Theoretical Computer Science Decidability and Computability

Jonas Hübotter

Outline

Turing Machine (TM)
Encoding
k-tape TM
Computability
Decidability
Problem
Reduction
Decidability
Theorem of Rice
Semi-Decidability
Theorem of Rice-Shapiro
Computation Models
Ackermann Function

Definition 1
A Turing machine (TM) $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ consists of

- a finite set of states Q;
- a (finite) input alphabet Σ;
- a (finite) tape alphabet Γ;
- a (partial) transition function $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R, N\}$;
- an initial state $q_{0} \in Q$;
- an empty tape element $\square \in \Gamma \backslash \Sigma$; and
- a set of terminal (accepting) states $F \subseteq Q$.

We assume $\delta(q, a)=\perp$ (is undefined) for any $q \in F$, i.e. as soon as we reach a final state the TM halts.
Graphically, transitions are denoted as $\alpha / \beta, \xi$ where $\alpha \in \Gamma$ is the current tape element which is replaced by $\beta \in \Gamma$ and the head moves in the direction $\xi \in\{L, R, N\}$.

A Turing machine can be interpreted as a read-write-head operating on an infinite tape initialized with $\square . L, R$, and N denote the movement of the head on the tape in the direction left, right, and none, respectively.

Definition 2
A nondeterministic TM has the transition function $\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R, N\}}$, similarly to nondeterministic PDAs.

Theorem 3
For every nondeterministic TM N there exists a deterministic TM M such that $L(N)=L(M)$.
Idea: M uses breadth-first search to emulate N (see dovetailing).

Definition 4

The configuration of a TM M is a triple (α, q, β) where $q \in Q$ is its state, $\alpha \in \Gamma^{*}$ is the tape content left-to-right up to the position of the head, and $\beta \in \Gamma^{*}$ is the tape content left-to-right from the element at the position of the head.
Given configuration $(\alpha, q \beta), M$ can be graphically represented as $\cdots \square \alpha \beta \square \cdots$ where M is in state q and its head is at the leftmost symbol of β.

The initial configuration of M on input $w \in \Sigma^{*}$ is $\left(\epsilon, q_{0}, w\right)$. The run of a Turing machine on input w is denoted by $M[w]$.

Definition 5

A TM terminates when it reaches a configuration $(\alpha, q, a \beta)$ where $\delta(q, a)=\perp$ or $\delta(q, a)=\emptyset$. This is denoted by $M[w] \downarrow$.

Definition 6

A run of a TM M is modeled as the relation \rightarrow_{M}. Given $\delta(q, \operatorname{first}(\beta))=\left(q^{\prime}, c, D\right)$

$$
\alpha, \boldsymbol{q} \beta) \rightarrow_{M} \begin{cases}\left(\alpha, q^{\prime}, c \operatorname{rest}(\beta)\right) & D=N \\ \left(\alpha c, q^{\prime}, \operatorname{rest}(\beta)\right) & D=R \\ \left(\operatorname{butlast}(\alpha), q^{\prime}, \operatorname{last}(\alpha) c \operatorname{rest}(\beta)\right) & D=L\end{cases}
$$

where for $w=w_{1} \cdots w_{n}$, first $(w)=w_{1}$, $\operatorname{rest}(w)=w_{2} \cdots w_{n}$, $\operatorname{last}(w)=w_{n}$, and butlast $(w)=w_{1} \cdots w_{n-1}$.

Definition 7

A TM M accepts the language

$$
L(M)=\left\{w \in \Sigma^{*} \mid \exists q \in F . \alpha, \beta \in \Gamma^{*} .\left(\epsilon, q_{0}, w\right) \rightarrow_{M}^{*}(\alpha, q, \beta)\right\} .
$$

The languages accepted by a TM are precisely the type-0 grammars in the Chomsky-Hierarchy (i.e. semi-decidable languages).

Encoding

A TM can be encoded using words over the alphabet $\{0,1\}$.
Definition 8
M_{w} denotes the Turing machine represented by the encoding $w \in\{0,1\}^{*}$.

k-tape TM

Definition 9

A k-tape TM is a TM that operates on k tapes simultaneously.
Theorem 10
Every k-tape TM can be simulated by a 1-tape TM.

Turing-Computability

Definition 11

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}(\Sigma$ is a finite set $)$ is Turing-computable if there exists a TM M such that $\forall u, v \in \Sigma^{*}$

$$
f(u)=v \Longleftrightarrow \exists q \in F .\left(\epsilon, q_{0}, u\right) \rightarrow_{M}^{*}(\epsilon, q, v) .
$$

In particular, any TM computes a function. φ_{w} denotes the function computed by M_{w}.

Thus, Turing-computability is a property of functions operating on discrete sets (i.e. functions implemented by a computer).

The Church-Turing (hypo-)thesis states that any such function can be computed by a computer (or effective method) iff it is Turing-computable (i.e. can be computed by a Turing machine).

Problem

Definition 12
A problem is a language $A=\left\{x \in \Sigma^{*} \mid P(x)\right\} \subseteq \Sigma^{*}$ for some predicate $P: \Sigma^{*} \rightarrow\{0,1\}$.
Given problem $A \subseteq \Sigma^{*}$.

- x is an instance of A if $x \in \Sigma^{*}$.
- x is a solution to A if $x \in A$.

Reduction

Definition 13
A problem $A \subseteq \Sigma^{*}$ is reducable to a problem $B \subseteq \Gamma^{*}$ (denoted $A \leq B$) if there is a total and computable function $f: \Sigma^{*} \rightarrow \Gamma^{*}$ such that

$$
\forall w \in \Sigma^{*} . w \in A \Longleftrightarrow f(w) \in B .
$$

Example 14

To show that a function f is a valid reduction from A to B we need to prove three properties:

- f is total on Σ^{*};
- f is computable; and
- f is correct, i.e. $\forall w \in \Sigma^{*} . w \in A \Longleftrightarrow f(w) \in B$.

