
Proofs

Jonas Hübotter

February 13, 2022

1 Exercises

1.1 Structural induction

1. [sheet 15] Prove that

map f (concat xss) = concat (map (map f) xss)

where

map f [] = []

map f (x:xs) = f x : map f xs

concat [] = []

concat (xs:xss) = xs ++ concat xss

You may use the lemma map append:

map f (xs ++ ys) = map f xs ++ map f ys

2. [endterm 2020] Given the type of natural numbers

data Nat = Z | Suc Nat

and the following definition of addition on these numbers

add Z m = m

add (Suc n) m = Suc (add n m)

show that addition is associative by proving the following equation using structural induction:

add (add x y) z = add x (add y z)

1.2 Case analysis

1. [sheet 13] In this exercise, we consider the datatype AExp which models addition and multiplication on
integers:

data AExp = Val Integer | Add AExp AExp | Mul AExp AExp

deriving Eq

1

We define a function eval to evaluate an expression to an integer, and a function simp that simplifies
expressions of the form 0 + e to e:

eval (Val i) = i

eval (Add a b) = (eval a) + (eval b)

eval (Mul a b) = (eval a) * (eval b)

simp (Val i) = Val i

simp (Mul a b) = Mul (simp a) (simp b)

simp (Add a b) = if a == Val 0 then simp b else Add (simp a) (simp b)

Your task is to prove that this simplification preserves the value of an expression, i.e. that the following
equation holds:

eval (simp e) = eval e

You may use these familiar axioms, no further rules for arithmetic should be required:

axiom addZero: x + 0 = x

axiom zeroAdd: 0 + x = x

1.3 Generalization

1. Given the following definitions:

data List a = [] | a : List a

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

itrev [] xs = xs

itrev (x:xs) ys = itrev xs (x:ys)

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

Prove the following statement using structural induction:

itrev xs [] = reverse xs

You may use the following lemmas about ++ in the proof:

Lemma app_assoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Lemma app_empty: xs ++ [] = xs

2

1.4 Extensionality

1. [sheet 7] This exercise is all about the two different fold functions foldl and foldr, which are defined
as follows:

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f a [] = a

foldl f a (x:xs) = foldl f (f a x) xs

foldr :: (b -> a -> a) -> a -> [b] -> a

foldr f a [] = a

foldr f a (x:xs) = f x (foldr f a xs)

The function signatures are similar; however, there is a key difference in their functionality: As the
names suggest, foldl performs a left-associative and foldr a right-associative fold, respectively. More
concretely, we have that

foldl f z [x1, x2, ..., xn] = (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘ ...) ‘f‘ xn

foldr f z [x1, x2, ..., xn] = x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

Let f be a binary operator that is commutative with respect to a, i.e. f x a = f a x for all x, and
associative. Prove the statement: Lemma: foldl f a .=. foldr f a.

1.5 Computation induction

1. [sheet 6] We define the functions sum :: Num a => [a] -> a and sum2 :: Num a => [a] -> [a]

-> a:

sum [] = 0

sum (x:xs) = x + sum xs

sum2 [] [] = 0

sum2 [] (y:ys) = y + sum2 ys []

sum2 (x:xs) ys = x + sum2 xs ys

Use computation induction to show that sum2 xs ys = sum xs + sum ys.

2 Homework

2.1 Structural induction

1. [sheet 6] We define functions sum :: Num a => [a] -> a and (++) :: [a] -> [a] -> [a] as
follows:

sum xs = sum_aux xs 0

sum_aux [] acc = acc

sum_aux (x:xs) acc = sum_aux xs (acc + x)

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

3

Use structural induction to show that

sum (xs ++ ys) = sum xs + sum ys

2. [sheet 5] We define snoc :: [a] -> a -> [a] and reverse :: [a] -> [a] as follows:

snoc [] y = [y]

snoc (x:xs) y = x : snoc xs y

reverse [] = []

reverse (x:xs) = snoc (reverse xs) x

(a) Use structural induction to prove the following equation

reverse (snox xs x) = x : reverse xs

(b) Use structural induction to prove the following equation

reverse (reverse xs) = xs

3. [sheet 9] Show that the sumTree function from problem set 2 indeed works as expected, i.e. prove the
equivalence

sum (inorder t) = sumTree t

using structural induction on trees.

2.2 Generalization

1. [endterm 2020] You are given the following definitions:

data Tree a = L | N (Tree a) a (Tree a)

flat L = []

flat (N l x r) = flat l ++ (x : flat r)

app L xs = xs

app (N l x r) xs = app l (x : app r xs)

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)

Prove the following statement using structural induction:

app t [] = flat t

You may use the following lemmas about ++ in the proof:

axiom app_assoc: (xs ++ ys) ++ zs .=. xs ++ (ys ++ zs)

axiom app_nil: xs ++ [] .=. xs

axiom nil_app: [] ++ xs .=. xs

4

2.3 Extensionality

1. [sheet 7] Prove the proposition

filter p . filter p = filter p

where filter :: (a -> Bool) -> [a] -> [a] and (.) :: (b -> c) -> (a -> b) -> (a ->

c) are defined as

filter f [] = []

filter f (x:xs) = if f x then x : filter f xs else filter f xs

(f . g) x = f (g x)

You may also use the following axioms about if-expressions:

axiom if_True: (if True then x else y) .=. x

axiom if_False: (if False then x else y) .=. y

2.4 Computation induction

1. Given the following definition of drop2:

drop2 [] = []

drop2 [x] = [x]

drop2 (x:y:xs) = x : drop2 xs

length [] = 0

length (x:xs) = 1 + length xs

And the axioms:

axiom: addZeroOne: 0 + 1 .=. 1

axiom: addOneZero: 1 + 0 .=. 1

axiom: addOneOne: 1 + 1 .=. 2

axiom: addAssoc: (a + b) + c .=. b + (b + c)

axiom: divOneTwo: 1 ‘div‘ 2 .=. 0

axiom: divTwoTwo: 2 ‘div‘ 2 .=. 1

axiom: divMulOneTwo: 1 + (x ‘div‘ 2) .=. (x + 2) ‘div‘ 2

Prove the following statement using drop2-induction:

length (drop2 xs) = (length xs + 1) ‘div‘ 2

2. [sheet 6] We define:

length [] = 0

length (x:xs) = 1 + length xs

5

countGt [] ys = 0

countGt (x:xs) [] = length (x:xs)

countGt (x:xs) (y:ys) = if x > y then 1 + countGt (x:xs) ys

else countGt (y:ys) xs

Show that countGt xs ys <= length xs + length ys using computation induction.

Note: Given a rule P x ==> y <= z with name myRule and a proof p of P x, you can use (by myRule

OF p to apply the inequality between y and z. For example:

axiom leAddMono : y <= z ==> x + y <= x + z

axiom zeroLeOne : 0 <= 1

Lemma : 0 + 0 <= 0 + 1

Proof

0 + 0

(by leAddMono OF zeroLeOne) <= 0 + 1

QED

6

