
Functional Programming and Verification
revision course

Jonas Hübotter

1 / 94

Outline

Functional Programming and Haskell

Types

Proofs

Correctness

I/O

Evaluation

Time complexity analysis

2 / 94

Plan

Functional Programming and Haskell
Basic Haskell
Recursion, guards, pattern matching
List comprehensions
QuickCheck
Polymorphism
Currying, partial application, higher-order functions

3 / 94

Basic Haskell

function types f :: a -> b -> c
function definitions f x y = ...
function application f 1 2

conditional if True then a else b
prefix/infix precedence f a ‘g‘ b means (f a) ‘g‘ b
$ sign f $ a ‘g‘ b means f (a ‘g‘ b)

4 / 94

Types

Bool True or False
Int fixed-width integers
Integer unbounded integers
Char ’a’
String "hello" :: [Char]
(a,b) (Tuple) ("hello",1) :: (String,Int)

5 / 94

Tuples

(1,"hello") :: (Int,String)
(x,y,z) :: (a,b,c)
-- ...

Prelude functions: fst, snd

6 / 94

Lists

Two ways of constructing a list:

a = [1,2,3] :: [Int]
b = 1 : 2 : 3 : [] :: [Int]

Cons (:) and [] are constructors of lists, that is a function that
uniquely constructs a value of the list type.

Intuitively: (:) :: a -> [a] -> [a].

7 / 94

Prelude functions

head :: [a] -> a first element
last :: [a] -> a last element
init :: [a] -> [a] every element but last

element
tail :: [a] -> [a] every element but first

element
elem :: a -> [a] -> Bool element in list?
(++) :: [a] -> [a] -> [a] append lists
reverse :: [a] -> [a] reverse list
length :: [a] -> Int length of list
null :: [a] -> Bool empty?
concat :: [[a]] -> [a] flatten list
zip :: [a] -> [b] -> [(a,b)] combine lists element-wise
unzip :: [(a,b)] -> ([a],[b]) separate list of tuples into

list of components

8 / 94

Prelude functions (2)

replicate :: Int -> a -> [a] build list from repeated
element

take :: Int -> [a] -> [a] prefix of list with given length
drop :: Int -> [a] -> [a] list without prefix with given

length
and ::[Bool] -> Bool conjunction over all elements
or ::[Bool] -> Bool disjunction over all elements
sum ::[Int] -> Int sum over all elements
product ::[Int] -> Int product over all elements
(!!) ::[a] -> Int -> a get element at index

search for functions by type signature on
https://hoogle.haskell.org/.

9 / 94

https://hoogle.haskell.org/

Ranges

[1..5]
= [1,2,3,4,5]

[1,3..10]
= [1,3,5,7,9]

[1..]
= [1,2,3...]

[1,3..]
= [1,3,5...]

10 / 94

Local definitions

let x = e1 in e2

defines x locally in e2.

e2 where x = e1

also defines x locally in e2 where e2 has to be a function definition.

11 / 94

Recursion, guards, pattern matching

Guards

Example: maximum of two integers.

max2 :: Integer -> Integer -> Integer
max2 x y

| x >= y = x
| otherwise = y

12 / 94

Recursion

Reduce problem into a solving a series of smaller problems
of a similar kind.

Example

factorial :: Integer -> Integer
factorial n

| n == 0 = 1 -- base case
| n > 0 = n * factorial (n – 1) -- recursive case

13 / 94

Accumulating parameter

Alternatively, factorial could be defined as

factorial :: Integer -> Integer
factorial n = aux n 1

where
aux :: Integer -> Integer -> Integer
aux n acc

| n == 0 = acc
| n > 0 = aux (n - 1) (n * acc)

The resulting function is tail recursive, that is the recursive call is
located at the very end of its body.
Therefore, no computation is done after the recursive function call
returns.

In general, recursion using accumulating parameters is less readable.
14 / 94

Pattern matching

A more compact syntax for recursion:

factorial 0 = 1
factorial n | n > 0 = n * factorial (n – 1)

Patterns are expressions consisting only of constructors, variables,
and literals.

