Functional Programming and Verification revision course

Jonas Hübotter

Outline

Functional Programming and Haskell

Types

Proofs

Correctness

1/0

Evaluation

Time complexity analysis

Plan

Functional Programming and Haskell
Basic Haskell
Recursion, guards, pattern matching
List comprehensions
QuickCheck
Polymorphism
Currying, partial application, higher-order functions

Basic Haskell

function types
function definitions
function application
conditional
prefix/infix precedence
\$ sign
f :: a -> b -> c
f x y $=\ldots$
f 12
if True then a else b
f a ' g ' b means (f a) ' $g^{\prime} b$
f \$ a ' g^{\prime} b means f (a ' $\mathrm{g}^{\prime} \mathrm{b}$)

Bool	True or False
Int	fixed-width integers
Integer	unbounded integers
Char	'a'
String	"hello" : : [Char]
(a,b) (Tuple)	$($ "hello", 1) : : (String, Int)

Tuples

(1,"hello") :: (Int,String)
($\mathrm{x}, \mathrm{y}, \mathrm{z}$) : : (a,b,c)

Prelude functions: fst, snd

Lists

Two ways of constructing a list:

$\mathrm{a}=[1,2,3]$	$::$ [Int]
$\mathrm{b}=1: 2: 3:[]$	$::$ [Int]

Cons (:) and [] are constructors of lists, that is a function that uniquely constructs a value of the list type.

Intuitively: (:) :: a -> [a] -> [a].

Prelude functions

```
head :: [a] -> a
last :: [a] -> a
init :: [a] -> [a]
tail :: [a] -> [a]
elem :: a -> [a] -> Bool
(++) :: [a] -> [a] -> [a]
reverse :: [a] -> [a]
length :: [a] -> Int
null :: [a] -> Bool
concat :: [[a]] -> [a]
```

zip :: [a] -> [b] -> [(a,b)] combine lists element-wise
unzip :: [(a,b)] -> ([a], [b]) separate list of tuples into
list of components

Prelude functions (2)

```
replicate :: Int -> a -> [a] build list from repeated
    element
    prefix of list with given length
    list without prefix with given
    length
and ::[Bool] -> Bool
or ::[Bool] -> Bool
sum ::[Int] -> Int
product ::[Int] -> Int
(!!) ::[a] -> Int -> a
```


search for functions by type signature on https://hoogle.haskell.org/.

Ranges

$[1.5]$
$=[1,2,3,4,5]$
[1,3..10]
$=[1,3,5,7,9]$
[1..]
$=[1,2,3 \ldots]$
[1,3..]
$=[1,3,5 \ldots]$

Local definitions

let $\mathrm{x}=e_{1}$ in e_{2}
defines x locally in e_{2}.
e_{2} where $\mathrm{x}=e_{1}$
also defines x locally in e_{2} where e_{2} has to be a function definition.

Recursion, guards, pattern matching

Guards
Example: maximum of two integers.
max2 :: Integer -> Integer -> Integer
$\max 2 \mathrm{x} y$
$\mid \mathrm{x}>=\mathrm{y} \quad=\mathrm{x}$
| otherwise = y

Recursion

Reduce problem into a solving a series of smaller problems of a similar kind.

Example

factorial :: Integer -> Integer
factorial n
| $\mathrm{n}=0=1 \quad$-- base case
| $\mathrm{n}>0=\mathrm{n} *$ factorial ($\mathrm{n}-1$) -- recursive case

Accumulating parameter

Alternatively, factorial could be defined as
factorial :: Integer -> Integer
factorial $\mathrm{n}=$ aux n 1
where

```
aux :: Integer -> Integer -> Integer
    aux \(n\) acc
    \(\mid \mathrm{n}=0=\mathrm{acc}\)
    \(\mid \mathrm{n}>0=\operatorname{aux}(\mathrm{n}-1)(\mathrm{n} * \operatorname{acc})\)
```

The resulting function is tail recursive, that is the recursive call is located at the very end of its body.
Therefore, no computation is done after the recursive function call returns.

