Types

Jonas Hübotter

February 13, 2022

1 Exercises

1.1 Type Classes

1. [endterm 2020] We define a typeclass of integer containers as follows:

```
class IntContainer c where
  -- the empty container
  empty :: c
  -- insert an integer into a container
  insert :: Integer -> c -> c
```

Moreover, we define an extension of integer containers called IntCollection as follows:

```
class IntContainer c => IntCollection c where
  -- the number of integers in the collection
  size :: c -> Integer
 -- True if and only if the integer is a member of the collection
 member :: Integer -> c -> Bool
 -- extracts the smallest number in the collection
  -- if such a number exists.
 extractMin :: c -> Maybe Integer
  -- "update f c" applies f to every element e of c.
  -- If "f c" returns Nothing, the element is deleted;
  -- otherwise, the new value is stored in place of e.
 update :: (Integer -> Maybe Integer) -> c -> c
  -- "partition p c" creates two collections (c1 , c2) such that
  -- c1 contains exactly those elements of c satisfying p and
  -- c2 contains exactly those elements of c not satisfying p.
  partition :: (Integer -> Bool) -> c -> (c,c)
```

Assume there is a type data C with a corresponding IntContainer instance. Moreover, assume you are given the following function:

```
-- "fold f acc c" folds the function f along c (in no particular order)
-- using the start accumulator acc.
fold :: (Integer -> b -> b) -> b -> C -> b
```

Define an instance IntCollection C.

1.2 Algebraic Data Types

1. [endterm 2014] A Collatz sequence is a special sequence of natural numbers. The element c_{k+1} is obtained from the previous element c_k as follows:

$$c_{k+1} = \begin{cases} \frac{c_k}{2} & \text{if } c_k \text{ even} \\ 3 \cdot c_k + 1 & \text{if } c_k \text{ odd} \end{cases}$$

The first element c_0 can be any natural number n > 0. The sequence ends when the number 1 is reached.

Example: let $c_0 = 6$. The entire sequence then is 6, 3, 10, 5, 16, 8, 4, 2, 1.

- (a) Define a function collatz :: Integer -> [Integer] that given an initial value returns the Collatz sequence as a list.
- (b) Implement the function unfold :: (a -> Maybe a) -> a -> [a]. For a call unfold f a the function f should be repeatedly applied to a and stop with a result of Nothing. The return value is a list of all intermediate results, including the initial value of a.

Example: For $fa_0 = \text{Just } a_1, fa_1 = \text{Just } a_2, fa_n = \text{Nothing we have unfold } fa_0 = [a_0, a_1, \dots, a_n]$.

- (c) Find a function next such that collatz n = unfold next n for n > 0.
- 2. [sheet 8] Trees.
 - (a) In a binary tree, we can only descend to the left or to the right. Define a data type Tree with constructors Leaf and Node for binary trees.
 - (b) Implement a function sumTree :: Num a => Tree a -> a that returns the sum of all values in a tree.
 - (c) Implement a function cut :: Tree a -> Integer -> Tree a that cuts off a tree after a given height.
 - (d) Implement a function foldTree :: (a -> b -> b) -> b -> Tree a -> b that folds a function over a tree. The fold should process the right children of a node first, then the node itself, and lastly the left children.
 - (e) Use foldTree to implement a function inorder :: Tree a -> [a] that returns all elements of a tree in left to right order.
 - (f) Use foldTree to implement a function findAll :: (a -> Bool) -> Tree a -> [a] that returns all elements of a tree that satisfy a given predicate.
- 3. [endterm 2020] We define the following types:
 - An *atom* is either F (falsity), T (truth), or a variable:

type Name = String
data Atom = F | T | V Name deriving (Eq, Show)

• A *conjunction* is an atom or the conjunction of two conjunctions:

data Conj = A Atom | Conj :&: Conj deriving (Eq, Show)

- (a) Write a function contains :: Conj -> Atom -> Bool such that contains c a returns True if and only if a occurs in c.
- (b) Write a function implConj :: Conj -> Conj -> Bool such that implConj c1 c2 returns True if and only if conjunction c1 logically implies conjunction c2. For example:

```
A F 'implConj' c = True -- for any conjunction c
c 'implConj' A T = True -- for any conjunction c
A (V "v") 'implConj' A (V "v") = True
A (V "v") 'implConj' A (V "v") :&: A (V "w") = False
A (V "w") :&: A (V "v") 'implConj' A (V "v") :&: A (V "w") = True
```

- 4. [sheet 12] We consider a simple programming language, namely λ -calculus. It is the basis for most functional programming languages including Haskell. A program in λ -calculus is built up from terms, which are either
 - just a variable, e.g. x,
 - an anonymous function definition $(\lambda x. T)$, which binds a variable x in term T, or
 - a function application T U where both T and U are terms themselves.