15 / 94

Pattern matching

Examples

head :: [a] -> a
head (x : _) = x

tail :: [a] -> [a]
tail (_ : xs) = xs

null :: [a] -> Bool
null [] = True
null (_ : _) = False

16 / 94

Constructors vs Types

What is the difference between True and Bool?
• True is a constructor, Bool is a type.
• True can be used in expressions to build values of a type.
• Bool can be used in type signatures to hint at the type of

bindings.

Constructor?
• False yes
• (:) yes
• Maybe no
• Just yes
• Nothing yes

17 / 94

Case

Pattern matching in nested expressions

singleOrEmpty :: [a] -> Bool
singleOrEmpty xs = case xs of [] -> True

[_] -> True
_ -> False

18 / 94

List comprehensions

[expr | E1, ..., En]

where expr is an expression and each Ei is a generator or a test.
• a generator is of the form pattern <- listexpression

• a test is a Boolean expression

19 / 94

List comprehensions

Examples

[x ^ 2 | x <- [1..5]]
= [1, 4, 9, 16, 25]

[toLower c | c <- “Hello World!”]
= “hello world!”

[(x, even x) | x <- [1..3]]
= [(1, False), (2, True), (3, False)]

20 / 94

Multiple generators

Generators are reduced from left to right.
A generator or test can depend on any generator to its left.

Example

[(i,j) | i <- [1 .. 3], j <- [i .. 3]]
= [(1,j) | j <- [1..3]] ++

[(2,j) | j <- [2..3]] ++
[(3,j) | j <- [3..3]]

= [(1,1), (1,2), (1,3), (2,2), (2,3), (3,3)]

21 / 94

The meaning of list comprehensions

[e | x <- [a1,...,an]]
= (let x = a1 in [e]) ++ · · · ++ (let x = an in [e])

[e | b]
= if b then [e] else []

[e | x <- [a1,...,an], E]
= (let x = a1 in [e | E]) ++ · · · ++

(let x = an in [e | E])

[e | b, E]
= if b then [e | E] else []

22 / 94

QuickCheck

QuickCheck tests check if a proposition holds true for a large
number of random arguments.
It can be used to test the equivalence of two functions.

Examples

import Test.QuickCheck

prop_max2 x y =
max2 x y == max x y

prop_max2_assoc x y z =
max2 x (max2 y z) == max2 (max2 x y) z

prop_factorial n =
n >= 0 ==> n < factorial n

Run quickCheck prop_max2 from GHCI to check the property.
23 / 94

Polymorphism

One function definition, having many types.

length :: [a] -> Int is defined for all types a
where a is a type variable.

24 / 94

Subtype vs parametric polymorphism

• parametric polymorphism
types may contain universally quantified type variables that are
then replaced by actual types.

• subtype polymorphism
any object of type T’ where T’ is a subtype of T can be used
in place of objects of type T.

Haskell uses parametric polymorphism.

25 / 94

Type constraints

Type variables can be constrained by type constraints.

(+) :: Num a => a -> a -> a

Function (+) has type a -> a -> a for any type a of the type
class Num.

Some type classes:

• Num
• Integral
• Fractional
• Ord
• Eq
• Show

26 / 94

Quiz

f x y z = if x then y else z
f :: Bool -> a -> a -> a

f x y = [(x,y), (y,x)]
f :: a -> a -> [(a,a)]

f x = [length u + v | (u,v) <- x]
f :: [([a],Int)] -> [Int]

f x y = [u ++ x | u <- y, length u < x]
invalid

f x y = [[(u,v) | u <- w, u, v <- x] | w <- y]
f :: [a] -> [[Bool]] -> [[(Bool, a)]]

27 / 94

Currying

A function is curried when it takes its arguments one at a time,
each time returning a new function.

Example

f :: Int -> Int -> Int f :: Int -> (Int -> Int)
f x y = x + y f x = \y -> x + y

f a b (f a) b
= a + b = (\y -> a + y) b

= a + b

Any function of two arguments can be viewed as
a function of the first argument that returns

a function of the second argument.

28 / 94

Anonymous functions (lambdas)

An anonymous function (or lambda abstraction) is a function
without a name.

