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1 Exercises

1.1 Haskell warm up

1. [1, p. 46] Explain the effect of the function defined here:

mystery :: Integer -> Integer -> Integer -> Bool

mystery m n p = not ((m==n) && (n==p))

Hint: if you find it difficult to answer this question directly, try to see what the function does on some
example outputs.

2. [1, p. 47] Define a function

threeDifferent :: Integer -> Integer -> Integer -> Bool

so that the result of threeDifferent m n p is True only if all three of the numbers m, n and p are
different.

What is your answer for threeDifferent 3 4 3? Explain why you get the answer that you do.

1.2 Recursion, pattern matching

1. Define a recursive function pow :: Integer -> Integer -> Integer such that pow x n = xn.

2. Define a recursive function

ascending :: Ord a => [a] -> Bool

such that ascending xs = True if xs is in ascending order.

3. Define a recursive function

zip’ :: [a] -> [b] -> [(a,b)]

that mirrors the behavior of the Prelude function zip.

4. Define a function insertionSort :: Ord a => [a] -> [a] that sorts the input using the insertion
sort algorithm.

5. [sheet 15] Decide for each of the following functions whether they are tail recursive:

(a) prod :: Num a => a -> [a] -> a

prod n [] = n

prod n (m:ms) = prod (n*m) ms
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(b) prod :: Num a => [a] -> a

prod [] = 1

prod (m:ms) = if m = 0 then 0 else m * prod ms

(c) prod :: Num a => a -> [a] -> a

prod n [] = n

prod n (m:ms) = if m == 0 then 0 else prod (n*m) ms

6. [emdterm 2013] Give a tail recursive implementation of the following function:

fac :: Int -> Int

fac n | n > 0 = n * fac (n - 1)

| otherwise = 1

7. [1, p. 85] (everyone loves geometry) Suppose we want to find out the maximum number of pieces we
can get by making a given number of straight-line cuts across a piece of paper. With no cuts we get
one piece; what about the general case?

Define the function

regions :: Integer -> Integer

such that using n straight lines regions n returns the maximum number of regions a two dimensional
space can be divided into.

8. [retake 2013] Implement the function remdups :: Eq a => [a] -> [a] that removes all duplicates
from a list. The first occurrence of every element should remain. For example, remdups [1,5,3,1,0,3]

== [1,5,3,0].

The functions nub and nubBy from the Prelude may not be used.

1.3 List comprehensions

1. Define the function concat’ :: [[a]] -> [a] using list comprehensions that given a list of lists, joins
each element of the outer list and returns a new list.

2. Define a function primes :: Int -> [Int] using list comprehensions that returns all primes up to n.

Hint: think about what auxiliary functions you could define that might help.

3. [1, p. 115] Define the function

matches :: Integer -> [Integer] -> [Integer]

which picks out all occurrences of an integer n in a list using list comprehensions. For instance,

matches 1 [1,2,1,4,5,1] = [1,1,1]

matches 1 [2,3,4,6] = []

Using matches or otherwise, define a function

elem’ :: Integer -> [Integer] -> Bool

which is True if the Integer is an element of the list, and False otherwise. For the examples above,
we have

elem’ 1 [1,2,1,4,5,1] = True

elem’ 1 [2,3,4,6] = False
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1.4 QuickCheck

1. Write QuickCheck tests to check your implementation of zip’, and concat’ against the Prelude
functions zip, and concat respectively.

2. [endterm 2015] Write for the given function occs one or more QuickCheck tests that form a complete
test suite. A test suite is complete if every test succeeds for any correct implementation and if for any
incorrect implementation at least one test fails for appropriate test parameters.

The function occs :: Eq a => [a] -> [(a, Int)] counts how often each element occurs in a list.
The returned list must be sorted in decreasing order by the number of occurrences and may not contain
any duplicates. Elements with the same number of occurrences may be returned in any order. Elements
that do not occur in the input are not allowed to be present in the output.

Examples for correct behavior:

occs "mississippi" ==

[(’i’, 4), (’s’, 4), (’p’, 2), (’m’, 1)]

occs "mississippi" ==

[(’s’,4), (’i’, 4), (’p’, 2), (’m’, 1)]

Examples for incorrect behavior:

occs "mississippi" ==

[(’s’, 4), (’i’, 4), (’m’, 1), (’p’, 2)]

occs "mississippi" ==

[(’s’, 4), (’i’, 4), (’m’, 1), (’p’, 2), (’x’, 0)]

occs "mississippi" ==

[(’s’, 4), (’s’, 4), (’i’, 4), (’p’, 2), (’m’, 1)]

Important: It is not required to implement the function occs.

