Theoretical Computer Science Decidability and Computability

Jonas Hübotter

Outline

Turing Machine (TM)

Encoding *k*-tape TM

Computability

Decidability

Problem Reduction Decidability Theorem of Rice Semi-Decidability Theorem of Rice-Shapiro

Computation Models

Ackermann Function

ТΜ

Definition 1

A Turing machine (TM) $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ consists of

- a finite set of states Q;
- a (finite) input alphabet Σ;
- a (finite) tape alphabet Γ;
- a (partial) transition function $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R, N\};$
- an initial state $q_0 \in Q$;
- an empty tape element $\Box \in \Gamma \setminus \Sigma$; and
- a set of terminal (accepting) states $F \subseteq Q$.

We assume $\delta(q, a) = \bot$ (is undefined) for any $q \in F$, i.e. as soon as we reach a final state the TM halts. Graphically, transitions are denoted as $\alpha/\beta, \xi$ where $\alpha \in \Gamma$ is the current tape element which is replaced by $\beta \in \Gamma$ and the head moves in the direction $\xi \in \{L, R, N\}$. A Turing machine can be interpreted as a read-write-head operating on an infinite tape initialized with \Box . *L*, *R*, and *N* denote the movement of the head on the tape in the direction left, right, and none, respectively.

Definition 2

A nondeterministic TM has the transition function $\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L,R,N\}}$, similarly to nondeterministic PDAs.

Theorem 3

For every nondeterministic TM N there exists a deterministic TM M such that L(N) = L(M).

Idea: *M* uses breadth-first search to emulate *N* (see *dovetailing*).

ТΜ

Definition 4

The configuration of a TM M is a triple (α, q, β) where $q \in Q$ is its state, $\alpha \in \Gamma^*$ is the tape content left-to-right up to the position of the head, and $\beta \in \Gamma^*$ is the tape content left-to-right from the element at the position of the head. Given configuration $(\alpha, q\beta)$, M can be graphically represented as

Given configuration (α , $q\beta$), *M* can be graphically represented as $\cdots \Box \alpha \beta \Box \cdots$ where *M* is in state *q* and its head is at the leftmost symbol of β .

The initial configuration of M on input $w \in \Sigma^*$ is (ϵ, q_0, w) . The run of a Turing machine on input w is denoted by M[w].

Definition 5

A TM terminates when it reaches a configuration $(\alpha, q, a\beta)$ where $\delta(q, a) = \bot$ or $\delta(q, a) = \emptyset$. This is denoted by $M[w]\downarrow$.

ТΜ

Definition 6

A run of a TM *M* is modeled as the relation \rightarrow_M . Given $\delta(q, \text{first}(\beta)) = (q', c, D)$

$$\alpha, q\beta) \rightarrow_{M} \begin{cases} (\alpha, q', c \operatorname{rest}(\beta)) & D = N \\ (\alpha c, q', \operatorname{rest}(\beta)) & D = R \\ (\operatorname{butlast}(\alpha), q', \operatorname{last}(\alpha) \ c \ \operatorname{rest}(\beta)) & D = L \end{cases}$$

where for $w = w_1 \cdots w_n$, first $(w) = w_1$, rest $(w) = w_2 \cdots w_n$, last $(w) = w_n$, and butlast $(w) = w_1 \cdots w_{n-1}$.

Definition 7

A TM M accepts the language

$$L(M) = \{ w \in \Sigma^* \mid \exists q \in F. \ \alpha, \beta \in \Gamma^*. \ (\epsilon, q_0, w) \rightarrow^*_M (\alpha, q, \beta) \}.$$

The languages accepted by a TM are precisely the type-0 grammars in the Chomsky-Hierarchy (i.e. semi-decidable languages).

A TM can be encoded using words over the alphabet $\{0,1\}.$

Definition 8

 M_w denotes the Turing machine represented by the encoding $w \in \{0,1\}^*.$

k-tape TM

Definition 9 A *k*-tape TM is a TM that operates on *k* tapes simultaneously. Theorem 10 Every *k*-tape TM can be simulated by a 1-tape TM.

Turing-Computability

Definition 11

A function $f : \Sigma^* \to \Sigma^*$ (Σ is a finite set) is Turing-computable if there exists a TM M such that $\forall u, v \in \Sigma^*$

$$f(u) = v \iff \exists q \in F. \ (\epsilon, q_0, u) \rightarrow^*_M (\epsilon, q, v).$$

In particular, any TM computes a function. φ_w denotes the function computed by M_w .

Thus, Turing-computability is a property of functions operating on discrete sets (i.e. functions implemented by a computer).

The Church-Turing (hypo-)thesis states that any such function can be computed by a *computer* (or effective method) iff it is Turing-computable (i.e. can be computed by a Turing machine).

Problem

Definition 12

A problem is a language $A = \{x \in \Sigma^* \mid P(x)\} \subseteq \Sigma^*$ for some predicate $P : \Sigma^* \to \{0, 1\}$.

Given problem $A \subseteq \Sigma^*$.

- x is an instance of A if $x \in \Sigma^*$.
- x is a solution to A if $x \in A$.