Examples

(\x -> x + 1) 4
= 5

(\x y -> x + y) 3 5
= 8

What is the type of \n -> iter n succ where
iter :: Integer -> (a -> a) -> (a -> a)
succ :: Integer -> Integer

Integer -> (Integer -> Integer)

29 / 94

Partial application

Every function of n parameters can be applied to less than n
arguments.
A function is partially applied when some arguments have already
been applied to a function (some parameters are already fixed), but
some parameters are missing.

Partially applied?

• elem 5 yes
• (‘elem‘ [1..5]) 0 no

Expressions of the form (infixop expr) or (expr infixop) are called
sections.

30 / 94

Higher-order functions

A higher-order function is a function that takes another function as
an argument or returns a function.

Examples

• (.) :: (b -> c) -> (a -> b) -> (a -> c)
• const :: a -> (b -> a)
• curry :: ((a,b) -> c) -> (a -> b -> c)
• uncurry :: (a -> b -> c) -> ((a,b) -> c)
• filter :: (a -> Bool) -> [a] -> [a]
• map :: (a -> b) -> [a] -> [b]
• all, any :: (a -> Bool) -> [a] -> Bool
• takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

31 / 94

Fold

Folding is the most elementary way
of combining elements of a list.

Right-associative (foldr):

foldr :: (b -> a -> a) -> a -> [b] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

Why is this right-associative?

foldr (+) 0 [1,2,3]
= 1 + foldr (+) 0 [2,3]
= 1 + (2 + foldr (+) 0 [3])
= 1 + (2 + (3 + foldr (+) 0 []))
= 1 + (2 + (3 + 0))
= 1 + (2 + 3)
= 1 + 5 = 6

32 / 94

Plan

Types
Type aliases
Type Classes
Algebraic Data Types
Modules, Abstract Data Types
Type inference

33 / 94

Type aliases

Allows the renaming of a more complex type expression.

Examples

type String = [Char]
type List a = [a]

34 / 94

Type Classes

Type classes are collections of types that implement some fixed set
of functions.

Similar concepts are commonly called interfaces.

Creating and using a type class:
1. creating a type class ∼ creating an interface (define set of

functions)
2. instantiating a type class ∼ implementing an interface

(implement a set of functions for a member of a type class)

35 / 94

Type Classes

Examples

class Eq a where
(==) :: a -> a -> Bool

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

36 / 94

Constrained instances

Instances of type classes can be constrained.

Example

instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False

37 / 94

Subclasses

Example

class (Eq a) => Ord a where
(<=), (<), (>=), (>) :: a -> a -> Bool

Class Ord inherits all functions of class Eq.

Before instantiating a subclass with a type, the type must be an
instance of all "superclasses".

instance Ord Bool where
b1 <= b2 = not b1 || b2
b1 < b2 = b1 <= b2 && not(b1 == b2)

38 / 94

Algebraic Data Types

A custom datatype with one or more constructors.

data type a1 . . . an = constructor ak . . . al | ...

Constructors are
• a prefix operator starting with a capital letter; or
• an infix operator starting with :.

39 / 94

Algebraic Data Types

Examples

data Bool = False | True

data Maybe a = Nothing | Just a
deriving (Eq, Show)

data Nat = Zero | Suc Nat
deriving (Eq, Show)

data [a] = [] | (:) a [a]
deriving Eq

data Tree a = Empty | Node a (Tree a) (Tree a)
deriving (Eq, Show)

40 / 94

Algebraic Data Types

Terminology:
• a n-ary constructor is a function that unambiguously

constructs values of a type encapsulating n arguments.
• nullary constructors are also called constants.
• a type that expects a type argument is called a parametrized

type.
• data constructors are used at the term level, type constructors

are used at the type level.

41 / 94

Algebraic Data Types

A datatype can be thought of as the set of possible values of that
type.

• the cardinality of a datatype is the number of all its possible
values.

• a sum type is a type with more than one constructor (similar
to a logical ∨).

• a product type is a type whose data constructor takes more
than one argument (similar to a logical ∧).