In general, recursion using accumulating parameters is less readable.

Pattern matching

A more compact syntax for recursion:
factorial $0=1$
factorial $\mathrm{n} \mid \mathrm{n}>0=\mathrm{n} *$ factorial ($\mathrm{n}-1$)

Patterns are expressions consisting only of constructors, variables, and literals.

Pattern matching

Examples

```
head :: [a] -> a
head (x : _) = x
tail :: [a] -> [a]
tail (_ : xs) = xs
null :: [a] -> Bool
null [] = True
null (_ : _) = False
```


Constructors vs Types

What is the difference between True and Bool?

- True is a constructor, Bool is a type.
- True can be used in expressions to build values of a type.
- Bool can be used in type signatures to hint at the type of bindings.

Constructor?

- False yes
- (:) yes
- Maybe no
- Just yes
- Nothing yes

Case

Pattern matching in nested expressions

$$
\begin{array}{lll}
\text { singleOrEmpty : : [a] -> Bool } & \\
\text { singleOrEmpty xs = case xs of [] -> True } \\
& {\left[_\right]} & ->\text {True } \\
& & ->\text { False }
\end{array}
$$

List comprehensions

$$
\left[\operatorname{expr} \mid E_{1}, \ldots, E_{n}\right]
$$

where expr is an expression and each E_{i} is a generator or a test.

- a generator is of the form pattern <- listexpression
- a test is a Boolean expression

List comprehensions

Examples

$$
\begin{aligned}
& {[x-2 \mid x<-[1 . .5]]} \\
& =[1,4,9,16,25]
\end{aligned}
$$

[toLower c | c <- 'Hello World!’’]
= 'hello world!"
[(x, even x) | x <- [1..3]]
$=[(1$, False), (2, True), (3, False)]

Multiple generators

Generators are reduced from left to right.
A generator or test can depend on any generator to its left.

Example

$$
\begin{aligned}
& {[(i, j) \mid i<-[1 \ldots 3], j<-[i \ldots 3]]} \\
& =[(1, j) \mid j<-[1 . .3]]++ \\
& \\
& {[(2, j) \mid j<-[2.3]]++} \\
& =[(3, j) \mid j<-[3 \ldots 3]] \\
& =[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]
\end{aligned}
$$

The meaning of list comprehensions

```
[e | x <- [a1,...,an]]
\(=(\) let \(x=a 1\) in [e]) ++ . . . ++ (let \(x=a n\) in [e])
[e | b]
= if b then [e] else []
[e | x <- [a1,...,an], E]
= (let \(\mathrm{x}=\mathrm{a} 1\) in \([\mathrm{e} \mid \mathrm{E}])\) ++ . . . ++
    (let \(x=\) an in \([\mathrm{e} \mid \mathrm{E}]\) )
[e | b, E]
= if b then [e | E] else []
```


QuickCheck

QuickCheck tests check if a proposition holds true for a large number of random arguments.
It can be used to test the equivalence of two functions.

Examples

import Test.QuickCheck

```
prop_max2 x y =
    \(\max 2 \mathrm{x} y==\max \mathrm{x} y\)
prop_max2_assoc x y z =
    \(\max 2 \mathrm{x}(\max 2 \mathrm{y} z)==\max 2(\max 2 \mathrm{x} y) \mathrm{z}\)
prop_factorial n =
    n >= 0 ==> \(n\) < factorial \(n\)
```

Run quickCheck prop_max2 from GHCl to check the property.

Polymorphism

One function definition, having many types.

length :: [a] -> Int is defined for all types a where a is a type variable.

Subtype vs parametric polymorphism

- parametric polymorphism
types may contain universally quantified type variables that are then replaced by actual types.
- subtype polymorphism
any object of type T' where T' is a subtype of T can be used in place of objects of type T.

Haskell uses parametric polymorphism.

Type constraints

Type variables can be constrained by type constraints.
(+) :: Num a => a -> a -> a
Function (+) has type a -> a -> a for any type a of the type class Num.