Note that bound variable names are interchangeable whereas this is not the case for free variables. For example, the terms $(\lambda x. x y)$ and $(\lambda z. z y)$ are equal while the terms $(\lambda x. x y)$ and $(\lambda x. x z)$ are not equal. Start by defining a datatype **Term** in Haskell that models the λ -calculus using strings for variables names. On this datatype, implement the following functions:

- (a) Instantiate Show for Term by representing variables as just their name, λ-abstractions as (\x -> T) like in Haskell and use spaces for function application.
- (b) Define freeVars :: Term -> [String] which collects all free variables in a term, i.e. variables that are not bound by an enclosing λ -abstraction.
- (c) Implement a function substVar :: String -> Term -> Term which, when called with substVar x r t, replaces all free occurences of x in t by the term r. *Important:* the function substVar makes a key assumption about the terms t and r. To find out what the assumption is, think about what happens when substituting x with the variable y in the equivalent terms (λy. x y) and (λz. x z).
- 5. [sheet 11] In this exercise we will work with the datatype Either from the Prelude, which is defined as follows:

data Either a b = Left a | Right b

As its name suggests, this type is useful when you have a value which can either be of type a or type b. You might for instance use Either for a function that parses integers: The function could have the type String -> Either String Integer where a successful parse returns an integer as a Right value, whereas an input that cannot be parsed returns an error message as a Left value.

Now to the task at hand: It can sometimes be interesting to determine an implementation for a given type signature. For example, the signature Either a b \rightarrow Either b a has the following implementation:

f :: Either a b -> Either b a
f (Left x) = Right x
f (Right x) = Left x

Your task is to write total functions that implement the following signatures:

g :: $(a \rightarrow a') \rightarrow (b \rightarrow b') \rightarrow$ Either a b \rightarrow Either a' b' h :: $(a \rightarrow$ Either a b) \rightarrow a \rightarrow b

Your functions may not throw exceptions or be **undefined** and if possible they should terminate on all inputs.

1.3 Abstract Data Types

1. [sheet 12] In this exercise you will model *vectors*, which are essentially resizable arrays. By convention, we will index the cells of our vectors beginning with 0.

Define a module Vector that only exports a type Vector a and the following functions:

```
newtype Vector a = ...
newVector :: Int -> Vector a
size :: Vector a -> Int
capacity :: Vector a -> Int
resize :: Vector a -> Int -> Vector a
set :: Vector a -> a -> Int -> Maybe (Vector a)
get :: Vector a -> Int -> Maybe a
```

newVector n should return an empty vector of size n. size returns the size of the vector, whereas capacity returns the number of empty cells in the vector.

resize changes the size of the vector by either adding new empty cells or by truncating the cells with the highest indices.

set v x i should set the cell at index i to x. If i is not a valid index, the function should return Nothing.

get v i returns the element in cell i. If that cell is empty or if i is not a valid index, it should return Nothing.

1.4 Type inference

- 1. [endterm 2014] Why is it often better to write null xs instead of xs = []?
- 2. [sheet 11] Use the algorithm from the lecture to determine the most general types of the following definitions:

(a) ffoldl = foldl . foldl (where foldl :: (a -> b -> a) -> a -> [b] -> a) (b) f x y = y : map (++x) y

- 3. [endterm 2020] Give a brief justification why these expressions do not type check.
 - (a) if f x then x else "error" (where f :: (a -> Bool) and x :: Int)
 - (b) 1 : 2 : f x (where f :: (a -> String) and x :: Int)

2 Homework

2.1 Type Classes

1. [sheet 15] Consider the classes Semigroup and Monoid:

```
class Semigroup a where
  (<>) :: a -> a -> a
class Semigroup m => Monoid m where
  mempty :: m
```

We define the type of pairs as follows:

data Pair a = Pair a a

Your task is to write instances of Semigroup and Monoid for Pair. For Semigroup, you have to implement the operation <> which should combine two pairs by applying <> componentwise. Make sure the operation is associative:

Pair a b <> (Pair c d <> Pair e f) = (Pair a b <> Pair c d) <> Pair e f

Monoid requires you to give a neutral element mempty with respect to <>, i.e:

Pair a b <> mempty = mempty <> Pair a b = Pair a b

2.2 Algebraic Data Types

- 1. [endterm 2015]
 - (a) Define the functions safeHead :: [a] -> Maybe a and safeLast :: [a] -> Maybe a that, if possible, return the first and last element of a list respectively (otherwise Nothing). Do not use any predefined functions.
 - (b) Define safeHead and safeLast again. Use foldr, but none of the following techniques: list comprehensions, recursion, pattern matching on lists and predefined functions (except foldr). Note: foldr is defined as follows:

foldr :: $(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$ foldr f a [] = a foldr f a (x:xs) = f x (foldr f a xs)

(c) Define the function select :: Eq a => a -> [(a,b)] -> [b] that given a value x and a list of pairs (y, z) returns all values z such that y = x. Use map and filter, but none of the following techniques: list comprehensions, recursion and pattern matching on lists. Examples:

select ' a ' [('b', 1), ('a', 3), ('c', 4), ('a', 2)] == [3, 2]
select ' d ' [('b', 1), ('a', 3), ('c', 4), ('a', 2)] == []

2. [endterm 2014] Node is a datatype representing nodes in a file system:

data Node = File String | Dir String [Node]

A node is either a *normal file* (File) or a *directory* (Dir). Nodes have a name (of type String). Additionally, directories contain a list of nodes. An entire file system can be represented by a list of nodes:

type FileSys = [Node]

Example:

```
myFileSys =
 [Dir "Applications"
    [Dir "Aquamacs.app" [File "Info.plist"],
    Dir "Scribus.app" [File "Info.plist"]],
    Dir "Library"
    [Dir "Automator" [],
    Dir "Logs" []],
    Dir "Users"
    [Dir "smith"
       [Dir "bugs" [File "Scratch.hs"],
       File "Scratch.hs"]]]
```

Implement a function removeFiles :: String -> FileSys -> FileSys that deletes all normal files with the given name.

- 3. [sheet 9] An *atom* is either a variable labelled by a string or the value T representing truth. A *literal* is a positive or negative atom. Finally, a *formula* is either a literal, a conjunction of formulas, or a disjunction of formulas.
 - (a) Define data types for atoms, literals, and formulas. Make your definitions derive instances for Eq and Show.
 - (b) Define values top :: Literal and bottom :: Literal representing truth and falsity, respectively.
 - (c) A *clause* is a disjunction of literals. A formula is in *conjunctive normal form* (CNF) if it is a conjunction of clauses. We define the corresponding types

```
type Clause = [Literal]
type CNF = [Clause]
```

By convention, an empty clause corresponds to falsity since it is the neutral element of the disjunction operator. Similarly, [] :: CNF corresponds to truth - as it is the neutral element of the conjunction operator.

Define a function conjToForm :: CNF -> Formula that transforms a formula given as a list of clauses to a formula as encoded in subtask (a). Examples:

```
conjToForm [] = L top
conjToForm [[]] = L bottom
conjToForm [[] , []] = L bottom :&: L bottom
conjToForm [[Pos $ Var "v1", Neg $ Var "v2"], [Neg $ Var "v1", top]]
        = (L (Pos (Var "v1")) :|: L (Neg (Var "v2"))) :&:
        (L (Neg (Var "v1")) :|: L top)
```

Hint: It might be useful to first define a function of type Clause -> Formula.

 (d) Given the type of valuations type Valuation = [(Name,Bool)] write a function substConj :: Valuation -> CNF -> CNF that replaces the variables of a formula by the values as specified in the passed valuation. Examples:

```
substConj [("v", True)] [[Neg $ Var "v"], [Pos $ Var "w"]]
= [[bottom], [Pos (Var "w")]]
substConj [("v", False)] [[Neg $ Var "v"], [Pos $ Var "w"]]
= [[top], [Pos (Var "w")]]
substConj [("v", True), ("w", False)]
[[Neg $ Var "v"], [Pos $ Var "w", Neg $ Var "w"]]
= [[bottom], [bottom, top]]
```

- (e) Write a function simpConj :: CNF -> CNF that simplifies a formula F in CNF in the following way:
 - i. For every clause C in F containing top, simplify C to []top].
 - ii. For every clause C in F, remove every occurence of bottom.
 - iii. Remove every clause C in F that has been simplified to [top].

iv. If F contains a clause C that has been simplified to the empty clause, simplify F to [[]]. Examples:

(f) Write a function cnf :: Formula -> CNF that transforms a formula into CNF. Note that if $\phi = \phi_1 \wedge \cdots \wedge \phi_n$ and $\psi = \psi_1 \wedge \cdots \wedge \psi_m$ are in CNF, then the CNF of $\psi \lor \phi$ can be obtained by computing

$$(\phi_1 \lor \psi_1) \land \dots \land (\phi_1 \lor \psi_m)$$
$$\land (\phi_2 \lor \psi_1) \land \dots \land (\phi_2 \lor \psi_m)$$
$$\vdots$$
$$\land (\phi_n \lor \psi_1) \land \dots \land (\phi_n \lor \psi_m)$$

