Theoretical Computer Science Context-Free Languages

Jonas Hübotter

Outline

Overview
Context-Free Grammar (CFG)
Variables
Inductive Definition
Decomposition Lemma
Syntax Tree
Chomsky Normal Form
Other Normal Forms
Cocke-Younger-Kasami Algorithm (CYK)
Pushdown Automaton (PDA)
Lemmas
CFG \rightarrow PDA
PDA \rightarrow CFG
Deterministic Pushdown Automaton (DPDA)
Closure Properties
Pumping Lemma

Overview

Representations of context-free languages

- Context-Free Grammar (CFG)
- Pushdown Automaton (PDA)

Variables

Definition 1
Given a grammar $G=(V, \Sigma, P, S)$, a variable $X \in V$ is

- generative if $\exists X \rightarrow_{G}^{*} w \in \Sigma^{*}$;
- reachable if $\exists S \rightarrow{ }_{G}^{*} X$; and
- helpful if it is generative and reachable.

Inductive Definition

Given a context-free grammar $G=(V, \Sigma, P, S)$ with $V=\left\{A_{1}, \ldots, A_{k}\right\}$, productions $A_{i} \rightarrow w_{0} A_{i_{1}} w_{1} \ldots w_{n-1} A_{i_{n}} w_{n}$ correspond to

$$
\begin{aligned}
& u_{1} \in L_{G}\left(A_{i_{1}}\right) \wedge \cdots \wedge u_{n} \in L_{G}\left(A_{i_{n}}\right) \\
& \quad \Longrightarrow w_{0} u_{1} w_{1} \ldots w_{n-1} u_{n} w_{n} \in L_{G}\left(A_{i}\right) .
\end{aligned}
$$

Hence, $L(G)=L_{G}(S)$.
Productions produce words top-down, inductive definition produces words bottom-up.

Decomposition Lemma

Lemma 2 (Decomposition Lemma)
Any derivation of length n of β from $\alpha_{1} \alpha_{2}$ may split β into two separately derivable parts β_{1} and β_{2} at any position. Formally:

$$
\begin{aligned}
& \alpha_{1} \alpha_{2} \rightarrow{ }_{G}^{n} \beta \Longleftrightarrow \exists \beta_{1}, \beta_{2}, n_{1}, n_{2} . \beta=\beta_{1} \beta_{2} \wedge n=n_{1}+n_{2} \wedge \\
& \alpha_{1} \rightarrow{ }_{G}^{n_{1}} \beta_{1} \wedge \alpha_{2} \rightarrow_{G}^{n_{2}} \beta_{2} .
\end{aligned}
$$

Syntax Tree

Definition 3

A syntax tree of a derivation \rightarrow_{G} given $G=(V, \Sigma, P, S)$ is a tree where

1. every leaf is labeled with a symbol in $\Sigma \cup\{\epsilon\}$;
2. every inner node is labeled with $A \in V$, assuming its children are $X_{1}, \ldots, X_{n} \in V \cup \Sigma \cup\{\epsilon\}$, $A \rightarrow X_{1} \ldots X_{n} \in P$; and
3. a leaf labeled ϵ is an only child of its parent.

The border of a syntax tree is the labels of its leafs concatenated from left to right.

$$
\begin{aligned}
A \rightarrow_{G}^{*} w & \Longleftrightarrow w \in L_{G}(A) \\
& \Longleftrightarrow \exists \text { syntax tree with root } A \text { and border } w .
\end{aligned}
$$

Syntax Tree

Definition 4

- A CFG G is ambiguous if $\exists w \in L(G)$ that has two distinct syntax trees.
- A CFL L is inherently ambiguous if every CFG G with $L(G)=L$ is ambiguous.

Chomsky Normal Form

Definition 5 (Chomsky Normal Form)
All productions are of the form $A \rightarrow a$ or $A \rightarrow B C$ for $a \in \operatorname{Sigma}$ and $A, B, C \in V$.