Some type classes:

- Num
- Integral
- Fractional
- Ord
- Eq
- Show

Quiz

$$
\begin{aligned}
& \text { f } x \mathrm{y} z=\text { if } \mathrm{x} \text { then } \mathrm{y} \text { else } \mathrm{z} \\
& \text { f :: Bool -> a -> a -> a } \\
& \text { f } x y=[(x, y),(y, x)] \\
& \text { f :: a -> a -> [(a,a)] } \\
& \text { f } x=[l e n g t h u+v \mid(u, v)<-x] \\
& \text { f :: [([a],Int)] -> [Int] } \\
& \text { f } \mathrm{x} y=[\mathrm{u}++\mathrm{x} \mid \mathrm{u}<-\mathrm{y} \text {, length } \mathrm{u}<\mathrm{x}] \\
& \text { invalid } \\
& f x y=[[(u, v) \mid u<-w, u, v<-x] \mid w<-y] \\
& \text { f :: [a] -> [[Bool]] -> [[(Bool, a)]] }
\end{aligned}
$$

Currying

A function is curried when it takes its arguments one at a time, each time returning a new function.

Example

$$
\begin{array}{ll}
\mathrm{f}:: \text { Int -> Int -> Int } & \mathrm{f}:: \text { Int -> (Int -> Int) } \\
\mathrm{f} x \mathrm{y}=\mathrm{x}+\mathrm{y} & \mathrm{f} x=\text { y }->\mathrm{x}+\mathrm{y} \\
\mathrm{f} \mathrm{a} \mathrm{~b} & \\
=\mathrm{a}+\mathrm{b} & \\
& =(\backslash \mathrm{y} \text {-> a }+\mathrm{y}) \mathrm{b} \\
& =\mathrm{a}+\mathrm{b}
\end{array}
$$

Any function of two arguments can be viewed as
a function of the first argument that returns a function of the second argument.

Anonymous functions (lambdas)

An anonymous function (or lambda abstraction) is a function without a name.

Examples

($\backslash \mathrm{x}->\mathrm{x}+1$) 4
$=5$
(x y y -> $\mathrm{x}+\mathrm{y}$) 35
= 8
What is the type of $\backslash \mathrm{n}$-> iter n succ where
iter :: Integer -> (a -> a) -> (a -> a)
succ :: Integer -> Integer
Integer -> (Integer -> Integer)

Partial application

Every function of n parameters can be applied to less than n arguments.
A function is partially applied when some arguments have already been applied to a function (some parameters are already fixed), but some parameters are missing.

Partially applied?

- elem 5 yes
- ('elem' [1..5]) 0
no

Expressions of the form (infixop expr) or (expr infixop) are called sections.

Higher-order functions

A higher-order function is a function that takes another function as an argument or returns a function.

Examples

- (.) :: (b -> c) -> (a -> b) -> (a -> c)
- const :: a -> (b -> a)
- curry :: ((a,b) -> c) -> (a -> b -> c)
- uncurry :: (a -> b -> c) -> ((a,b) -> c)
- filter :: (a -> Bool) -> [a] -> [a]
- map :: (a -> b) -> [a] -> [b]
- all, any :: (a -> Bool) -> [a] -> Bool
- takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

Folding is the most elementary way of combining elements of a list.

Right-associative (foldr):

```
foldr :: (b -> a -> a) -> a -> [b] -> a
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
```

Why is this right-associative?
foldr (+) $0 \quad[1,2,3]$
= 1 + foldr (+) 0 [2,3]
$=1+(2+f o l d r(+) 0$ [3])
$=1+(2+(3+f o l d r(+) 0[]))$
$=1+(2+(3+0))$
$=1+(2+3)$
$=1+5=6$

Plan

Types
Type aliases
Type Classes
Algebraic Data Types
Modules, Abstract Data Types
Type inference

Type aliases

Allows the renaming of a more complex type expression.
Examples
type String = [Char]
type List a = [a]

Type Classes

Type classes are collections of types that implement some fixed set of functions.

Similar concepts are commonly called interfaces.

