Theoretical Computer Science Languages and Grammars

Jonas Hübotter

Outline

Formal Languages

Grammars

Chomsky-Hierarchy

Word problem

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^{*} is the set of all words over an alphabet Σ.

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^{*} is the set of all words over an alphabet Σ.
- $L \subseteq \Sigma^{*}$ is called a (formal) language.

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^{*} is the set of all words over an alphabet Σ.
- $L \subseteq \Sigma^{*}$ is called a (formal) language.

Definition 2 (Operations on words)

- $|w|$ is the length of word w.

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^{*} is the set of all words over an alphabet Σ.
- $L \subseteq \Sigma^{*}$ is called a (formal) language.

Definition 2 (Operations on words)

- $|w|$ is the length of word w.
- $u v$ is the concatenation of two words u, v.

Formal Languages

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^{*} is the set of all words over an alphabet Σ.
- $L \subseteq \Sigma^{*}$ is called a (formal) language.

Definition 2 (Operations on words)

- $|w|$ is the length of word w.
- $u v$ is the concatenation of two words u, v.
- $w^{0}=\epsilon, w^{n+1}=w w^{n}$ defines repetition of a word w.

Operations on Formal Languages

Definition 3
Let A and B be formal languages.

- $A B=\{u v \mid u \in A, v \in B\}$ (concatenation).

Operations on Formal Languages

Definition 3
Let A and B be formal languages.

- $A B=\{u v \mid u \in A, v \in B\}$ (concatenation).
- $A^{0}=\{\epsilon\}, A^{n+1}=A A^{n}$ (repetition).

Operations on Formal Languages

Definition 3
Let A and B be formal languages.

- $A B=\{u v \mid u \in A, v \in B\}$ (concatenation).
- $A^{0}=\{\epsilon\}, A^{n+1}=A A^{n}$ (repetition).
- $A^{*}=\bigcup_{n \in \mathbb{N}_{0}} A^{n}$ (reflexive transitive closure).

Operations on Formal Languages

Definition 3

Let A and B be formal languages.

- $A B=\{u v \mid u \in A, v \in B\}$ (concatenation).
- $A^{0}=\{\epsilon\}, A^{n+1}=A A^{n}$ (repetition).
- $A^{*}=\bigcup_{n \in \mathbb{N}_{0}} A^{n}$ (reflexive transitive closure).
- $A^{+}=A A^{*}=\bigcup_{n \in \mathbb{N}} A^{n}$ (transitive closure).

Grammars

Definition 4
A grammar is a 4-tuple $G=(V, \Sigma, P, S)$

Grammars

Definition 4
A grammar is a 4-tuple $G=(V, \Sigma, P, S)$ where

- V is a finite set of non-terminals (or variables)

Grammars

Definition 4
A grammar is a 4-tuple $G=(V, \Sigma, P, S)$ where

- V is a finite set of non-terminals (or variables);
- Σ is an alphabet whose symbols are called terminals

Grammars

Definition 4
A grammar is a 4-tuple $G=(V, \Sigma, P, S)$ where

- V is a finite set of non-terminals (or variables);
- Σ is an alphabet whose symbols are called terminals;
- $P \subseteq(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ is a set of productions

Grammars

Definition 4
A grammar is a 4-tuple $G=(V, \Sigma, P, S)$ where

- V is a finite set of non-terminals (or variables);
- Σ is an alphabet whose symbols are called terminals;
- $P \subseteq(V \cup \Sigma)^{*} \times(V \cup \Sigma)^{*}$ is a set of productions; and
- $S \in V$ is the initial variable.

Grammars

Definition 5 (Derivation)
A grammar induces a derivation relation \rightarrow_{G} on words over $V \cup \Sigma$:

Grammars

Definition 5 (Derivation)
A grammar induces a derivation relation \rightarrow_{G} on words over $V \cup \Sigma$:

$$
\begin{aligned}
& \forall \alpha, \alpha^{\prime} \in(V \cup \Sigma)^{*} . \alpha \rightarrow_{G} \alpha^{\prime}: \Leftrightarrow \exists \beta \rightarrow \beta^{\prime} \in P . \\
& \alpha=\alpha_{1} \beta \alpha_{2} \text { and } \alpha^{\prime}=\alpha_{1} \beta^{\prime} \alpha_{2} .
\end{aligned}
$$

Grammars

Definition 5 (Derivation)
A grammar induces a derivation relation \rightarrow_{G} on words over $V \cup \Sigma$:

$$
\begin{aligned}
& \forall \alpha, \alpha^{\prime} \in(V \cup \Sigma)^{*} . \alpha \rightarrow_{G} \alpha^{\prime}: \Leftrightarrow \exists \beta \rightarrow \beta^{\prime} \in P . \\
& \alpha=\alpha_{1} \beta \alpha_{2} \text { and } \alpha^{\prime}=\alpha_{1} \beta^{\prime} \alpha_{2} .
\end{aligned}
$$

A derivation of α_{n} from α_{1} is denoted by $\alpha_{1} \rightarrow_{G} \cdots \rightarrow_{G} \alpha_{n}$.