1.5 Higher-order functions

1. Define the function takeWhile’ :: (a -> Bool) -> [a] -> [a] similar to the Prelude function
takeWhile that takes a function f and a list [x1, . . . , xn] and returns [x1, . . . , xk−1] where f(xk) is
the first element that is false.

2. [sheet 6] Write a function iter :: Int -> (a -> a) -> a -> a that takes a number n, a function
f , and a value x and applies f n-times with initial value x, that is iter n f x computes fn(x). A
negative input for n should have the same effect as passing n = 0. For example, iter 3 sq 2 = 256,
where sq x = x * x.

3. [sheet 6] Use iter to implement the following functions without recursion:

(a) Exponentiation: pow’ :: Int -> Int -> Int such that pow’ n k = nk for all k ≥ 0.

(b) The function drop’ :: Int -> [a] -> [a] similar to the Prelude function drop that takes a
number k and a list [x1, . . . , xn] and returns [xk+1, . . . , xn]. You can assume that k ≤ n.

(c) The function replicate’ :: Int -> a -> [a] similar to the Prelude function replicate that
takes a number n ≥ 0 and a value x and returns the list containing the element x n-times.

4. Implement the left-associative fold foldl’ :: (a -> b -> a) -> a -> [b] -> a similar to the Pre-
lude function foldl. Then sketch the evaluation of

foldl (+) 0 [1,2,3]

5. Using foldr, implement the following functions:
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(a) map’ :: (a -> b) -> [a] -> [b] similar to the Prelude function map such that
map’(f, [x1, . . . , xn]) = [f(x1), . . . , f(xn)].

(b) filter’ :: (a -> Bool) -> [a] -> [a] similar to the Prelude function filter such that
filter’(f, [x1, . . . , xn]) = [xi | f(xi)].

6. [sheet 7] Using foldr, implement the following functions:

(a) compose :: [(a -> a)] -> a -> a such that compose([f1, . . . , fn], x) = f1(. . . (fn(x)) . . . ).

(b) fib :: Integer -> Integer computing the Fibonacci numbers.

1.6 Lambda abstractions

1. [endterm 2013] Which of the following function definitions define the same function, and which do not?
Justify briefly.

f1 xs x = filter (> x) xs

f2 xs = \x -> filter (> x)

f3 = \xs x -> filter (> x) xs

f4 x = filter (> x)

2. [endterm 2015] For both expressions, give a λ-expression with the same semantics that does not contain
a section:

(a) (++ [1])

(b) (++) [1]

1.7 Review

1. [endterm 2020] Write a function halfEven :: [Int] -> [Int] -> [Int] that takes two lists xs and
ys as input. The function should compute the pairwise sums of the elements of xs and ys, i.e. for
xs = [x0.x1. . . . ] and ys = [y0, y1, . . . ] it computes [x0 + y0, x1 + y1, . . . ]. Then, if xi + yi is even, the
sum is halved. Otherwise, the sum is removed from the list. An invocation of halfEven could look as
follows:

halfEven [1,2,3,4] [5,3,1] = [3,2]

halfEven [1] [1,2,3] = [1]

Implement the function in three different ways:

(a) As a list comprehension without using any higher-order functions or recursion.

(b) As a recursive function with the help of pattern matching. You are not allowed to use list
comprehensions or higher-order functions.

(c) Use higher-order functions (e.g. map, filter, etc.) but no recursion or list comprehensions.
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2 Homework

2.1 Recursion, pattern matching

1. [1, p. 86] Using the addition function over the natural numbers, give a recursive definition of multipli-
cation of natural numbers.

2. [1, p. 86] The integer square root of a positive integer n is the largest integer whose square is less than
or equal to n. For instance, the integer square roots of 15 and 16 are 3 and 4 respectively. Give a
primitive recursive definition of this function.

3. [sheet 1] Define a recursive function

argMax :: (Integer -> Integer) -> Integer -> Integer

such that argMax g n maximizes g in the domain {0, . . . , n}.

4. [sheet 2] Define a function toSet :: [Integer] -> [Integer] using list comprehensions such that
toSet xs removes all duplicates of xs.

5. [sheet 3] Implement a Haskell function mergeSort :: [Integer] -> [Integer] that sorts an integer
list in ascending order by using Merge Sort.

6. [sheet 15] Consider the function concat :: [[a]] -> [a] that concatenates a list of lists:

concat [[1,2],[],[5,6],[7]] = [1,2,5,6,7]

Give a tail recursive implementation of concat.

