Theoretical Computer Science Complexity Theory

Jonas Hübotter

Outline

 \mathcal{P}

\mathcal{NP}

Polynomially Bounded Verifier Polynomial Reduction \mathcal{NP} -completeness

Approximation Algorithm

 $\ensuremath{\mathcal{P}}$ is the class of problems that can be solved by a DTM in polynomial time.

Definition 1

We define

$$\begin{split} \mathsf{time}_{M}(w) &= (\#\mathsf{steps until DTM } M[w] \; \mathsf{halts}) \in \mathbb{N} \cup \{\infty\} \\ \mathsf{TIME}(f(n)) &= \{A \subseteq \Sigma^* \mid \exists \mathsf{DTM } M. \; A = L(M) \land \forall w \in \Sigma^*. \\ &\quad \mathsf{time}_{M}(w) \leq f(|w|) \} \\ &\quad \mathsf{for a total function } f : \mathbb{N} \to \mathbb{N} \end{split}$$

Then, the complexity class \mathcal{P} is given as

$$\mathcal{P} = \bigcup_{p \in \text{polynomial}} \mathsf{TIME}(p(n)) = \bigcup_{k \ge 0} \mathsf{TIME}(\mathcal{O}(n^k))$$

where $\mathsf{TIME}(\mathcal{O}(f)) = \bigcup_{g \in \mathcal{O}(f)} \mathsf{TIME}(g)$.

\mathcal{NP}

 \mathcal{NP} is the class of problems that can be solved by a NTM in polynomial time.

Definition 2

We define

$$\mathsf{ntime}_M(w) = \begin{cases} (\mathsf{minimal } \#\mathsf{steps for NTM } M[w] \mathsf{ to halt}) & w \in L(M) \\ 0 & w \notin L(M) \end{cases}$$

$$\begin{split} \mathsf{NTIME}(f(n)) &= \{A \subseteq \Sigma^* \mid \exists \mathsf{NTM} \ M. \ A = L(M) \land \forall w \in \Sigma^*.\\ \mathsf{ntime}_M(w) &\leq f(|w|) \}\\ \text{for a total function } f : \mathbb{N} \to \mathbb{N} \end{split}$$

To simplify the notation, we do not require that the NTM M terminates for inputs $w \notin L(M)$. This is not a restriction as we can always define the NTM M' which returns 0 after p(|w|) steps (timeout).

Definition 3

The complexity class \mathcal{NP} is given as

$$\mathcal{NP} = \bigcup_{p \in \mathsf{polynomial}} \mathsf{NTIME}(p(n)) = \bigcup_{k \ge 0} \mathsf{NTIME}(\mathcal{O}(n^k)).$$

Polynomially Bounded Verifier

A problem A is in \mathcal{NP} if and only if solutions (which are described by *certificates*) to the problem can be verified in polynomial time by a DTM (a *polynomially bounded verifier*).

Intuition

- A decision problem can be thought of an exploration of the search space consisting of all instances with the goal of finding a solution.
- Problems in \mathcal{NP} may be harder than problems in \mathcal{P} as a NTM is able to pursue exponentially many paths in the search tree.
- However, once the NTM found a path, the length of this path must be polynomial in the size of the input.
- Thus, a DTM must be able to verify that a given path is correct in polynomial time.

Polynomially Bounded Verifier

Definition 4

Let *M* be a DTM with $L(M) = \{w \# c \mid w \in \Sigma^*, c \in \Delta^*\}.$

- If $w \# c \in L(M)$, c is a certificate for w.
- M is a polynomially bounded verifier for the language
 {w ∈ Σ* | ∃c ∈ Δ*. w#c ∈ L(M)} (i.e. the language of all
 words that have a certificate) if there exists a polynomial p
 such that time_M(w#c) ≤ p(|w|).

Especially: $c \le p(|w|)$, i.e. the size of the certificate must be polynomially bounded by the size of the input.

Definition 5

Given problems $A \subseteq \Sigma^*$, $B \subseteq \Gamma^*$, A is polynomially reducable to B (denoted $A \leq_p B$) if there exists a total and by a DTM in polynomial time computable function $f : \Sigma^* \to \Gamma^*$ such that

$$\forall w \in \Sigma^*. \ w \in A \iff f(w) \in B.$$

The complexity classes $\mathcal P$ and $\mathcal N\mathcal P$ are closed under polynomial reduction.

\mathcal{NP} -completeness

Definition 6

- The language L is \mathcal{NP} -hard if $\forall A \in \mathcal{NP}$. $A \leq_p L$.
- The language L is \mathcal{NP} -complete if $L \in \mathcal{NP}$ and L is \mathcal{NP} -hard.

Example 7 (Proving \mathcal{NP} -completeness)

- If $A \leq_p B$ and A is \mathcal{NP} -hard, then B is \mathcal{NP} -hard.
- If $A \leq_p B$ and $B \in \mathcal{NP}$, then $A \in \mathcal{NP}$.
- If there exists a polynomially bounded verifier for A, then $A \in \mathcal{NP}$.

Approximation Algorithm

Definition 8

A *d*-approximation algorithm $(d \in \mathbb{R})$ for an optimization problem is an algorithm that computes in polynomial time a solution to the problem that is at most *d* times worse than the optimal solution.