
Theoretical Computer Science
Decidability and Computability

Jonas Hübotter

1 / 22



Outline

Turing Machine (TM)
Encoding
k-tape TM

Computability

Decidability
Problem
Reduction
Decidability
Theorem of Rice
Semi-Decidability
Theorem of Rice-Shapiro

Computation Models

Ackermann Function

2 / 22



TM

Definition 1

A Turing machine (TM) M = (Q,Σ, Γ, δ, q0,□,F ) consists of
• a finite set of states Q;
• a (finite) input alphabet Σ;
• a (finite) tape alphabet Γ;
• a (partial) transition function δ : Q × Γ → Q × Γ× {L,R,N};
• an initial state q0 ∈ Q;
• an empty tape element □ ∈ Γ \ Σ; and
• a set of terminal (accepting) states F ⊆ Q.

We assume δ(q, a) = ⊥ (is undefined) for any q ∈ F , i.e. as soon
as we reach a final state the TM halts.
Graphically, transitions are denoted as α/β, ξ where α ∈ Γ is the
current tape element which is replaced by β ∈ Γ and the head
moves in the direction ξ ∈ {L,R,N}.

3 / 22



TM

A Turing machine can be interpreted as a read-write-head
operating on an infinite tape initialized with □. L,R , and N denote
the movement of the head on the tape in the direction left, right,
and none, respectively.

Definition 2

A nondeterministic TM has the transition function
δ : Q × Γ → 2Q×Γ×{L,R,N}, similarly to nondeterministic PDAs.

Theorem 3

For every nondeterministic TM N there exists a deterministic TM
M such that L(N) = L(M).
Idea: M uses breadth-first search to emulate N (see dovetailing).

4 / 22



TM

Definition 4

The configuration of a TM M is a triple (α, q, β) where q ∈ Q is
its state, α ∈ Γ∗ is the tape content left-to-right up to the position
of the head, and β ∈ Γ∗ is the tape content left-to-right from the
element at the position of the head.
Given configuration (α, qβ), M can be graphically represented as
· · ·□αβ□ · · · where M is in state q and its head is at the leftmost
symbol of β.

The initial configuration of M on input w ∈ Σ∗ is (ϵ, q0,w).The
run of a Turing machine on input w is denoted by M[w ].

Definition 5

A TM terminates when it reaches a configuration (α, q, aβ) where
δ(q, a) = ⊥ or δ(q, a) = ∅. This is denoted by M[w ]↓.

5 / 22



TM

Definition 6

A run of a TM M is modeled as the relation →M . Given
δ(q, first(β)) = (q′, c,D)

α, qβ) →M


(α, q′, c rest(β)) D = N

(αc , q′, rest(β)) D = R

(butlast(α), q′, last(α) c rest(β)) D = L

where for w = w1 · · ·wn, first(w) = w1, rest(w) = w2 · · ·wn,
last(w) = wn, and butlast(w) = w1 · · ·wn−1.

6 / 22



TM

Definition 7

A TM M accepts the language

L(M) = {w ∈ Σ∗ | ∃q ∈ F . α, β ∈ Γ∗. (ϵ, q0,w) →∗
M (α, q, β)}.

The languages accepted by a TM are precisely the type-0 grammars
in the Chomsky-Hierarchy (i.e. semi-decidable languages).

7 / 22



Encoding

A TM can be encoded using words over the alphabet {0, 1}.

Definition 8

Mw denotes the Turing machine represented by the encoding
w ∈ {0, 1}∗.

8 / 22



k-tape TM

Definition 9

A k-tape TM is a TM that operates on k tapes simultaneously.

Theorem 10

Every k-tape TM can be simulated by a 1-tape TM.

9 / 22



Turing-Computability

Definition 11

A function f : Σ∗ → Σ∗ (Σ is a finite set) is Turing-computable if
there exists a TM M such that ∀u, v ∈ Σ∗

f (u) = v ⇐⇒ ∃q ∈ F . (ϵ, q0, u) →∗
M (ϵ, q, v).

In particular, any TM computes a function. φw denotes the
function computed by Mw .

Thus, Turing-computability is a property of functions operating on
discrete sets (i.e. functions implemented by a computer).

The Church-Turing (hypo-)thesis states that any such function can
be computed by a computer (or effective method) iff it is
Turing-computable (i.e. can be computed by a Turing machine).

10 / 22



Problem

Definition 12

A problem is a language A = {x ∈ Σ∗ | P(x)} ⊆ Σ∗ for some
predicate P : Σ∗ → {0, 1}.

Given problem A ⊆ Σ∗.
• x is an instance of A if x ∈ Σ∗.
• x is a solution to A if x ∈ A.

11 / 22



Reduction

Definition 13

A problem A ⊆ Σ∗ is reducable to a problem B ⊆ Γ∗ (denoted
A ≤ B) if there is a total and computable function f : Σ∗ → Γ∗

such that

∀w ∈ Σ∗. w ∈ A ⇐⇒ f (w) ∈ B.