42 / 94

Pattern matching

Pattern matching works just the same for custom constructors as
for predefined constructors.

Examples

find :: Ord a => a -> Tree a -> Bool
find _ Empty = False
find x (Node a l r)

| x < a = find x l
| a < x = find x r
| otherwise = True

insert :: Ord => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty
insert x (Node a l r)

| x < a = Node a (insert x l) r
| a < x = Node a l (insert x r)
| otherwise = Node a l r

43 / 94

Modules

Collection of type, function, class and other definitions.

Examples
module M where
exports everything defined in M

module M (T, f, ...) where
exports only T, f, ...

44 / 94

Exporting data types

module M (T) where
data T = ...
exports only T but not its constructors

module M (T(C,D,...)) where
data T = ...
exports T and its constructors C, D, ...

module M (T(..)) where
data T = ...
exports T and all its constructors

Not allowed (why?):
module M (T,C,D) where
Constructors could have the same name as a type.

45 / 94

Abstract Data Types

Hides data representation by wrapping data in a constructor that is
not exported.

46 / 94

Abstract Data Types

Example

module Set (Set, empty, insert, isin, size) where
-- Interface
empty :: Set a
insert :: Eq a => a -> Set a -> Set a
isin :: Eq a => a -> Set a -> Bool
size :: Set a -> Int
-- Implementation
newtype Set a = Set [a]

empty = Set []
insert x (Set xs) = Set (if elem x xs then xs else x:xs)
isin x (Set xs) = elem x xs
size (Set xs) = length xs

47 / 94

type vs data vs newtype

• type is used to create type aliases
• data is used to create algebraic data types (types witha

custom shape)
• newtype is used to create a custom constructor for a single

type without adding any runtime overhead

48 / 94

Type inference

Inferring/reconstructing the type of an expression.

Given an expression e.
1. give all variables in e distinct type variables
2. give each function f :: T in e a new general type with fresh

type variables
3. for each sub-expression in e set up an equation linking the

type of parameters and arguments
4. simplify the set of equations by replacing equivalences

49 / 94

Type inference

Example
Given f u v = min (head u) (last (concat v))

Step 1
1. u :: a

2. v :: b

Step 2
1. head :: [c] -> c

2. concat :: [[d]] -> [d]

3. last :: [e] -> e

4. min :: Ord f => f -> f -> f

50 / 94

Type inference

Example (cont.)
Given f u v = min (head u) (last (concat v))

Step 3
1. from head u derive [c] = a

2. from concat v derive [[d]] = b

3. from last (concat v) derive [e] = [d]

4. from min (head u) (last (concat v)) derive f = c and f
= e

51 / 94

Type inference

Example (cont.)
Given f u v = min (head u) (last (concat v))
Goal f :: Ord f => a -> b -> f

Step 4
1. apply [c] = a and update

• u :: [c]

2. apply [[d]] = b and update
• v :: [[d]]

3. apply [e] = [d] to get e = d and update
• v :: [[e]]
• concat :: [[e]] -> [e]

4. apply f = c and update
• u :: [f]
• head :: [f] -> f

52 / 94

Type inference

Example (cont.)
Given f u v = min (head u) (last (concat v))
Goal f :: Ord f => a -> b -> f

Step 4 (cont.)
1. apply f = e and update

• v :: [[f]]
• concat :: [[f]] -> [f]
• last :: [[f]] -> [f]

2. no further simplification possible,
return f :: Ord f => [f] -> [[f]] -> f

53 / 94

Plan

Proofs
Structural induction
Case analysis
Generalization
Extensionality
Computation induction

54 / 94

Structural induction

Induction on the structural definition of a datatype

To prove property P(x) for all finite values x of type T ,
prove P(C) for each constructor C of T .

• base cases are represented by proofs for non-recursive
constructors

• inductive cases are represented by proofs for recursive
constructors

Each recursive type parameter has a separate induction hypothesis.
(Why?)

55 / 94

Structural induction on trees

Example

data Tree a = Leaf | Node (Tree a) a (Tree a)

mirror Leaf = Leaf
mirror (Node l v r) = Node (mirror r) v (mirror l)

id x = x

(f . g) x = f (g x)

Prove (mirror . mirror) t .=. id t.

