif (0, 1).

Realizations of a random variable of any distribution F with the
inverse CDF F−1 can be simulated using realizations of a uniformly
distributed random variable Y : F−1(Y ) ∼ F .
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Normal (Gaussian)

Definition 34 (X ∼ N (µ, σ2))

fX (x) =
1

σ
√

2π
· exp

(
−(x − µ)2

2σ2

)
=: φ(x ;µ, σ).

FX (x) =: Φ(x ;µ, σ).

Overview
• E (X ) = µ

• Var(X ) = σ2

• MZ (s) = exp(µs + (σs)2

2 )
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N (0, 1) is the standard normal distribution.

Linear transformation

Let X ∼ N (µ, σ2). Then for any a ∈ R \ {0} and b ∈ R the
random variable

Y = aX + b

is normally distributed with mean aµ+ b and variance a2σ2.

Standardization

Let X ∼ N (µ, σ2) and Y = X−µ
σ . Then Y ∼ N (0, 1).

The random variable Y is called standardized.
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Additivity

Let X1, . . . ,Xn independent and normally distributed with
parameters µi , σ

2
i . Then the random variable

Z = a1X1 + · · ·+ anXn

is normally distributed with mean a1µ1 + · · · anµn and variance
a2
1σ

2
1 + · · ·+ a2

nσ
2
n.

Normal approximation to the Binomial

Let X ∼ Bin(n, p) with CDF Fn(t). Then

Fn(t) ≈ Φ

(
t − np√
p(1 − p)n

)

can be used as an approximation if np ≥ 5 and n(1 − p) ≥ 5.
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γ-quantiles

Definition 35

Let X be a continuous random variable with distribution Fx . A
number xγ with

FX (xγ) = γ

is called γ-quantile of X or the distribution FX .

Definition 36

For the standard normal zγ denotes the γ-quantile.
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Exponential

Definition 37 (X ∼ Exp(λ))

A continuous random variable X is exponentially distributed with
parameter λ when X models the time between events in a Poisson
process.

fX (x) = λe−λx . FX (x) = 1 − e−λx .

Overview
• E (X ) = 1

λ

• Var(X ) = 1
λ2

• MX (s) =
λ

λ−s , s < λ
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Scaling

Let X ∼ Exp(λ). If a > 0, then Y = aX is exponentially
distributed with the parameter λ/a.

Memorylessness

The exponential distribution is the only memoryless continuous
distribution. Therefore, any continuous random variable X where

P(X > y + x |X > x) = P(X > y)

holds for all x , y > 0 is exponentially distributed.
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Waiting for multiple events

Let X1, . . . ,Xn be independent, exponentially distributed random
variables with parameters λ1, . . . , λn. Then X = min{X1, . . . ,Xn}
is exponentially distributed with parameter λ1 + · · ·+ λn.

Exponential approximation to the Geometric

Let Xn ∼ Geom(λ/n). The distribution of scaled geometrically
distributed random variables Yn = 1

nXn converges to an exponential
distribution with parameter λ as n → ∞.
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Poisson process

Let T1,T2, . . . ∼ Exp(λ) i.i.d. that model the time between the
(i − 1)-st and i-th event.

For t > 0 we define

X (t) = max{n ∈ N | T1 + · · ·+ Tn ≤ t}

resembling the number of events that occurred up until time t.
Then X (t) is Poisson-distributed with parameter tλ.
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Joint distributions

Getting marginals

Given a joint distribution fX ,Y the marginal distribution fX can be
obtained as follows:

fX (x) =

∫ +∞

−∞
fX ,Y (x , y) dy .

Calculating probabilities

Given an event A ∈ R2 the probability of A is the area under the
probability density function of X :

P(A) =

∫∫
A

fX ,Y (x , y) dx dy .
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Finding PDFs

Given a joint CDF FX ,Y the joint PDF fX ,Y can be obtained as
follows:

fX ,Y (x , y) =
∂2FX ,Y

∂x∂y
(x , y).