Example 14
To show that a function f is a valid reduction from A to B we need
to prove three properties:

• f is total on Σ∗;
• f is computable; and
• f is correct, i.e. ∀w ∈ Σ∗. w ∈ A ⇐⇒ f (w) ∈ B .

12 / 22



Decidability

Decidability can be interpreted as computability in the context of
problems instead of functions.

Definition 15

The characteristic function of a problem A is given as

χA(x) =

{
1 x ∈ A

0 x ̸∈ A
.

Definition 16

A problem A is decidable if its characteristic function is computable.

Given a reduction A ≤ B ,
• B decidable =⇒ A decidable; and
• A undecidable =⇒ B undecidable.

13 / 22



Theorem of Rice

Theorem 17 (Theorem of Rice)

Let F be a set of computable functions.
If F is non-trivial, i.e. F ̸= ∅ and F ̸= {f | f computable},
then deciding if φw ∈ F is undecidable.

In other words,

CF = {w ∈ {0, 1}∗ | φw ∈ F}

is undecidable.

14 / 22



Theorem of Rice

Example 18
When using the theorem of Rice to prove that a problem
A = {w ∈ {0, 1}∗ | P(w)} is undecidable, we must complete two
steps:

1. construct the set of computable functions F that fulfill the
same property P as functions φw whose w are in A; and

2. show that F is non-trivial by giving an example of a
computable function g ∈ F and a computable function h ̸∈ F .

Note that for step 1, P must not depend directly on the encoding w
but only on φw , otherwise the theorem of Rice cannot be applied.

15 / 22



Semi-Decidability

Definition 19

A problem A is semi-decidable if

χ′
A(x) =

{
1 x ∈ A

⊥ x ̸∈ A
.

is computable.

• Given a reduction A ≤ B , B semi-decidable =⇒ A
semi-decidable; and

• A decidable ⇐⇒ A semi-decidable and Ā semi-decidable.

16 / 22



Recursive Enumerability

Definition 20

A problem A is recursively enumerable if A = ∅ or there exists a
computable function f : N0 → A such that A = {f (0), f (1), . . . }.

Theorem 21

A problem A is semi-decidable iff A is recursively enumerable.

17 / 22



Theorem of Rice-Shapiro

Theorem 22 (Theorem of Rice-Shapiro)

Let F be a set of computable functions.
If CF = {w ∈ {0, 1}∗ | φw ∈ F} is semi-decidable,
then f ∈ F iff there exists a finite and partial function g ⊆ f with
f ∈ F .

Often the contrapositive statement is useful:
If there exists an f ∈ F such there exists no finite and partial
function g ⊆ f with g ∈ F , then CF is not semi-decidable.

18 / 22



Computation Models

We have mainly focused on Turing machines to model
computability. There are, however, other models for computability
that are commonly used:

• WHILE, programs using while x ̸= 0 do · · · end while and if
x = 0 then · · · else · · · end if for control flow;

• GOTO, programs running with a program counter using
conditionals (if), commands to jump to a specific line (goto),
and commands to terminate (halt) for control flow;

• LOOP, programs using conditionals (if) and loops of a
pre-determined fixed length (loop) for control flow;

19 / 22



Computation Models

• primitively recursive (PR), functions of the shape

f (0, x̄) = t0

f (m + 1, x̄) = t

where t0 is a term that is only using xi and other PR functions
and t is a term that may use f (m, x̄), xi , and other PR
functions; and

• µ-recursive (µR), an extension of PR where programs are
allowed to use the µ-operator which is defined as

µf (x̄ = find(0, x̄)

find(n, x̄) =

{
n f (n, x̄) = 0
find(n + 1, x̄) otherwise.

20 / 22



Computation Models

Turing-computable functions are functionally equivalent to
• Turing machines;
• WHILE programs;
• GOTO programs; and
• µ-recursive programs.

LOOP and PR programs are also able to express the same set of
functions, but this set is a true subset of all Turing-computable
functions.
In other words, there exist Turing-computable functions that are
not primitively recursive (or computable by a LOOP program), for
example the Ackermann function which is discussed next.

21 / 22



Ackermann Function

The Ackermann function can be used to show that a function f is
not primitively recursive.

Definition 23

The Ackermann function a is not primitively recursive and is
defined as

a(0, n) = n + 1
a(m + 1, 0) = a(m, 1)

a(m + 1, n + 1) = a(m, a(m + 1, n))

Theorem 24

For every primitively recursive function f : Nk → N there exists a
t ∈ N such that ∀x̄ ∈ Nk . f (x̄) < a(t,max x̄).

22 / 22


	Turing Machine (TM)
	Encoding
	k-tape TM

	Computability
	Decidability
	Problem
	Reduction
	Decidability
	Theorem of Rice
	Semi-Decidability
	Theorem of Rice-Shapiro

	Computation Models
	Ackermann Function