56 / 94

Structural induction on trees

Example (cont.)

Lemma: (mirror . mirror) t .=. id t
Proof by induction on Tree t
Case Leaf

To show: (mirror . mirror) Leaf .=. id Leaf
Proof

(mirror . mirror) Leaf
(by def .) .=. mirror (mirror Leaf)
(by def mirror) .=. mirror Leaf
(by def mirror) .=. Leaf
(by def id) .=. id Leaf

QED

57 / 94

Structural induction on trees

Example (cont.)

Case Node l v r
To show: (mirror . mirror) (Node l v r)

.=. id (Node l v r)
IH1: (mirror . mirror) l .=. id l
IH2: (mirror . mirror) r .=. id r
Proof

(mirror . mirror) (Node l v r)
(by def .) .=. mirror (mirror (Node l v r))
(by def mirror)
.=. mirror (Node (mirror r) v (mirror l))
(by def mirror)
.=. Node (mirror (mirror l)) v (mirror (mirror r))
(by def .)
.=. Node ((mirror . mirror) l) v (mirror (mirror r))
(by def .)
.=. Node ((mirror . mirror) l) v ((mirror . mirror) r)

58 / 94

Structural induction on trees

Example (cont.)

To show: (mirror . mirror) (Node l v r)
.=. id (Node l v r)

IH1: (mirror . mirror) l .=. id l
IH2: (mirror . mirror) r .=. id r
Proof

...
(by def .)
.=. Node ((mirror . mirror) l) v ((mirror . mirror) r)
(by IH1) .=. Node (id l) v ((mirror . mirror) r)
(by IH2) .=. Node (id l) v (id r)
(by def id) .=. Node l v (id r)
(by def id) .=. Node l v r
(by def id) .=. id (Node l v r)

QED
QED

59 / 94

Structural induction on lists

Definition of a list:

data [a] = [] | a : [a]

To prove property P(xs) for all finite lists xs
• Base case: Prove P([])
• Inductive case: Prove P(xs) =⇒ P(x:xs)

Structural induction on lists
are inductions on the length of a list

60 / 94

Case analysis

For conditionals consider separate proofs for the cases True and
False.

Example

To show: if x < y then A else B .=. f x y
Proof by case analysis on Bool x < y
Case True

Assumption: x < y .=. True
Proof

if x < y then A else B
(by Assumption) .=. if True then A else B
(by ifTrue) .=. A
...

QED
Case False

...
QED

61 / 94

Generalization

When using the IH, variables may be replaced by arbitrary
expressions, only the induction variable must stay fixed.

Example
Consider a structural induction on xs
with the IH f xs ys .=. g xs ys.
Then,

f xs ys .=. g xs ys =⇒ f xs [] .=. g xs [].

62 / 94

Generalization

We have to prove
• a more generalized problem than the original problem; and
• that the specific instance of our problem follows from the

generalized problem.

63 / 94

Extensionality

Two functions are equal
if for all arguments they yield the same result.

Example

Lemma: f .=. g
Proof by extensionality with xs

To show: f xs .=. g xs
Proof by induction on List xs

...
QED

QED

64 / 94

Computation induction

Induction on the length of a computation

To prove property P(x1, . . . , xk) for all x1, . . . , xk ,
for every defining equation

f p1, . . . , pk = ... f e11, . . . , e1k ... f en1, . . . , enk ...

prove P(e11, . . . , e1k), . . . , P(en1, . . . , enk) =⇒ P(p1, . . . , pk).

Also referred to as an induction on the computation of a function f
or f-induction.

65 / 94

Computation induction

Example

splice [] ys = ys
splice (x:xs) ys = x : splice ys xs

splice-induction: To prove P(xs, ys) for all xs and ys, prove
1. P([], ys)

2. P(ys, xs) =⇒ P(x:xs, ys)

Prove length (splice xs ys) .=. length xs + length ys.

Structural induction does not work (why?)

66 / 94

Computation induction

Example (cont.)