Decidability

Decidability can be interpreted as computability in the context of problems instead of functions.

Definition 15
The characteristic function of a problem A is given as

$$
\chi_{A}(x)=\left\{\begin{array}{ll}
1 & x \in A \\
0 & x \notin A
\end{array} .\right.
$$

Definition 16
A problem A is decidable if its characteristic function is computable.
Given a reduction $A \leq B$,

- B decidable $\Longrightarrow A$ decidable; and
- A undecidable $\Longrightarrow B$ undecidable.

Theorem of Rice

Theorem 17 (Theorem of Rice)
Let \mathcal{F} be a set of computable functions.
If \mathcal{F} is non-trivial, i.e. $\mathcal{F} \neq \emptyset$ and $\mathcal{F} \neq\{f \mid$ fcomputable $\}$, then deciding if $\varphi_{w} \in \mathcal{F}$ is undecidable.

In other words,

$$
C_{\mathcal{F}}=\left\{w \in\{0,1\}^{*} \mid \varphi_{w} \in \mathcal{F}\right\}
$$

is undecidable.

Theorem of Rice

Example 18

When using the theorem of Rice to prove that a problem
$A=\left\{w \in\{0,1\}^{*} \mid P(w)\right\}$ is undecidable, we must complete two steps:

1. construct the set of computable functions \mathcal{F} that fulfill the same property P as functions φ_{w} whose w are in A; and
2. show that \mathcal{F} is non-trivial by giving an example of a computable function $g \in \mathcal{F}$ and a computable function $h \notin \mathcal{F}$.
Note that for step 1, P must not depend directly on the encoding w but only on φ_{w}, otherwise the theorem of Rice cannot be applied.

Semi-Decidability

Definition 19
A problem A is semi-decidable if

$$
\chi_{A}^{\prime}(x)=\left\{\begin{array}{ll}
1 & x \in A \\
\perp & x \notin A
\end{array} .\right.
$$

is computable.

- Given a reduction $A \leq B, B$ semi-decidable $\Longrightarrow A$ semi-decidable; and
- A decidable $\Longleftrightarrow A$ semi-decidable and \bar{A} semi-decidable.

Recursive Enumerability

Definition 20
A problem A is recursively enumerable if $A=\emptyset$ or there exists a computable function $f: \mathbb{N}_{0} \rightarrow A$ such that $A=\{f(0), f(1), \ldots\}$.

Theorem 21
A problem A is semi-decidable iff A is recursively enumerable.

Theorem of Rice-Shapiro

Theorem 22 (Theorem of Rice-Shapiro)
Let \mathcal{F} be a set of computable functions.
If $C_{\mathcal{F}}=\left\{w \in\{0,1\}^{*} \mid \varphi_{w} \in \mathcal{F}\right\}$ is semi-decidable, then $f \in \mathcal{F}$ iff there exists a finite and partial function $g \subseteq f$ with $f \in \mathcal{F}$.

Often the contrapositive statement is useful:
If there exists an $f \in \mathcal{F}$ such there exists no finite and partial function $g \subseteq f$ with $g \in \mathcal{F}$, then $C_{\mathcal{F}}$ is not semi-decidable.

Computation Models

We have mainly focused on Turing machines to model computability. There are, however, other models for computability that are commonly used:

- WHILE, programs using while $x \neq 0$ do \cdots end while and if $x=0$ then \cdots else \cdots end if for control flow;
- GOTO, programs running with a program counter using conditionals (if), commands to jump to a specific line (goto), and commands to terminate (halt) for control flow;
- LOOP, programs using conditionals (if) and loops of a pre-determined fixed length (loop) for control flow;

Computation Models

- primitively recursive (PR), functions of the shape

$$
\begin{aligned}
f(0, \bar{x}) & =t_{0} \\
f(m+1, \bar{x}) & =t
\end{aligned}
$$

where t_{0} is a term that is only using x_{i} and other PR functions and t is a term that may use $f(m, \bar{x}), x_{i}$, and other PR functions; and

- μ-recursive ($\mu \mathrm{R}$), an extension of PR where programs are allowed to use the μ-operator which is defined as

$$
\begin{aligned}
\mu f(\bar{x} & =\operatorname{find}(0, \bar{x}) \\
\text { find }(n, \bar{x}) & = \begin{cases}n & f(n, \bar{x})=0 \\
\operatorname{find}(n+1, \bar{x}) & \text { otherwise }\end{cases}
\end{aligned}
$$

Computation Models

Turing-computable functions are functionally equivalent to

- Turing machines;
- WHILE programs;
- GOTO programs; and
- μ-recursive programs.

LOOP and PR programs are also able to express the same set of functions, but this set is a true subset of all Turing-computable functions.
In other words, there exist Turing-computable functions that are not primitively recursive (or computable by a LOOP program), for example the Ackermann function which is discussed next.

Ackermann Function

The Ackermann function can be used to show that a function f is not primitively recursive.

Definition 23
The Ackermann function a is not primitively recursive and is defined as

$$
\begin{aligned}
a(0, n) & =n+1 \\
a(m+1,0) & =a(m, 1) \\
a(m+1, n+1) & =a(m, a(m+1, n))
\end{aligned}
$$

Theorem 24
For every primitively recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there exists a $t \in \mathbb{N}$ such that $\forall \bar{x} \in \mathbb{N}^{k} . f(\bar{x})<a(t, \max \bar{x})$.