Finding CDFs

Given a joint PDF fX ,Y the joint CDF FX ,Y can be obtained as
follows:

FX ,Y (x , y) =

∫ y

−∞

∫ x

−∞
fX ,Y (u, v) du dv .
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More distributions

Definition 38 (X ∼ Lognormal(µ, σ2))

A continuous random variable X is logarithmically normal
distributed with parameters µ and σ2 when Y = ln(X ) ∼ N (µ, σ2).

fX (x) =
1

xσ
√

2π
· exp

(
−(ln(x)− µ)2

2σ2

)
for x > 0.
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Inductive Statistics

Inductive statistics aims to use measured quantities to draw
conclusions about underlying laws.

To generate data n independent copies of an identical experiment
modeled by the random variable X are conducted. A measurement
resulting from one of these experiments is called a sample.
Each sample is represented by a separate random variable Xi called
sample variable.
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Estimators

Definition 39

An estimator for parameter θ is a random variable composed of
multiple sample variables used to estimate θ.

The bias of an estimator U is given as E (U − θ).

An estimator U is unbiased for the parameter θ if E (U) = θ
(i.e. its bias is zero).
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Definition 40

The sample mean X̄ is an unbiased estimator for E (X ).

X̄ =
1
n

n∑
i=1

Xi .

Definition 41

The sample variance S2 is an unbiased estimator for Var(X ).

S =

√√√√ 1
n − 1

n∑
i=1

(Xi − X̄ )2.
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Definition 42

The mean squared error is a qualitative measure of an estimator U.

MSE (U) = E ((U − θ)2).

If U is unbiased, then MSE (U) = Var(U).

An estimator A is more efficient than another estimator B if
MSE (A) < MSE (B).

An estimator U is consistent in mean square if MSE (U)
n→∞−−−→ 0.
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Maximum likelihood estimators

Maximum Likelihood Construction is a procedure to construct
estimators for parameters of a given distribution. We find the
parameter under which the given samples are most likely. In other
words, we find the most likely function to explain the given samples.

Given sample variables
−→
X = (X1, . . . ,Xn) and samples

−→x = (x1, . . . , xn), find Maximum-Likelihood estimator for X with
parameter θ.

1. construct L(−→x ; θ) = f−→
X
(−→x ; θ) =

∏n
i=1 fXi

(xi ; θ), modeling the
likelihood that the samples −→x are described by θ

2. find θ maximizing L, or equivalently
ln L(−→x ; θ) =

∑n
i=1 ln fXi

(xi ; θ)

3. the value for θ maximizing L is a Maximum-Likelihood
estimator for θ
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Law of Large Numbers

The law of large numbers says that the sample mean of i.i.d.
sample variables X̄ converges to the actual mean E (X ) with
probability 1 as the sample size n approaches infinity.

P(|X̄ − E (X )| ≥ δ) ≤ ϵ

for δ, ϵ > 0 and n ≥ Var(X )
ϵδ2 .

76 / 102



Law of Large Numbers

The law of large numbers says that the sample mean of i.i.d.
sample variables X̄ converges to the actual mean E (X ) with
probability 1 as the sample size n approaches infinity.

P(|X̄ − E (X )| ≥ δ) ≤ ϵ

for δ, ϵ > 0 and n ≥ Var(X )
ϵδ2 .

76 / 102



Central Limit Theorem

The central limit theorem says that the normalized sum of sample
values tends towards a standard normal distribution as the sample
size approaches infinity even if the original data is not normally
distributed.

∑n
i=1 Xi − nµ

σ
√
n

n→∞−−−→ N (0, 1) in distribution

for Xi i.i.d..

Equivalently:

√
n

(
X̄ − µ

σ

)
n→∞−−−→ N (0, 1) in distribution.
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De Moivre-Laplace theorem

The De Moivre-Laplace theorem is a special case of the central
limit theorem and states that the Normal distribution can be used
as an approximation for the Binomial distribution.

Let X1, . . . ,Xn ∼ Bern(p) i.i.d. and Hn = X1 + · · ·+ Xn. Then

H∗
n =

Hn − np√
np(1 − p)

n→∞−−−→ N (0, 1) in distribution.
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Confidence intervals

Often two estimators are used to approach the estimated quantity
from both directions.

The two estimators U1 and U2 are chosen such that

P(U1 ≤ θ ≤ U2) ≥ 1 − α.

The probability 1 − α is called confidence level.

If for a concrete sample we calculate the estimators U1 and U2 and
expect θ ∈ [U1,U2], then we are only wrong with probability α.
[U1,U2] is a confidence interval.