Algorithm to convert a CFG to Chomsky Normal Form $\left(\mathcal{O}\left(|P|^{2}\right)\right)$

1. replace every $a \in \Sigma$ occurring in a production with length >1 by a non-terminal
2. replace $A \rightarrow B_{1} \ldots B_{k}$ (where $k>2$) with $A \rightarrow B_{1} C_{2}, C_{2} \rightarrow B_{2}, \ldots, C_{k} \rightarrow B_{k}$
3. remove ϵ-productions (i.e. $A \rightarrow \epsilon$)
4. remove chain productions (i.e. $A \rightarrow B$)

Other Normal Forms

Definition 6 (Greibach Normal Form)
All productions are of the form $A \rightarrow a A_{1} \ldots A_{n}$ for $a \in$ Sigma and $A_{1}, \ldots, A_{n} \in V$.

Definition 7 (Backus-Naur Normal Form)
Allows the use of regular expressions in productions (in addition to symbols).

Cocke-Younger-Kasami Algorithm (CYK)

Solves the word problem for CFGs.
Algorithm $\left(\mathcal{O}\left(|w|^{3}\right)\right)$
Given $G=(V, \Sigma, P, S)$ in Chomsky normal form and $w=a_{1} \ldots a_{n} \in \Sigma^{*}$.
Define $V_{i j}=\left\{A \in V \mid A \rightarrow_{G}^{*} a_{i} \ldots a_{j}\right\}$ for $i \leq j$ as the set of all initial symbols that may be used to derive $a_{i} \ldots a_{j}$.
Then $w \in L_{G}(A) \Longleftrightarrow A \in V_{1 n}$.
Recursive definition of $V_{i j}$:

- base: $V_{i i}=\left\{A \in V \mid\left(A \rightarrow a_{i}\right) \in P\right\}$
- step:

$$
V_{i j}=\left\{\left.A \in V\right|^{\exists i \leq k<j, B \in V_{i k}, C \in V_{(k+1) j} \cdot}\right\}
$$

PDA

Definition 8
A pushdown automaton (PDA) $M=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, \delta, F\right)$ consists of

- a finite set of states Q;
- a (finite) input alphabet Σ;
- a (finite) stack alphabet Γ;
- an initial state $q_{0} \in Q$;
- an initial stack element $Z_{0} \in \Gamma$;
- a (partial) transition function $\delta: Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \rightarrow 2^{Q \times \Gamma^{*}}$; and
- a set of terminal (accepting) states $F \subseteq Q$.

Graphically, transitions are denoted as $a, Z / \alpha$ where $a \in \Sigma$ is the input, $Z \in \Gamma$ is the top stack element, and $\alpha \in \Gamma^{*}$ replaces Z in the new stack.

PDA

Definition 9

The configuration of a PDA M is a triple (q, w, α) where $q \in Q$ is its state, $w \in \Sigma^{*}$ is its remaining input, and $\alpha \in \Gamma^{*}$ is its stack.

The initial configuration of M on input $w \in \Sigma^{*}$ is $\left(q_{0}, w, Z_{0}\right)$.
Definition 10
The transition relation of a PDA M is

$$
\begin{aligned}
(q, a w, Z \alpha) \rightarrow_{M}\left(q^{\prime}, w, \beta \alpha\right) & \text { if }\left(q^{\prime}, \beta\right) \in \delta(q, a, Z) \\
(q, w, Z \alpha) \rightarrow_{M}\left(q^{\prime}, w, \beta \alpha\right) & \text { if }\left(q^{\prime}, \beta\right) \in \delta(q, \epsilon, Z) .
\end{aligned}
$$

PDA

Definition 11
PDA M accepts $w \in \Sigma^{*}$ with final state if

$$
\left(q_{0}, w, Z_{0}\right) \rightarrow_{M}^{*}(f, \epsilon, \gamma) \quad \text { for } f \in F, \gamma i n \Gamma^{*} .
$$

So, $L_{F}(M)=\left\{w \in \Sigma^{*} \mid \exists f \in F, \gamma \in \Gamma^{*} .\left(q_{0}, w, Z_{0}\right) \rightarrow_{M}^{*}(f, \epsilon, \gamma)\right\}$.
Definition 12
PDA M accepts $w \in \Sigma^{*}$ with empty stack if

$$
\left(q_{0}, w, Z_{0}\right) \rightarrow_{M}^{*}(q, \epsilon, \epsilon) \quad \text { for } q \in Q .
$$

So, $L_{\epsilon}(M)=\left\{w \in \Sigma^{*} \mid \exists q \in Q .\left(q_{0}, w, Z_{0}\right) \rightarrow_{M}^{*}(q, \epsilon, \epsilon)\right\}$.

Both accepting conditions are equally powerful.