Creating and using a type class:

1. creating a type class \sim creating an interface (define set of functions)
2. instantiating a type class \sim implementing an interface (implement a set of functions for a member of a type class)

Type Classes

Examples

class Eq a where
(==) :: a -> a -> Bool
instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

Constrained instances

Instances of type classes can be constrained.

Example

instance (Eq a) => Eq [a] where

$$
\begin{aligned}
& {[]==[]=\text { True }} \\
& (\mathrm{x}: \mathrm{xs})==\text { (y:ys) }=\mathrm{x}==\mathrm{y} \& \& \mathrm{xs}==\mathrm{ys} \\
& \text { _ == _ = False }
\end{aligned}
$$

Subclasses

Example

class (Eq a) => Ord a where

$$
(<=),(<),(>=),(>):: \text { a }->\text { a }->\text { Bool }
$$

Class Ord inherits all functions of class Eq.

Before instantiating a subclass with a type, the type must be an instance of all "superclasses".
instance Ord Bool where

$$
\begin{aligned}
& \mathrm{b} 1<=\mathrm{b} 2=\text { not b1 || b2 } \\
& \mathrm{b} 1<\mathrm{b} 2=\mathrm{b} 1<=\mathrm{b} 2 \& \& \operatorname{not}(\mathrm{~b} 1==\mathrm{b} 2)
\end{aligned}
$$

Algebraic Data Types

A custom datatype with one or more constructors.

```
data type a }\mp@subsup{a}{1}{}\ldots\mp@subsup{a}{n}{}=\mathrm{ constructor }\mp@subsup{a}{k}{}\ldots..a|| |..
```

Constructors are

- a prefix operator starting with a capital letter; or
- an infix operator starting with :.

Algebraic Data Types

Examples

data Bool = False | True
data Maybe a = Nothing | Just a deriving (Eq, Show)
data Nat = Zero | Suc Nat deriving (Eq, Show)
data [a] = [] | (:) a [a] deriving Eq
data Tree a = Empty | Node a (Tree a) (Tree a) deriving (Eq, Show)

Algebraic Data Types

Terminology:

- a n-ary constructor is a function that unambiguously constructs values of a type encapsulating n arguments.
- nullary constructors are also called constants.
- a type that expects a type argument is called a parametrized type.
- data constructors are used at the term level, type constructors are used at the type level.

Algebraic Data Types

A datatype can be thought of as the set of possible values of that type.

- the cardinality of a datatype is the number of all its possible values.
- a sum type is a type with more than one constructor (similar to a logical \vee).
- a product type is a type whose data constructor takes more than one argument (similar to a logical \wedge).

Pattern matching

Pattern matching works just the same for custom constructors as for predefined constructors.

Examples

```
find :: Ord a => a -> Tree a -> Bool
find _ Empty = False
find x (Node a l r)
    | x < a = find x l
    | a < x = find x r
    | otherwise = True
```

insert :: Ord => a -> Tree a -> Tree a
insert x Empty = Node x Empty Empty
insert x (Node a l r)
| $\mathrm{x}<\mathrm{a}=$ Node a (insert x l) r
| $\mathrm{a}<\mathrm{x}=$ Node a l (insert x r)
| otherwise = Node a l r

Modules

Collection of type, function, class and other definitions.

Examples

module M where

exports everything defined in M
module M (T, f, ...) where
exports only T, f, ...

Exporting data types

module M (T) where
data $\mathrm{T}=$...
exports only T but not its constructors
module $M(T(C, D, \ldots))$ where
data $\mathrm{T}=$...
exports T and its constructors C, D, ...
module M (T(..)) where
data $T=\ldots$
exports T and all its constructors
Not allowed (why?):
module M (T,C,D) where
Constructors could have the same name as a type.

Abstract Data Types

Hides data representation by wrapping data in a constructor that is not exported.