Often a single estimator U is used to define the symmetrical
confidence interval [U − δ,U + δ].
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Hypothesis tests

Given sample variables
−→
X = (X1, . . . ,Xn) and sample values

−→x = (x1, . . . , xn) decide whether to accept or reject a hypothesis.

K = {−→x ∈ Rn | −→x results in rejecting the hypothesis} is the
critical region (or rejection region) of a test.

K is constructed based on the concrete values of the test variable
T that is composed of the sample variables.

A test is called one-sided if K is a half-open interval in T (S) and
two-sided if K is a closed interval in T (S).
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H0 is the hypothesis to be tested, also called null-hypothesis.
H1 is the alternative. H1 is trivial if it is just the negation of H0.

Errors

• type 1 error or α-error or significance level
H0 holds, but −→x ∈ K

α = sup
p∈H0

Pp(T ∈ K ).

• type 2 error or β-error
H1 holds, but −→x ̸∈ K

β = sup
p∈H1

Pp(T ̸∈ K ).
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The quality function g describes the probability that a test rejects
the null-hypothesis.

g(p) = Pp(T ∈ K ).
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Statistical tests

Characteristics

Statistical tests can be distinguished by the following
characteristics:

• Number of involved random variables

Comparison of two random variables with potentially different
distributions (two-sample test), or examination of a single
random variable (one-sample test)?
In case of a two sample test:

• Independence of involved random variables
Are independent measurements (independence) or related
measurements (dependence) taken?

• Relationships between several random variables
Regression analysis describes the examination of functional
dependencies between random variables, whereas dependency
analysis describes the examination of random variables
regarding on independence.
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• Formulation of the null hypothesis

Which parameters are examined by the test (e.g. expected
value or variance), or is tested for a given distribution?

• Assumptions
Which assumptions does the test make regarding
independence, distribution, expected value or variance?
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Important statistical tests

• Binomial test
• Z -test
• t-test
• two-sample t-test
• χ2-test
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Stochastic processes

Definition 43

A stochastic process is a sequence of random variables (Xt)t∈T
that describe the behavior of a system at time t.

If T = N0, the stochastic process has discrete time. If T = R+
0 , the

stochastic process has continuous time.
If Xt is discrete (i.e. its range is countable), the system is said to
have a distinct state at time t.
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Markov property

Definition 44

A stochastic process fulfills the Markov property if the probability
distribution of the states at time t + 1 solely depends on the
probability distribution of states at time t, but not on the states at
times < t.

This property can be formalized as follows:

P(Xt+1 = j |Xt = it , . . . ,X0 = i0) = P(Xt+1 = j |Xt = it) =: ptit j .
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Definition 45

A (finite) Markov chain (with discrete time) over the state space
S = {0, . . . , n − 1} consists of an infinite sequence of random
variables (Xt)t∈N0 with codomain S

and the initial distribution q0
with qT0 ∈ Rn. q0 represents a valid probability mass function (as a
row vector) of the random variable X0.
Farther, the Markov property must hold.
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Representations

Definition 46

If the transition probabilities pij = P(Xt+1 = j |Xt = i) are constant
over time t, the Markov chain is called (time-)homogeneous.

In that case the transition matrix is given as P = (pij)0≤i ,j<n.

The transition diagram is a graph consisting of vertices S and
weighted edges represented by the adjacency matrix P .

A concrete instance of the system can be interpreted as a random
walk on the transition diagram.
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Probabilities

The distribution of a Markov chain can be identified iteratively for
larger and larger t:

qt+1 = qt · P

qt = q0 · Pt

qt+k = qt · Pk .

Definition 47

qt is the state vector (or distribution) of the Markov chain at time
t.

The entries of Pk refer to the probability of transitioning from state
i to state j in exactly k steps:

p
(k)
ij = P(Xt+k = j |Xt = i) = (Pk)ij .
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Hitting times

Definition 48

The hitting time of state j from state i is modeled by the following
random variable:

Tij = min{n ≥ 1 | Xn = j given X0 = i}.

The expected hitting time is given as

hij = E (Tij)

= 1 +
∑
k ̸=j

pikhkj .
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The probability of reaching state j from state i in arbitrarily many
steps is called arrival probability fij :

fij = P(Tij < ∞)

= pij +
∑
k ̸=j

pik fkj .

