
Theoretical Computer Science
Context-Free Languages

Jonas Hübotter

1 / 20

Outline

Overview
Context-Free Grammar (CFG)

Variables
Inductive Definition
Decomposition Lemma
Syntax Tree
Chomsky Normal Form
Other Normal Forms
Cocke-Younger-Kasami Algorithm (CYK)

Pushdown Automaton (PDA)
Lemmas
CFG → PDA
PDA → CFG
Deterministic Pushdown Automaton (DPDA)

Closure Properties
Pumping Lemma

2 / 20

Overview

Representations of context-free languages

• Context-Free Grammar (CFG)
• Pushdown Automaton (PDA)

3 / 20

Variables

Definition 1

Given a grammar G = (V ,Σ,P, S), a variable X ∈ V is
• generative if ∃X →∗

G w ∈ Σ∗;
• reachable if ∃S →∗

G X ; and
• helpful if it is generative and reachable.

4 / 20

Inductive Definition

Given a context-free grammar G = (V ,Σ,P,S) with
V = {A1, . . . ,Ak},
productions Ai → w0Ai1w1 . . .wn−1Ainwn

correspond to

u1 ∈ LG (Ai1) ∧ · · · ∧ un ∈ LG (Ain)

=⇒ w0u1w1 . . .wn−1unwn ∈ LG (Ai).

Hence, L(G) = LG (S).

Productions produce words top-down,
inductive definition produces words bottom-up.

5 / 20

Decomposition Lemma

Lemma 2 (Decomposition Lemma)

Any derivation of length n of β from α1α2 may split β into two
separately derivable parts β1 and β2 at any position. Formally:

α1α2 →n
G β ⇐⇒ ∃β1, β2, n1, n2. β = β1β2 ∧ n = n1 + n2 ∧

α1 →n1
G β1 ∧ α2 →n2

G β2.

6 / 20

Syntax Tree

Definition 3

A syntax tree of a derivation →G given G = (V ,Σ,P, S) is a tree
where

1. every leaf is labeled with a symbol in Σ ∪ {ϵ};
2. every inner node is labeled with A ∈ V ,

assuming its children are X1, . . . ,Xn ∈ V ∪ Σ ∪ {ϵ},
A → X1 . . .Xn ∈ P ; and

3. a leaf labeled ϵ is an only child of its parent.

The border of a syntax tree is the labels of its leafs concatenated
from left to right.

A →∗
G w ⇐⇒ w ∈ LG (A)

⇐⇒ ∃ syntax tree with root A and border w .

7 / 20

Syntax Tree

Definition 4

• A CFG G is ambiguous if ∃w ∈ L(G) that has two distinct
syntax trees.

• A CFL L is inherently ambiguous if every CFG G with
L(G) = L is ambiguous.

8 / 20

Chomsky Normal Form

Definition 5 (Chomsky Normal Form)

All productions are of the form A → a or A → BC for a ∈ Sigma
and A,B,C ∈ V .

Algorithm to convert a CFG to Chomsky Normal Form (O(|P|2))

1. replace every a ∈ Σ occurring in a production with length > 1
by a non-terminal

2. replace A → B1 . . .Bk (where k > 2) with
A → B1C2,C2 → B2, . . . ,Ck → Bk

3. remove ϵ-productions (i.e. A → ϵ)
4. remove chain productions (i.e. A → B)

9 / 20

Other Normal Forms

Definition 6 (Greibach Normal Form)

All productions are of the form A → aA1 . . .An for a ∈ Sigma and
A1, . . . ,An ∈ V .

Definition 7 (Backus-Naur Normal Form)

Allows the use of regular expressions in productions (in addition to
symbols).

10 / 20

Cocke-Younger-Kasami Algorithm (CYK)

Solves the word problem for CFGs.

Algorithm (O(|w |3))

Given G = (V ,Σ,P,S) in Chomsky normal form and
w = a1 . . . an ∈ Σ∗.
Define Vij = {A ∈ V | A →∗

G ai . . . aj} for i ≤ j as the set of all
initial symbols that may be used to derive ai . . . aj .
Then w ∈ LG (A) ⇐⇒ A ∈ V1n.

Recursive definition of Vij :
• base: Vii = {A ∈ V | (A → ai) ∈ P}
• step:

Vij = {A ∈ V | ∃i≤k<j ,B∈Vik ,C∈V(k+1)j .

(A→BC)∈P }

11 / 20

PDA

Definition 8

A pushdown automaton (PDA) M = (Q,Σ, Γ, q0,Z0, δ,F) consists
of

• a finite set of states Q;
• a (finite) input alphabet Σ;
• a (finite) stack alphabet Γ;
• an initial state q0 ∈ Q;
• an initial stack element Z0 ∈ Γ;
• a (partial) transition function δ : Q × (Σ ∪ {ϵ})× Γ → 2Q×Γ∗ ;

and
• a set of terminal (accepting) states F ⊆ Q.

Graphically, transitions are denoted as a,Z/α where a ∈ Σ is the
input, Z ∈ Γ is the top stack element, and α ∈ Γ∗ replaces Z in the
new stack.