Abstract Data Types

Example

module Set (Set, empty, insert, isin, size) where
-- Interface
empty : : Set a
insert : : Eq a => a -> Set a -> Set a
isin :: Eq a => a -> Set a -> Bool
size :: Set a -> Int
-- Implementation
newtype Set a = Set [a]
empty = Set []
insert x (Set xs) $=$ Set (if elem x xs then xs else $\mathrm{x}: \mathrm{xs}$)
isin x (Set xs) = elem x xs
size (Set xs) = length xs

type vs data vs newtype

- type is used to create type aliases
- data is used to create algebraic data types (types witha custom shape)
- newtype is used to create a custom constructor for a single type without adding any runtime overhead

Type inference

Inferring/reconstructing the type of an expression.

Given an expression e.

1. give all variables in e distinct type variables
2. give each function $f:: T$ in e a new general type with fresh type variables
3. for each sub-expression in e set up an equation linking the type of parameters and arguments
4. simplify the set of equations by replacing equivalences

Type inference

Example

Given $f u v=\min (h e a d ~ u)$ (last (concat v))
Step 1

1. u :: a
2. v :: b

Step 2

1. head :: [c] -> c
2. concat :: [[d]] -> [d]
3. last :: [e] -> e
4. min :: Ord f => f -> f -> f

Type inference

Example (cont.)

Given $f u v=\min (h e a d ~ u)$ (last (concat v))
Step 3

1. from head u derive $[c]=a$
2. from concat v derive $[\mathrm{d}]]=\mathrm{b}$
3. from last (concat v) derive [e] = [d]
4. from min (head u) (last (concat v)) derive $f=c$ and f = e

Type inference

```
Example (cont.)
Given f u v = min (head u) (last (concat v))
Goal f :: Ord f => a -> b -> f
Step 4
1. apply [c] = a and update
- u :: [c]
2. apply \([[d]]=\mathrm{b}\) and update
- v :: [ [d]]
3. apply \([e]=[d]\) to get \(e=d\) and update
- v :: [[e]]
- concat :: [[e]] -> [e]
4. apply \(f=c\) and update
- u :: [f]
- head :: [f] -> f
```


Type inference

Example (cont.)
Given $f u v=\min (h e a d ~ u)(l a s t ~(c o n c a t ~ v)) ~$
Goal f : : Ord f => a -> b -> f
Step 4 (cont.)

1. apply $f=e$ and update

- v :: [[f]]
- concat :: [[f]] -> [f]
- last :: [[f]] -> [f]

2. no further simplification possible, return f : : Ord f => [f] -> [[f]] -> f

Plan

Proofs

Structural induction
Case analysis
Generalization
Extensionality
Computation induction

Structural induction

Induction on the structural definition of a datatype

To prove property $\mathrm{P}(\mathrm{x})$ for all finite values x of type T, prove $P(C)$ for each constructor C of T.

- base cases are represented by proofs for non-recursive constructors
- inductive cases are represented by proofs for recursive constructors

Each recursive type parameter has a separate induction hypothesis. (Why?)

Structural induction on trees

```
Example
data Tree a = Leaf | Node (Tree a) a (Tree a)
mirror Leaf = Leaf
mirror (Node l v r) = Node (mirror r) v (mirror l)
id x = x
(f . g) x = f (g x)
Prove (mirror . mirror) t .=. id t.
```


Structural induction on trees

```
Example (cont.)
Lemma: (mirror . mirror) t .=. id t
Proof by induction on Tree t
Case Leaf
    To show: (mirror . mirror) Leaf .=. id Leaf
    Proof
    (mirror . mirror) Leaf
    (by def .) .=. mirror (mirror Leaf)
    (by def mirror) .=. mirror Leaf
    (by def mirror) .=. Leaf
    (by def id) .=. id Leaf
    QED
```


Structural induction on trees

Example (cont.)