Lemmas

Lemma 13 (Extension Lemma)

Every derivation may occur as a sub-derivation of a larger derivation:

$$
(q, u, \alpha) \rightarrow_{M}^{n}\left(q^{\prime}, u^{\prime}, \alpha^{\prime}\right) \Longrightarrow(q, u v, \alpha \beta) \rightarrow_{M}^{n}\left(q^{\prime}, u^{\prime} v, \alpha^{\prime} \beta\right) .
$$

Lemma 14 (Decomposition Lemma)
Every derivation that empties the stack can be divided into sub-derivations that each remove a single symbol from the stack:
Given $\left(q, w, Z_{1} \ldots Z_{k}\right) \rightarrow_{M}^{n}\left(q^{\prime}, \epsilon, \epsilon\right)$, then $\forall i \in[1, k] . \exists u_{i}, p_{i}, n_{i}$ such that

$$
\left(p_{i-1}, u_{i}, Z_{i}\right) \rightarrow_{M}^{n_{i}}\left(p_{i}, \epsilon, \epsilon\right)
$$

with $w=u_{1} \ldots u_{k}, q=p_{0}, q_{k}=p_{k}$, and $n=\sum_{i=1}^{k} n_{i}$.

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Given CFG $G=(V, \Sigma, P, S)$,

1. bring all productions into the form

$$
A \rightarrow b B_{1} \ldots B_{k} \quad \text { for } b \in \Sigma \cup\{\epsilon\}
$$

2. define the PDA $M=(\{q\}, \Sigma, V, q, S, \delta)$ with

$$
\delta(a, b, A)=\{(a, \beta) \mid(A \rightarrow b \beta) \in P\} .
$$

Then, $L(G)=L_{\epsilon}(M)$.

PDA \rightarrow CFG

Given PDA $G=\left(Q, \Sigma, \Gamma, q_{0}, Z_{0}, \delta, F\right)$, define CFG $G=(V, \Sigma, P, S)$.

We define $V=Q \times \Gamma \times Q \cup\{S\}$ where each $[q, Z, p] \in V$ describes all possibilities of going from state $q \in Q$ to state $p \in Q$ while $Z \in \Gamma$ is the top stack element.

We define the productions P as

- $\forall q \in Q . S \rightarrow\left[q_{0}, Z_{0}, q\right]$ and
- $\forall\left(r_{0}, Z_{1} \ldots Z_{k}\right) \in \delta(q, b, Z) . \forall r_{1}, \ldots, r_{k} \in Q$.

$$
\left[q, Z, r_{k}\right] \rightarrow b\left[r_{0}, Z_{1}, r_{1}\right]\left[r_{1}, Z_{2}, r_{2}\right] \ldots\left[r_{k-1}, Z_{k}, r_{k}\right] .
$$

We observe that

$$
\left[q, Z, r_{k}\right] \rightarrow_{G}^{*} w \Longleftrightarrow(q, w, Z) \rightarrow_{M}^{*}\left(r_{k}, \epsilon, \epsilon\right) .
$$

So, $L(G)=L_{\epsilon}(M)$.

Closure Properties

Theorem 15
Given the context-free languages L, L_{1}, L_{2}, then the following are also centext-free languages:

- $L_{1} L_{2}$;
- $L_{1} \cup L_{2}$; and
- L^{*}.

Theorem 16
Given the deterministic context-free language L, then \bar{L} is deterministic context-free.

Pumping Lemma

Lemma 17 (Pumping Lemma for context-free languages)
Let $L \subseteq \Sigma^{*}$ be context-free. Then there exists some $n>0$ such that every $z \in L$ with $|z| \geq n$ can be decomposed into $z=u v w x y$ such that

- $v x \neq \epsilon$;
- $|v w x| \leq n$; and
- $\forall i \geq 0 . u v^{i} w x^{i} y \in L$.

A necessary condition for context-free languages.

Pumping Lemma

Example 18 (proof structure)

Assume L is context-free.
Let $n>0$ be a Pumping Lemma number.
Choose $z \in L$ with $|z| \geq n$.
Define $z=u v w x y$ with $v x \neq \epsilon$ and $|v w x| \leq n$.
Then, $\forall i \geq 0 . u v^{i} w x^{i} y \in L$.
Now, use the last statement to find a contradiction separating all possible cases for v and x.