Definition 49

The random variable Ti = Tii refers to the recurrence time of state
i to state i .

The expected recurrence time hi = hii and the recurrence
probability fi = fii are defined analogously to the expected hitting
time and the arrival probability.
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Stationary distribution

Definition 50

A state vector π with π = π · P is a stationary distribution of a
Markov chain.

A Markov chain does not necessarily converge to a stationary
distribution. Convergence depends on the properties of the Markov
chain itself and its initial distribution.
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Interlude: Diagonalization

For eigenvectors xi and related eigenvalues λi of a matrix A,
A · xi = λi · xi holds.

Then for a square matrix A with eigenvectors x1, . . . , xn and related
eigenvalues λ1, . . . , λn, it holds that

A ·
[
x1 · · · xn

]
=
[
λ1x1 · · · λnxn

]
=
[
x1 · · · xn

]
·

λ1 0 0

0
. . . 0

0 0 λn

 .

Let V be the matrix consisting of the eigenvectors of A as column
vectors and let Λ be the diagonal matrix consisting of the
eigenvalues of A.

Then V−1 · A · V = Λ is called diagonalization of A.
Conversely, A = V · Λ · V−1 holds.
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Convergence

From the diagonalization of the transition matrix it follows that

Pt = V · Λt · V−1.

This can be used to describe the behavior of a Markov chain for
t → ∞:

lim
t→∞

qt = lim
t→∞

q0 · Pt .

lim
t→∞

P(Xt = j | X0 = i) = lim
t→∞

Pt(i , j).
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Properties

Certain properties of Markov chains allow us to draw conclusions
about its stationary distributions.

Definition 51

A state i is absorbing if pii = 1, that is its vertex in the transition
diagram has no outgoing edges.

A state i is recurrent if fi = 1, that is with probability 1 the Markov
chain returns to state i .
if conversely fi < 1, the state i is transient.
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Definition 52

A Markov chain is irreducible if every state is reachable from every
other state with a positive probability if the Markov chain is run for
enough steps.

Formally:

∀i , j ∈ S . ∃n ∈ N. p(n)ij > 0.

A finite Markov chain is irreducible if and only if its transition
diagram is strongly connected.

If a finite Markov chain is irreducible
• fij = 1,∀i , j ∈ S ;
• hij exists,∀i , j ∈ S ; and
• there exists a unique stationary distribution π with

π(j) = 1
hj
,∀j ∈ S .

The Markov chain does not necessarily converge to the stationary
distribution (periodicity!).
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We now want to examine the periodicity of states.

Definition 53

For a state i define

T (i) = {n ≥ 1 | Pn(i , i) > 0}.

Then the period of state i is defined as di = gcd(T (i)).

If a Markov chain is irreducible, all of its states share the same
period. This period is then referred to as the period of the Markov
chain.
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Definition 54

A state i is aperiodic if di = 1

, or equivalently, if
∃n0 ∈ N. ∀n ≥ n0. p

(n)
ii > 0.

Therefore a state i is aperiodic if and only if the transition diagram
has a closed path from i to i with length n for all n ∈ N greater
some n0 ∈ N.

That is state i is surely aperiodic if in the transition diagram
• it has a loop (pii > 0) or
• it is on at least two closed paths P1 and P2 whose lengths are

coprime.

A Markov chain is aperiodic if all its states are aperiodic.
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∃n0 ∈ N. ∀n ≥ n0. p

(n)
ii > 0.

Therefore a state i is aperiodic if and only if the transition diagram
has a closed path from i to i with length n for all n ∈ N greater
some n0 ∈ N.
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Definition 55

An ireducible and aperiodic Markov chain is called ergodic.

For every finite ergodic Markov chain it holds independently of its
initial distribution q0 that

lim
t→∞

qt = π

where π refers to its unique stationary distribution.
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Definition 56

A square matrix A is called stochastic if all its rows sum to one.

Every transition matrix P is stochastic.

Additionally, A is called doubly stochastic if also all its columns sum
to one.

For every finite ergodic Markov chain whose transition matrix is
doubly stochastic its unique stationary distribution assigns the same
probability to each state:

π ≡ 1
|S |

.
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