Case Node 1 v r
To show: (mirror . mirror) (Node l v r)
.=. id (Node l v r)
$\begin{array}{ll}\text { IH1: } & \text { (mirror . mirror) } 1 .=\text {. id } 1 \\ \text { IH2: } & \text { mirror . mirror) } r .=. ~ i d ~ r\end{array}$
Proof
(by def.) . $=$. mirror (mirror (Node l v r))
(by def mirror)
. =. mirror (Node (mirror r) v (mirror l))
(by def mirror)
.=. Node (mirror (mirror l)) v (mirror (mirror r))
(by def.)
.=. Node ((mirror . mirror) l) v (mirror (mirror r))
(by def.)
.=. Node ((mirror . mirror) l) v ((mirror . mirror) r)

Structural induction on trees

Example (cont.)

```
    To show: (mirror . mirror) (Node l v r)
        .=. id (Node l v r)
    IH1: (mirror . mirror) l .=. id l
    IH2: (mirror . mirror) r .=. id r
    Proof
        \vdots
        (by def .)
        .=. Node ((mirror . mirror) l) v ((mirror . mirror) r)
        (by IH1) .=. Node (id l) v ((mirror . mirror) r)
        (by IH2) .=. Node (id l) v (id r)
        (by def id) .=. Node l v (id r)
        (by def id) .=. Node l v \underline{r}
        (by def id) .=. id (Node l v r)
    QED
QED
```


Structural induction on lists

Definition of a list:
data [a] = [] | a : [a]
To prove property $\mathrm{P}(\mathrm{xs})$ for all finite lists xs

- Base case: Prove P([])
- Inductive case: Prove $P(x s) \Longrightarrow P(x: x s)$

Structural induction on lists are inductions on the length of a list

Case analysis

For conditionals consider separate proofs for the cases True and False.

Example

```
To show: if x < y then A else B .=. f x y
Proof by case analysis on Bool x < y
Case True
    Assumption: x < y .=. True
    Proof
        if x < y then }A\mathrm{ else B
        (by Assumption) .=. if True then A else B
        (by ifTrue) .=. A
        QED
Case False
QED
```


Generalization

When using the IH , variables may be replaced by arbitrary expressions, only the induction variable must stay fixed.

Example

Consider a structural induction on xs with the IHf xs ys.=. g xs ys.
Then,

$$
\mathrm{f} \text { xs ys . }=. \mathrm{g} \text { xs ys } \Longrightarrow \mathrm{f} \text { xs [] .=. g xs []. }
$$

Generalization

We have to prove

- a more generalized problem than the original problem; and
- that the specific instance of our problem follows from the generalized problem.

Extensionality

> Two functions are equal
> if for all arguments they yield the same result.

Example

```
Lemma: f .=. g
Proof by extensionality with xs
    To show: f xs .=. g xs
    Proof by induction on List xs
    QED
QED
```


Computation induction

Induction on the length of a computation

To prove property $\mathrm{P}\left(x_{1}, \ldots, x_{k}\right)$ for all x_{1}, \ldots, x_{k}, for every defining equation

$$
\begin{array}{r}
f p_{1}, \ldots, p_{k}=\ldots f e_{11}, \ldots, e_{1 k} \ldots f e_{n 1}, \ldots, e_{n k} \ldots \\
\text { prove } \mathrm{P}\left(e_{11}, \ldots, e_{1 k}\right), \ldots, \mathrm{P}\left(e_{n 1}, \ldots, e_{n k}\right) \Longrightarrow \mathrm{P}\left(p_{1}, \ldots, p_{k}\right) .
\end{array}
$$

Also referred to as an induction on the computation of a function f or f-induction.

Computation induction

Example

splice [] ys = ys
splice (x:xs) ys = x : splice ys xs
splice-induction: To prove P (xs, ys) for all xs and ys, prove 1. $P([], y s)$
2. $P(y s, x s) \Longrightarrow P(x: x s, y s)$

Prove length (splice xs ys) .=. length xs + length ys.
Structural induction does not work (why?)

Computation induction

```
Example (cont.)
Lemma: length (splice xs ys) .=. length xs + length ys
Proof by splice-induction on \(x s\) and ys
Case 1
    To show: length (splice [] ys) .=. length [] + length ys
    Proof
        length (splice [] ys)
    (by def splice) .=. length ys
        length [] + length ys
    (by def length) .=. \(\underline{0}+\) length ys
    (by def 0) .=. length ys
QED
```


Computation induction

Example (cont.)