Lemma: length (splice xs ys) .=. length xs + length ys
Proof by splice-induction on xs and ys
Case 1

To show: length (splice [] ys) .=. length [] + length ys
Proof

length (splice [] ys)
(by def splice) .=. length ys

length [] + length ys
(by def length) .=. 0 + length ys
(by def 0) .=. length ys

QED

67 / 94

Computation induction

Example (cont.)

Case 2
To show: length (splice (x:xs) ys)

.=. length (x:xs) + length ys
IH: length (splice ys xs)

.=. length ys + length xs
Proof

length (splice (x:xs) ys)
(by def splice) .=. length (x : splice ys xs)
(by def length) .=. 1 + length (splice ys xs)
(by IH) .=. 1 + (length ys + length xs)
(by comm_sum) .=. 1 + (length xs + length ys)
(by assoc_sum) .=. (1 + length xs) + length ys
(by def length) .=. length (x:xs) + length ys

QED
QED

68 / 94

Structural vs computation induction

• structural induction
inductive proof over the structural definition of a datatype.

• computation induction
inductive proof over the structural definition of a function.

69 / 94

Plan

Correctness

70 / 94

Correctness

How can we prove that two modules implement the same structure?

⇐⇒

How can we prove that the implementation of one module
simulates its counterpart?

71 / 94

Lists and sets

Each list [x1, ..., xn] represents the set {x1, . . . , xn}.
In mathematical terms:

α :: [a] -> {a}
α [x1, ..., xn] = {x1, . . . , xn}

α is an abstraction function.

Lists simulate sets =⇒ α must be a homomorphism.

72 / 94

Lists and sets

empty = []
insert x xs = if elem x xs then xs else x:xs
isin x xs = elem x xs
size xs = length xs

invar :: [a] -> Bool
invar [] = True
invar (x:xs) = not (elem x xs) && invar xs

Simulation requirements:

α empty = ∅
α invar xs =⇒ α (insert x xs) = {x} ∪ α xs
α invar xs =⇒ isin x xs = x ∈ α xs
α invar xs =⇒ size xs = |α xs|

invar must be preserved by every operation.

73 / 94

Correctness proof strategy

Let C and A be two modules that have the same interface: a type
T and a set of functions F .
To prove that C is a correct implementation of A define

1. an abstraction function α :: C .T -> A.T

2. and an invariant invar :: C .T -> Bool

and prove for each f ∈ F :
• invar is invariant
invar x1 ∧ · · · ∧ invar xn =⇒ invar (C .f x1 . . . xn)

• C .f simulates A.f
invar x1 ∧ · · · ∧ invar xn =⇒
α (C .f x1 . . . xn) = A.f (α x1) . . . (α xn)

74 / 94

Plan

I/O
I/O in Haskell
Sequencing
Interlude: Monads

75 / 94

I/O

Side effects

Up until now we only considered programs that do not have side
effects.
To reason about programs like in mathematics, the programming
language must have referential transparency. That is, any
expression can be replaced by its value without changing the
meaning of the program.
Programming languages that have referential transparency are
called pure.

76 / 94

I/O in Haskell

Haskell distinguishes expressions without side effects (pure
expressions) from expressions with side effects (actions) by their
type:

IO a

is the type of (I/O) actions that return a value of type a.

Examples

• Char: the type of pure expressions returning a Char
• IO Char: the type of actions returning a Char
• IO (): the type of actions returning nothing

() is the type of empty tuples with the only value ().

77 / 94

Basic actions

• getChar :: IO Char
Reads a Char from standard input,
echoes it to standard output,
and returns it as the result

• putChar :: Char -> IO ()
Writes a Char to standard output,
and returns no result

• return :: a -> IO a
Performs no action,
just returns the given value as a result

78 / 94

Read/Show

• Read: parsing String

class Read a where
read :: String -> a

• Show: converting to String

class Show a where
show :: a -> String

79 / 94

Important actions

• putStr :: String -> IO ()
Prints a string to standard output

• putStrLn :: String -> IO ()
Prints a string followed by a newline to standard output

• getLine :: IO String
Reads everything up until a newline from standard input

80 / 94

Sequencing

A sequence of actions can be combined into a single action with
the keyword do.