7. [endterm 2014] Give a tail recursive implementation of the function sum :: [Integer] -> Integer

that calculates the sum of the element of the given list. With the exception of primitive arithmetic
operations you may not use any other predefined function.

2.2 List comprehensions

1. Define a function quicksort :: Ord a => [a] -> [a] that sorts the input using the Quicksort al-
gorithm.

2. [1, p. 115] Give a function

duplicate :: String -> Integer -> String

which takes a string and an integer, n. The result is n copies of the string joined together. If n is less
than or equal to 0, the result should be the empty string, "", and if n is 1, the result will be the string
itself. Use list comprehensions.

3. [1, p. 424] Give a function

perms :: Eq a => [a] -> [[a]]

which returns a list of all permutations of a given list.

Hint: you may use the list difference operator (\\) :: Eq a -> [a] -> [a] -> [a] where xs \\
ys removes each element of ys from xs.
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2.3 QuickCheck

1. Write QuickCheck tests to check your implementation of elem’ against the Prelude function elem.

2. [sheet 2] Define a function isSet :: [Integer] -> Bool such that isSet xs holds iff xs is a set.
Then check that isSet $ toSet xs holds using QuickCheck.

3. [sheet 1] Let g be the following function

g :: Integer -> Integer

g n = if n < 10 then n*n else n

Examine g to determine when argMax g n ̸= n. Use your observations to write a function
argMaxG :: Integer -> Integer that does not use g and satisfies the property
argMax g n = argMaxG n. Write a QuickCheck test to check the equivalence.

4. [sheet 15] Write one or more QuickCheck tests for the function sortP as defined below. The tests
should be complete, i.e. every correct implementation of sortP passes every test and for every incorrect
implementation there is at least one test that fails for suitable test parameters.

The function sortP :: (Ord a, Eq b) => [(a,b)] -> [(a,b)] sorts a list of tuples with regard to
the first element of the tuple in ascending order. Tuples with the same first element may occur in any
order.

Examples for correct behavior:

sortP [(3, ’a’), (1, ’b’), (2, ’c’)] = [(1, ’b’), (2, ’c’), (3, ’a’)]

sortP [(3, ’a’), (1, ’b’), (3, ’c’)] = [(1, ’b’), (3, ’c’), (3, ’a’)]

sortP [(3, ’a’), (1, ’b’), (3, ’c’)] = [(1, ’b’), (3, ’a’), (3, ’c’)]

Examples for incorrect behavior:

sortP [(3, ’a’), (1, ’b’), (2, ’c’)] = [(1, ’a’), (2, ’b’), (3, ’c’)]

sortP [(3, ’a’), (1, ’b’), (3, ’c’)] = [(1, ’b’), (3, ’a’), (3, ’a’)]

sortP [(3, ’a’), (1, ’b’), (2, ’c’)] = [(3, ’a’), (2, ’c’), (1, ’b’)]

Important: It is not required to implement the function sortP.

5. [endterm 2013] Given the type Nat of natural numbers ({0, 1, 2, . . . }) and a function
stutt :: [Nat] -> [Nat] that maps [n1, . . . , nk] to

[n1, . . . , n1︸ ︷︷ ︸
n1-times

, . . . , nk, . . . , nk︸ ︷︷ ︸
nk-times

]

Example: stutt [2,0,3,1] == [2,2,3,3,3,1].

Give a complete test suite consisting of two of the following QuickCheck tests:

prop_stutt_length ns = length (stutt ns) == sum ns

prop_stutt_contents ns = all (> 0) ns ==> nub (stutt ns) == nub ns

prop_stutt_null = stutt [] == []

prop_stutt_single n = stutt [n] == replicate n n

prop_stutt_cons n ns = stutt (n : ns) == replicate n n ++ stutt ns

prop_stutt_reverse ns = reverse (stutt ns) == stutt (reverse ns)

prop_stutt_distr ms ns = stutt ms ++ stutt ns == stutt (ms ++ ns)

Justify your answer briefly. For the function replicate :: Nat -> a -> [a] replicate m x =
[x, . . . , x︸ ︷︷ ︸
m-times

] holds.
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6. [retake 2014] In this task sets are represented by lists. As usual, duplicates and ordering do not have any
effect on the represented set. For example, the lists [1, 2], [1, 2, 1], and [2, 2, 1] all represent
the mathematical set {1, 2}.
Consider the function takeAny :: [a] -> (a, [a]). The input xs is interpreted as set A. The
function chooses a random element a of A and returns a pair (a, ys). ys is a list representing the set
A \ {a}.
Is the set A empty, the function may behave in any way (e.g. not terminate).