Case 2
To show: length (splice (x:xs) ys)
.=. length (x:xs) + length ys
IH: length (splice ys xs)
.=. length ys + length xs

Proof

```
                                    length (splice (x:xs) ys)
(by def splice) .=. length (x : splice ys xs)
(by def length) .=. 1 + length (splice ys xs)
(by IH) .=. 1 + (length ys + length xs)
(by comm_sum) .=. 1 + (length xs + length ys)
(by assoc_sum) .=. (1 + length xs) + length ys
(by def length) .=. length (x:xs) + length ys
```

 QED
 QED

Structural vs computation induction

- structural induction inductive proof over the structural definition of a datatype.
- computation induction inductive proof over the structural definition of a function.

Plan

Correctness

Correctness

How can we prove that two modules implement the same structure?

How can we prove that the implementation of one module simulates its counterpart?

Lists and sets

Each list $\left[x_{1}, \ldots, x_{n}\right]$ represents the set $\left\{x_{1}, \ldots, x_{n}\right\}$. In mathematical terms:
$\alpha::[a]->\{a\}$
$\alpha\left[x_{1}, \ldots, x_{n}\right]=\left\{x_{1}, \ldots, x_{n}\right\}$
α is an abstraction function.

Lists simulate sets $\Longrightarrow \alpha$ must be a homomorphism.

Lists and sets

```
empty \(=\) []
insert x xs \(=\) if elem x xs then xs else \(\mathrm{x}: \mathrm{xs}\)
isin x xs \(=\) elem x xs
size \(x s=l e n g t h\) xs
invar :: [a] -> Bool
invar [] = True
invar (x:xs) \(=\) not (elem \(x\) xs) \&\& invar \(x s\)
```

Simulation requirements:

```
            \alpha empty = \emptyset
\alpha invar xs \Longrightarrow\alpha (insert x xs) = {x}\cup\alpha xs
\alpha invar xs }\Longrightarrow\mathrm{ isin x xs = x }\in\alpha x
\alpha invar xs }\Longrightarrow\mathrm{ size xs = | | xs
```

invar must be preserved by every operation.

Correctness proof strategy

Let C and A be two modules that have the same interface: a type T and a set of functions F.
To prove that C is a correct implementation of A define

1. an abstraction function $\alpha:: C . T$-> A.T
2. and an invariant invar :: C.T -> Bool
and prove for each $f \in F$:

- invar is invariant
invar $x_{1} \wedge \cdots \wedge$ invar $x_{n} \Longrightarrow$ invar (C.f $x_{1} \ldots x_{n}$)
- C.f simulates A.f
invar $x_{1} \wedge \cdots \wedge$ invar $x_{n} \Longrightarrow$
$\alpha\left(\right.$ C.f $\left.x_{1} \ldots x_{n}\right)=$ A.f $\left(\begin{array}{ll}\alpha & x_{1}\end{array}\right) \ldots\left(\begin{array}{ll} & x_{n}\end{array}\right)$

Plan

I/O

I/O in Haskell
Sequencing
Interlude: Monads

Side effects
Up until now we only considered programs that do not have side effects.
To reason about programs like in mathematics, the programming language must have referential transparency. That is, any expression can be replaced by its value without changing the meaning of the program.
Programming languages that have referential transparency are called pure.

I/O in Haskell

Haskell distinguishes expressions without side effects (pure expressions) from expressions with side effects (actions) by their type:
IO a
is the type of $(1 / O)$ actions that return a value of type a.

Examples

- Char: the type of pure expressions returning a Char
- IO Char: the type of actions returning a Char
- IO (): the type of actions returning nothing
() is the type of empty tuples with the only value ().

Basic actions

- getChar :: IO Char Reads a Char from standard input, echoes it to standard output, and returns it as the result
- putChar :: Char -> IO ()

Writes a Char to standard output, and returns no result

- return :: a -> IO a

Performs no action, just returns the given value as a result

Read/Show

- Read: parsing String
class Read a where
read :: String -> a
- Show: converting to String
class Show a where
show :: a -> String

Important actions

- putStr :: String -> IO ()

Prints a string to standard output

- putStrLn :: String -> IO ()

Prints a string followed by a newline to standard output

- getLine : : IO String

Reads everything up until a newline from standard input

Sequencing

A sequence of actions can be combined into a single action with the keyword do.