Reduction

Definition 13

A problem $A \subseteq \Sigma^*$ is reducable to a problem $B \subseteq \Gamma^*$ (denoted $A \leq B$) if there is a total and computable function $f : \Sigma^* \to \Gamma^*$ such that

$$\forall w \in \Sigma^*. \ w \in A \iff f(w) \in B.$$

Example 14

To show that a function f is a valid reduction from A to B we need to prove three properties:

- *f* is *total* on Σ^{*};
- f is computable; and
- f is correct, i.e. $\forall w \in \Sigma^*$. $w \in A \iff f(w) \in B$.

Decidability

Decidability can be interpreted as computability in the context of problems instead of functions.

Definition 15

The characteristic function of a problem A is given as

$$\chi_{\mathcal{A}}(x) = \begin{cases} 1 & x \in \mathcal{A} \\ 0 & x \notin \mathcal{A} \end{cases}$$

Definition 16

A problem A is decidable if its characteristic function is computable.

Given a reduction $A \leq B$,

- B decidable \implies A decidable; and
- A undecidable \implies B undecidable.

Theorem 17 (Theorem of Rice)

Let \mathcal{F} be a set of computable functions. If \mathcal{F} is non-trivial, i.e. $\mathcal{F} \neq \emptyset$ and $\mathcal{F} \neq \{f \mid f \text{ computable}\},$ then deciding if $\varphi_w \in \mathcal{F}$ is undecidable.

In other words,

$$\mathcal{C}_{\mathcal{F}} = \{ w \in \{0,1\}^* \mid \varphi_w \in \mathcal{F} \}$$

is undecidable.

Theorem of Rice

Example 18

When using the theorem of Rice to prove that a problem $A = \{w \in \{0,1\}^* \mid P(w)\}$ is undecidable, we must complete two steps:

- 1. construct the set of computable functions \mathcal{F} that fulfill the same property P as functions φ_w whose w are in A; and
- show that F is non-trivial by giving an example of a computable function g ∈ F and a computable function h ∉ F.

Note that for step 1, P must not depend directly on the encoding w but only on φ_w , otherwise the theorem of Rice cannot be applied.

Semi-Decidability

Definition 19

A problem A is semi-decidable if

$$\chi'_{\mathcal{A}}(x) = \begin{cases} 1 & x \in \mathcal{A} \\ \bot & x \notin \mathcal{A} \end{cases}.$$

is computable.

- Given a reduction $A \leq B$, B semi-decidable $\implies A$ semi-decidable; and
- A decidable \iff A semi-decidable and \overline{A} semi-decidable.

Recursive Enumerability

Definition 20

A problem A is recursively enumerable if $A = \emptyset$ or there exists a computable function $f : \mathbb{N}_0 \to A$ such that $A = \{f(0), f(1), \dots\}$.

Theorem 21

A problem A is semi-decidable iff A is recursively enumerable.

Theorem 22 (Theorem of Rice-Shapiro)

Let \mathcal{F} be a set of computable functions. If $C_{\mathcal{F}} = \{w \in \{0,1\}^* \mid \varphi_w \in \mathcal{F}\}$ is semi-decidable, then $f \in \mathcal{F}$ iff there exists a finite and partial function $g \subseteq f$ with $f \in \mathcal{F}$.

Often the contrapositive statement is useful:

If there exists an $f \in \mathcal{F}$ such there exists no finite and partial function $g \subseteq f$ with $g \in \mathcal{F}$, then $C_{\mathcal{F}}$ is not semi-decidable.

We have mainly focused on Turing machines to model computability. There are, however, other models for computability that are commonly used:

- WHILE, programs using while $x \neq 0$ do \cdots end while and if x = 0 then \cdots else \cdots end if for control flow;
- GOTO, programs running with a program counter using conditionals (if), commands to jump to a specific line (goto), and commands to terminate (halt) for control flow;
- LOOP, programs using conditionals (if) and loops of a pre-determined fixed length (loop) for control flow;

Computation Models

• primitively recursive (PR), functions of the shape

```
f(0,\bar{x}) = t_0
f(m+1,\bar{x}) = t
```

where t_0 is a term that is only using x_i and other PR functions and t is a term that may use $f(m, \bar{x})$, x_i , and other PR functions; and

• μ -recursive (μ R), an extension of PR where programs are allowed to use the μ -operator which is defined as

$$\mu f(ar{x} = {
m find}(0,ar{x})$$

find $(n,ar{x}) = egin{cases} n & f(n,ar{x}) = 0 \ {
m find}(n+1,ar{x}) & {
m otherwise}. \end{cases}$

Computation Models

Turing-computable functions are functionally equivalent to

- Turing machines;
- WHILE programs;
- GOTO programs; and
- μ-recursive programs.

LOOP and PR programs are also able to express the same set of functions, but this set is a true subset of all Turing-computable functions.

In other words, there exist Turing-computable functions that are not primitively recursive (or computable by a LOOP program), for example the Ackermann function which is discussed next.

Ackermann Function

The Ackermann function can be used to show that a function f is not primitively recursive.

Definition 23

The Ackermann function *a* is not primitively recursive and is defined as

$$a(0, n) = n + 1$$

 $a(m + 1, 0) = a(m, 1)$
 $a(m + 1, n + 1) = a(m, a(m + 1, n))$

Theorem 24

For every primitively recursive function $f : \mathbb{N}^k \to \mathbb{N}$ there exists a $t \in \mathbb{N}$ such that $\forall \overline{x} \in \mathbb{N}^k$. $f(\overline{x}) < a(t, \max \overline{x})$.