Examples:

takeAny [] -- not defined, random

takeAny [1] = (1 ,[])

takeAny [1 ,1 ,1] = (1 ,[])

takeAny [1 ,2] = (1 ,[2]) or (2 ,[1]) or (1 ,[2 ,2]) or ...

takeAny [1 ,2 ,2] = (1 ,[2]) or (2 ,[1]) or (1 ,[2 ,2]) or ...

takeAny [1 ,2 ,3] = (1 ,[2 ,3]) or (3 ,[2 ,1 ,2]) or ...

As the examples show, the function is allowed to create duplicates or change the ordering.

Give a correct and complete QuickCheck test suite for this function. Justify your answer briefly.

7. [retake 2013] Given a function h :: [Float] -> [Float] that maps a list [x1, . . . , xn] of numbers to
the list [ 1

x1
, . . . , 1

xn
]. The behavior of the function for inputs that contain the number 0 is not specified.

Example: h [2.0, 4.0, 0.5] == [0.5, 0.25, 2.0].

Give a complete test suite of at most two QuickCheck tests describing the behavior of h.

2.4 Higher-order functions

1. Define the function dropWhile’ :: (a -> Bool) -> [a] -> [a] similar to the Prelude function
dropWhile that takes a function f and a list [x1, . . . , xn] and returns [xk, . . . , xn] where f(xk) is
the first element that is false.

2. [sheet 7] Write a function iterWhile :: (a -> a -> Bool) -> (a -> a) -> a -> a such that
iterWhile test f x iterates f until test x (f x) is false, and then returns x.

3. [sheet 7] Use iterWhile to implement a function fixpoint :: Eq a => (a -> a) -> a -> a that
iterates a function f until it finds a value x such that f x = x and then returns this value.

4. [sheet 7] Use iterWhile to implement a function findSup :: Ord a => (a -> a) -> a -> a -> a

such that findSup f m x finds the larges value fnx that is at most m assuming that f is strictly
monotonically increasing.

5. [sheet 7] Using foldr, implement the following functions:

(a) length’ :: [a] -> Integer computing the length of a list.

(b) reverse’ :: [a] -> [a] reversing a list.

(c) inits’ :: [a] -> [[a]] computing the prefixes of a list.

6. [1, p. 252] Define a function

slope :: (Float -> Float) -> (Float -> Float)

which takes a function f as argument, and returns (an approximation to) its derivative f ′ as result.

7. [1, p. 252] Define a function

integrate :: (Float -> Float) -> (Float -> Float -> Float)

which takes a function f as argument, and returns (an approximation to) the two argument function
which gives the area under its graph between two end points as its result.
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2.5 Lambda abstractions

1. [endterm 2015] Give an expression describing the same function as

\xs ys -> reverse xs ++ ys

You may not use λ-expressions or define auxiliary functions. The use of function composition
(.) :: (a -> b) -> (b -> c) -> (a -> c) is permitted.

2.6 Review

1. [retake 2014] Define a function lups :: Ord a => [a] -> [a] that returns the longest, strictly
monotonously increasing (uninterrupted) partial list of the input.

Examples:

lups [] = []

lups [2 ,2 ,1] = [2] or [1]

lups [2 ,5 ,3 ,6 ,8] = [3 ,6 ,8]

lups [3 ,7 ,2 ,8] = [3 ,7] or [2 ,8]

2. Implement the functions zip’ :: [a] -> [b] -> [(a,b)] and unzip’ :: [(a,b)] -> ([a], [b])

similar to the Prelude functions zip and unzip in three different ways:

(a) As a recursive function with the help of pattern matching. You are not allowed to use list
comprehensions or higher-order functions.

(b) As a list comprehension without using any higher-order functions or recursion.

(c) Use higher-order functions (e.g. map, filter, etc.) but no recursion or list comprehensions.

3. [endterm 2013] Consider the function f :: [Int] -> [Int] that maps a list xs onto the list of absolute
values of the negative numbers in xs.

Example: [1,-2,3,-4,-5,6] should be mapped to [2,4,5].

Implement f in three different ways:

(a) As a recursive function; without the use of list comprehensions or higher-order functions.

(b) With the help of a list comprehension; without the use of recursion or higher-order functions.

(c) With the help of map and filter; without the use of list comprehensions or recursion.
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