Example

```
get2 :: IO (Char,Char)
get2 = do x <- getChar -- result is named x
    getChar -- result is ignored
    y <- getChar
    return (x,y)
```


Sequencing

General format:
do a_{1}
\vdots
a_{n}
where each a_{i} can be one of

- an action

Effect: execute action

- x <- action

Effect: execute action :: IO a, give result the name x :: a

- let x = expr

Effect: give expr the name x

Interlude: Monads

Monads are a general approach to computations that incur side effects.

Idea: pipe data through the program implicitly.
In Haskell:
class Monad m where
(>>=) :: m a -> (a -> m b) -> m b return :: a -> m a
do x <- act1
act2
is syntactic sugar for
act1 >>= ($\backslash \mathrm{x}$-> act2)

Interlude: Monads

Example: Maybe as a monad
instance Monad Maybe where

$$
\begin{aligned}
\mathrm{m} \gg=f= & \text { case } m \text { of } \\
& \text { Nothing }->\text { Nothing } \\
& \text { Just } x \quad->f x
\end{aligned}
$$

return $\mathrm{v}=$ Just v
Using do, failure propagation and unwrapping of Just happens automatically.
x :: Maybe Int
y :: Maybe Int
sum2 :: Maybe Int
sum2 = do
a <- someMaybeInt
b <- anotherMaybeInt
return (a + b)

Plan

Evaluation

Evaluation

Expressions are evaluated (reduced) by successively applying definitions until no further reduction is possible.

An expression may have many reducible sub-expressions:

$$
\text { sq } \underline{(3+4)}
$$

A reducible expression is also called redex.

Reduction strategies

- innermost reduces the innermost redex first
- arguments are evaluated before they are substituted into the function body
- corresponds to call by value
- outermost reduces the outermost redex first
- unevaluated arguments are substituted into the function body
- corresponds to call by name
- lazy combines an outermost reduction strategy with the sharing of expressions.
- unevaluated arguments are substituted into the function body, but are only evaluated once for all copies of the same expression
- call by need

Theorems

- Any two terminating evaluations of the same Haskell expression lead to the same final result.
- If expression e has a terminating reduction sequence, then outermost reduction of e also terminates.
\Longrightarrow outermost reduction terminates as often as possible
- Lazy evaluation never needs more steps than innermost reduction.

Principles of lazy evaluation

- Arguments of functions are evaluated only if needed to continue the evaluation of the function.
- Arguments are not necessarily evaluated fully, but only far enough to evaluate the function.
- Each argument is evaluated at most once. (sharing!)

Haskell never reduces inside a lambda

Why?

- lazy evaluation uses as few steps as possible
- functions can only be applied

Infinite lists

Example: head ones
ones :: [Int]
ones = 1 : ones
ones defines an infinite list of 1 s . ones is called a producer.

Outermost reduction:
head ones
= head (1 : ones)
= 1

Innermost reduction:
head ones
= head (1 : ones)
= head (1 : 1 : ones)
= ...

Infinite lists

Haskell lists are never actually infinite but only potentially infinite

Lazy evaluation computes as much of the infinite list as needed

Plan

Time complexity analysis

Time complexity analysis

Assumption: One reduction step takes one time unit
$T_{f}(n)=$ number of steps for the evaluation of f when applied to an argument of size n in the worst case

Size is a specific measure based on the argument type of f.
Calculating $T_{f}(n)$:

1. from the equations for f derive equations for T_{f}
2. if the equations for T_{f} are recursive, solve them

Time complexity analysis

Example

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
$T_{++}(0, n)=O(1)$
$T_{++}(m+1, n)=T_{++}(m, n)+O(1)$
$\Longrightarrow T_{++}(m, n)=O(m)$