Example

get2 :: IO (Char,Char)
get2 = do x <- getChar -- result is named x

getChar -- result is ignored
y <- getChar
return (x,y)

81 / 94

Sequencing

General format:

do a1
...
an

where each ai can be one of
• an action

Effect: execute action
• x <- action

Effect: execute action :: IO a, give result the name x :: a
• let x = expr

Effect: give expr the name x

82 / 94

Interlude: Monads

Monads are a general approach to computations
that incur side effects.

Idea: pipe data through the program implicitly.
In Haskell:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

do x <- act1
act2

is syntactic sugar for

act1 >>= (\x -> act2)

83 / 94

Interlude: Monads

Example: Maybe as a monad

instance Monad Maybe where
m >>= f = case m of

Nothing -> Nothing
Just x -> f x

return v = Just v

Using do, failure propagation and unwrapping of Just happens
automatically.

x :: Maybe Int
y :: Maybe Int
sum2 :: Maybe Int
sum2 = do

a <- someMaybeInt
b <- anotherMaybeInt
return (a + b) 84 / 94

Plan

Evaluation

85 / 94

Evaluation

Expressions are evaluated (reduced) by successively applying
definitions until no further reduction is possible.

An expression may have many reducible sub-expressions:

sq (3+4)

A reducible expression is also called redex.

86 / 94

Reduction strategies

• innermost reduces the innermost redex first
• arguments are evaluated before they are substituted into the

function body
• corresponds to call by value

• outermost reduces the outermost redex first
• unevaluated arguments are substituted into the function body
• corresponds to call by name

• lazy combines an outermost reduction strategy with the
sharing of expressions.

• unevaluated arguments are substituted into the function body,
but are only evaluated once for all copies of the same
expression

• call by need

87 / 94

Theorems

• Any two terminating evaluations of the same Haskell
expression lead to the same final result.

• If expression e has a terminating reduction sequence, then
outermost reduction of e also terminates.
=⇒ outermost reduction terminates as often as possible

• Lazy evaluation never needs more steps than innermost
reduction.

88 / 94

Principles of lazy evaluation

• Arguments of functions are evaluated only if needed to
continue the evaluation of the function.

• Arguments are not necessarily evaluated fully, but only far
enough to evaluate the function.

• Each argument is evaluated at most once. (sharing!)

Haskell never reduces inside a lambda

Why?
• lazy evaluation uses as few steps as possible
• functions can only be applied

89 / 94

Infinite lists

Example: head ones

ones :: [Int]
ones = 1 : ones

ones defines an infinite list of 1s. ones is called a producer.

Outermost reduction:
head ones
= head (1 : ones)
= 1

Innermost reduction:
head ones
= head (1 : ones)
= head (1 : 1 : ones)
= ...

90 / 94

Infinite lists

Haskell lists are never actually infinite
but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed

91 / 94

Plan

Time complexity analysis

92 / 94

Time complexity analysis

Assumption: One reduction step takes one time unit

Tf (n) = number of steps for the evaluation of f when applied to
an argument of size n in the worst case

Size is a specific measure based on the argument type of f .

Calculating Tf (n):
1. from the equations for f derive equations for Tf

2. if the equations for Tf are recursive, solve them

93 / 94

Time complexity analysis

Example

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

T++(0, n) = O(1)
T++(m + 1, n) = T++(m, n) + O(1)
=⇒ T++(m, n) = O(m)

94 / 94

	Functional Programming and Haskell
	Basic Haskell
	Recursion, guards, pattern matching
	List comprehensions
	QuickCheck
	Polymorphism
	Currying, partial application, higher-order functions

	Types
	Type aliases
	Type Classes
	Algebraic Data Types
	Modules, Abstract Data Types
	Type inference

	Proofs
	Structural induction
	Case analysis
	Generalization
	Extensionality
	Computation induction

	Correctness
	I/O
	I/O in Haskell
	Sequencing
	Interlude: Monads

	Evaluation
	Time complexity analysis