12 / 20

PDA

Definition 9

The configuration of a PDA M is a triple (q,w , α) where q ∈ Q is
its state, w ∈ Σ∗ is its remaining input, and α ∈ Γ∗ is its stack.

The initial configuration of M on input w ∈ Σ∗ is (q0,w ,Z0).

Definition 10

The transition relation of a PDA M is

(q, aw ,Zα) →M (q′,w , βα) if (q′, β) ∈ δ(q, a,Z)

(q,w ,Zα) →M (q′,w , βα) if (q′, β) ∈ δ(q, ϵ,Z).

13 / 20

PDA

Definition 11

PDA M accepts w ∈ Σ∗ with final state if

(q0,w ,Z0) →∗
M (f , ϵ, γ) for f ∈ F , γinΓ∗.

So, LF (M) = {w ∈ Σ∗ | ∃f ∈ F , γ ∈ Γ∗. (q0,w ,Z0) →∗
M (f , ϵ, γ)}.

Definition 12

PDA M accepts w ∈ Σ∗ with empty stack if

(q0,w ,Z0) →∗
M (q, ϵ, ϵ) for q ∈ Q.

So, Lϵ(M) = {w ∈ Σ∗ | ∃q ∈ Q. (q0,w ,Z0) →∗
M (q, ϵ, ϵ)}.

Both accepting conditions are equally powerful.

14 / 20

Lemmas

Lemma 13 (Extension Lemma)

Every derivation may occur as a sub-derivation of a larger
derivation:

(q, u, α) →n
M (q′, u′, α′) =⇒ (q, uv , αβ) →n

M (q′, u′v , α′β).

Lemma 14 (Decomposition Lemma)

Every derivation that empties the stack can be divided into
sub-derivations that each remove a single symbol from the stack:
Given (q,w ,Z1 . . .Zk) →n

M (q′, ϵ, ϵ),
then ∀i ∈ [1, k]. ∃ui , pi , ni such that

(pi−1, ui ,Zi) →ni
M (pi , ϵ, ϵ)

with w = u1 . . . uk , q = p0, qk = pk , and n =
∑k

i=1 ni .
15 / 20

CFG → PDA

Given CFG G = (V ,Σ,P,S),
1. bring all productions into the form

A → bB1 . . .Bk for b ∈ Σ ∪ {ϵ}

2. define the PDA M = ({q},Σ,V , q, S , δ) with

δ(q, b,A) = {(q, β) | (A → bβ) ∈ P}.

Then, L(G) = Lϵ(M).

16 / 20

PDA → CFG

Given PDA G = (Q,Σ, Γ, q0,Z0, δ,F), define CFG
G = (V ,Σ,P,S).

We define V = Q × Γ× Q ∪ {S} where each [q,Z , p] ∈ V
describes all possibilities of going from state q ∈ Q to state p ∈ Q
while Z ∈ Γ is the top stack element.

We define the productions P as
• ∀q ∈ Q. S → [q0,Z0, q] and
• ∀(r0,Z1 . . .Zk) ∈ δ(q, b,Z). ∀r1, . . . , rk ∈ Q.

[q,Z , rk] → b[r0,Z1, r1][r1,Z2, r2] . . . [rk−1,Zk , rk].

We observe that

[q,Z , rk] →∗
G w ⇐⇒ (q,w ,Z) →∗

M (rk , ϵ, ϵ).

So, L(G) = Lϵ(M).
17 / 20

Closure Properties

Theorem 15

Given the context-free languages L, L1, L2, then the following are
also centext-free languages:

• L1L2;
• L1 ∪ L2; and
• L∗.

Theorem 16

Given the deterministic context-free language L, then L̄ is
deterministic context-free.

18 / 20

Pumping Lemma

Lemma 17 (Pumping Lemma for context-free languages)

Let L ⊆ Σ∗ be context-free. Then there exists some n > 0 such
that every z ∈ L with |z | ≥ n can be decomposed into z = uvwxy
such that

• vx ̸= ϵ;
• |vwx | ≤ n; and
• ∀i ≥ 0. uv iwx iy ∈ L.

A necessary condition for context-free languages.

19 / 20

Pumping Lemma

Example 18 (proof structure)
Assume L is context-free.
Let n > 0 be a Pumping Lemma number.
Choose z ∈ L with |z | ≥ n.
Define z = uvwxy with vx ̸= ϵ and |vwx | ≤ n.
Then, ∀i ≥ 0. uv iwx iy ∈ L.
Now, use the last statement to find a contradiction separating all
possible cases for v and x .

20 / 20

	Overview
	Context-Free Grammar (CFG)
	Variables
	Inductive Definition
	Decomposition Lemma
	Syntax Tree
	Chomsky Normal Form
	Other Normal Forms
	Cocke-Younger-Kasami Algorithm (CYK)

	Pushdown Automaton (PDA)
	Lemmas
	CFG PDA
	PDA CFG
	Deterministic Pushdown Automaton (DPDA)

	Closure Properties
	Pumping Lemma