Make sure that, for every cf :: ConjForm, your functions satisfy the following property: simpConj cf == simpConj \$ cnf \$ conjToForm cf. Example:

let (a, b, c, d) = (Pos (Var "a"), Pos (Var "b"), Pos (Var "c"), Pos (Var "d")) cnf \$ (L a :&: L b) :|: (L c :&: L d) = [[a, c], [a, d], [b, c], [b, d]]

4. [1, p. 314] In this exercise we have a closer look at type inference in Haskell. The most fundamental part of type inference algorithms for a type system using parametric polymorphism is the process of *unifying* two types T and U into the most general type V such that both T and U are so-called *instances* of type V. For example, the type (Int, [Char]) is the result of unifying the types (a, [Char]) and (Int, [b]).

With type expressions we refer to composite types. For example, (a, [Char]) is a type expression.

Remember that type variables are universally quantified. An *instance* of a type is given by replacing a type variable or variables by type expressions. All instances of a type form a set describing all possible interpretations of that type.

A type expression is a *common* instance of two type expressions if it is an instance of each expression. The most general common instance of two expressions is a common instance mgci with the property that every other most common instance is an instance of mgci.

The intersection of the sets given by two type expressions is called *unification* of the two, which is the most general common instance of the two type expressions.

We define the datatype

data Type = TypeVar Char | Type String [Type] deriving Eq

representing type expressions being either a type variable or a type literal that can have type arguments. For example, the type

Tuple a (List Char)

is represented as

Type "Tuple" [TypeVar 'a', Type "List" [Type "Char" []]]

- (a) Define an instance of Show for Type using the same format as in the given example. *Bonus:* print the types Tuple and List in a more Haskell-like format.
- (b) Define a function unify :: Type -> Type -> Either String Type that decides whether two type expressions are unifiable. If they are, unify should return a most general unifying substitution; if not, it should give some explanation of why the unification fails. You may disregard the case of unifying two type variables.

2.3 Abstract Data Types

- [sheet 12] Association lists Eq k => [(k,v)] are a way of representing maps with keys k and values v. In order to prevent users from creating invalid association lists (e.g. containing muliple values for some key), we want to hide the implementation in a module.
 - (a) Define a module AssocList that only exports a type Map k v and the following functions:

newtype Map k v = ... empty :: Map k v insert :: Eq k = > k -> v -> Map k v -> Map k v lookup :: Eq k = > k -> Map k v -> Maybe v delete :: Eq k = > k -> Map k v -> Map k v keys :: Map k v -> [k]

Calling insert with an existing key should replace the associated value. Internally, the maps should be represented using association lists.

Note: Prelude also exports a function lookup. To prevent naming conflicts, you can hide this import using import Prelude hiding (lookup).

- (b) Define a function invar :: Eq k => Map k v -> Bool in AssocList that checks whether the map does not contain duplicate keys. Then define QuickCheck properties in a separate module that check whether invar is invariant under all functions returning a map.
- (c) We next check if our implementation (imported as AL.Map) behaves correctly when compared to the Map datatype provided by Data.Map from the package containers (imported as DM.Map). Define a function hom :: Ord k => AL.Map k v -> DM.Map k v that transforms our maps to the one provided by the containers library. Then check whether AL.Map simulates DM.Map by defining QuickCheck properties for every function in AssocList.

2.4 Type inference

- 1. [endterm 2013] Determine the most general type of these expressions:
 - (a) filter not

- (b) [] : []
- (c) $f x y \rightarrow f (x,y)$
- (d) map (map fst)
- 2. [endterm 2013] Give a brief justification why the following expression does not type- check.

```
map head [True, False]
```

- 3. [1, p. 319] What are the types of
 - $(a)\ \mbox{curry}\ \mbox{id}$
 - $\left(b\right)$ uncurry id
 - (c) curry (curry id)
 - $\left(d\right)$ uncurry (uncurry id)
 - $\left(e \right)$ uncurry curry
- 4. [1, p. 319] Explain why the following expressions do not type-check:
 - (a) curry uncurry
 - (b) curry curry
- 5. [endterm 2020] Determine the most general type of these expressions:
 - (a) foldr ($x y \rightarrow y + x$) [] (where foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b)
 - (b) (\f g x -> g \$ f \$ x)
 - (c) (:[1,2])
 - (d) map head . map ($f \rightarrow f$ "hello")

References

[1] Simon Thompson. Haskell - the craft of functional programming. 3rd ed. Pearson, 2011.