Grammars

Definition 5 (Derivation)
A grammar induces a derivation relation \rightarrow_{G} on words over $V \cup \Sigma$:

$$
\begin{aligned}
& \forall \alpha, \alpha^{\prime} \in(V \cup \Sigma)^{*} . \alpha \rightarrow_{G} \alpha^{\prime}: \Leftrightarrow \exists \beta \rightarrow \beta^{\prime} \in P . \\
& \alpha=\alpha_{1} \beta \alpha_{2} \text { and } \alpha^{\prime}=\alpha_{1} \beta^{\prime} \alpha_{2} .
\end{aligned}
$$

A derivation of α_{n} from α_{1} is denoted by $\alpha_{1} \rightarrow_{G} \cdots \rightarrow_{G} \alpha_{n}$.
Definition 6 (Language of a Grammar)
Given the derivation of α_{n} from α_{1}, G produces α_{n} if $\alpha_{1}=S$ and $\alpha_{n} \in \Sigma^{*}$.

Grammars

Definition 5 (Derivation)
A grammar induces a derivation relation \rightarrow_{G} on words over $V \cup \Sigma$:

$$
\begin{aligned}
& \forall \alpha, \alpha^{\prime} \in(V \cup \Sigma)^{*} . \alpha \rightarrow_{G} \alpha^{\prime}: \Leftrightarrow \exists \beta \rightarrow \beta^{\prime} \in P . \\
& \alpha=\alpha_{1} \beta \alpha_{2} \text { and } \alpha^{\prime}=\alpha_{1} \beta^{\prime} \alpha_{2} .
\end{aligned}
$$

A derivation of α_{n} from α_{1} is denoted by $\alpha_{1} \rightarrow_{G} \cdots \rightarrow_{G} \alpha_{n}$.
Definition 6 (Language of a Grammar)
Given the derivation of α_{n} from α_{1}, G produces α_{n} if $\alpha_{1}=S$ and $\alpha_{n} \in \Sigma^{*}$.
The language of $G L(G)$ is the set of all words produced by G.

Chomsky-Hierarchy

Definition 7

A grammar G is of

Chomsky-Hierarchy

Definition 7

A grammar G is of

- Type 0 always;

Chomsky-Hierarchy

Definition 7

A grammar G is of

- Type 0 always;
- Type 1 (context-sensitive) $\forall \alpha \rightarrow \beta \in P \backslash\{S \rightarrow \epsilon\} .|\alpha| \leq|\beta|$;

Chomsky-Hierarchy

Definition 7

A grammar G is of

- Type 0 always;
- Type 1 (context-sensitive) $\forall \alpha \rightarrow \beta \in P \backslash\{S \rightarrow \epsilon\}$. $|\alpha| \leq|\beta|$;
- Type 2 (context-free) if of type 1 and $\forall \alpha \rightarrow \beta \in P . \alpha \in V$;

Chomsky-Hierarchy

Definition 7

A grammar G is of

- Type 0 always;
- Type 1 (context-sensitive) $\forall \alpha \rightarrow \beta \in P \backslash\{S \rightarrow \epsilon\} .|\alpha| \leq|\beta|$;
- Type 2 (context-free) if of type 1 and $\forall \alpha \rightarrow \beta \in P . \alpha \in V$;
- Type 3 (right-linear) if of type 2 and $\forall \alpha \rightarrow \beta \in P \backslash\{S \rightarrow \epsilon\} . \beta \in \Sigma \cup \Sigma V$.

Word problem

Word Problem
given: a grammar G, a word $w \in \Sigma^{*}$ problem: $w \in L(G)$?

Word problem

Word Problem
given: a grammar G, a word $w \in \Sigma^{*}$
problem: $w \in L(G)$?

Automata are used to solve the word problem. Depending on the type of the grammar different automata are used. For example, (Non-)Deterministic Finite Automata are used for right-linear grammars (regular languages) while Pushdown Automata are used for context-free grammars.

