Theoretical Computer Science Languages and Grammars

Jonas Hübotter

Grammars

Chomsky-Hierarchy

Word problem

Definition 1

• The alphabet Σ is a finite set of symbols.

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.

Definition 1

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^* is the set of all words over an alphabet Σ .

Definition 1

.

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^* is the set of all words over an alphabet Σ .
- $L \subseteq \Sigma^*$ is called a (formal) language.

Definition 1

.

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^* is the set of all words over an alphabet Σ .
- $L \subseteq \Sigma^*$ is called a (formal) language.

Definition 2 (Operations on words)

• |w| is the length of word w.

Definition 1

.

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^* is the set of all words over an alphabet Σ .
- $L \subseteq \Sigma^*$ is called a (formal) language.

Definition 2 (Operations on words)

- |w| is the length of word w.
- *uv* is the concatenation of two words *u*, *v*.

Definition 1

.

- The alphabet Σ is a finite set of symbols.
- A finite sequence of symbols is called a word.
- ϵ is the empty word.
- Σ^* is the set of all words over an alphabet Σ .
- $L \subseteq \Sigma^*$ is called a (formal) language.

Definition 2 (Operations on words)

- |w| is the length of word w.
- *uv* is the concatenation of two words *u*, *v*.
- $w^0 = \epsilon, w^{n+1} = ww^n$ defines repetition of a word w.

Definition 3

Let A and B be formal languages.

• $AB = \{uv \mid u \in A, v \in B\}$ (concatenation).

Definition 3

Let A and B be formal languages.

• $AB = \{uv \mid u \in A, v \in B\}$ (concatenation).

•
$$A^0 = \{\epsilon\}, A^{n+1} = AA^n$$
 (repetition).

Definition 3

Let A and B be formal languages.

• $AB = \{uv \mid u \in A, v \in B\}$ (concatenation).

•
$$A^0 = \{\epsilon\}, A^{n+1} = AA^n$$
 (repetition).

•
$$A^* = \bigcup_{n \in \mathbb{N}_0} A^n$$
 (reflexive transitive closure).

Definition 3

.

Let A and B be formal languages.

• $AB = \{uv \mid u \in A, v \in B\}$ (concatenation).

•
$$A^0 = \{\epsilon\}, A^{n+1} = AA^n$$
 (repetition).

• $A^* = \bigcup_{n \in \mathbb{N}_0} A^n$ (reflexive transitive closure).

•
$$A^+ = AA^* = \bigcup_{n \in \mathbb{N}} A^n$$
 (transitive closure).

Definition 4 A grammar is a 4-tuple $G = (V, \Sigma, P, S)$

Definition 4

A grammar is a 4-tuple $G = (V, \Sigma, P, S)$ where

• V is a finite set of non-terminals (or variables)

Definition 4

A grammar is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is a finite set of non-terminals (or variables);
- $\boldsymbol{\Sigma}$ is an alphabet whose symbols are called terminals

Definition 4

A grammar is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is a finite set of non-terminals (or variables);
- Σ is an alphabet whose symbols are called terminals;
- $P \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ is a set of productions

Definition 4

A grammar is a 4-tuple $G = (V, \Sigma, P, S)$ where

- V is a finite set of non-terminals (or variables);
- Σ is an alphabet whose symbols are called terminals;
- $P \subseteq (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ is a set of productions; and
- $S \in V$ is the initial variable.

Definition 5 (Derivation)

A grammar induces a derivation relation \rightarrow_G on words over $V \cup \Sigma$:

Definition 5 (Derivation)

A grammar induces a derivation relation \rightarrow_G on words over $V \cup \Sigma$:

$$\forall \alpha, \alpha' \in (V \cup \Sigma)^*. \ \alpha \to_G \alpha' :\Leftrightarrow \exists \beta \to \beta' \in P.$$

$$\alpha = \alpha_1 \beta \alpha_2 \text{ and } \alpha' = \alpha_1 \beta' \alpha_2.$$

Definition 5 (Derivation)

A grammar induces a derivation relation \rightarrow_G on words over $V \cup \Sigma$:

$$\forall \alpha, \alpha' \in (V \cup \Sigma)^*. \ \alpha \to_{\mathcal{G}} \alpha' : \Leftrightarrow \exists \beta \to \beta' \in \mathcal{P}.$$

$$\alpha = \alpha_1 \beta \alpha_2 \text{ and } \alpha' = \alpha_1 \beta' \alpha_2.$$

A derivation of α_n from α_1 is denoted by $\alpha_1 \rightarrow_G \cdots \rightarrow_G \alpha_n$.

Definition 5 (Derivation)

A grammar induces a derivation relation \rightarrow_{G} on words over $V \cup \Sigma$:

$$\forall \alpha, \alpha' \in (V \cup \Sigma)^*. \ \alpha \to_G \alpha' : \Leftrightarrow \exists \beta \to \beta' \in P.$$

$$\alpha = \alpha_1 \beta \alpha_2 \text{ and } \alpha' = \alpha_1 \beta' \alpha_2.$$

A derivation of α_n from α_1 is denoted by $\alpha_1 \rightarrow_G \cdots \rightarrow_G \alpha_n$.

Definition 6 (Language of a Grammar)

Given the derivation of α_n from α_1 , G produces α_n if $\alpha_1 = S$ and $\alpha_n \in \Sigma^*$.

Definition 5 (Derivation)

A grammar induces a derivation relation \rightarrow_{G} on words over $V \cup \Sigma$:

$$\forall \alpha, \alpha' \in (V \cup \Sigma)^*. \ \alpha \to_G \alpha' : \Leftrightarrow \exists \beta \to \beta' \in P.$$

$$\alpha = \alpha_1 \beta \alpha_2 \text{ and } \alpha' = \alpha_1 \beta' \alpha_2.$$

A derivation of α_n from α_1 is denoted by $\alpha_1 \rightarrow_G \cdots \rightarrow_G \alpha_n$.

Definition 6 (Language of a Grammar)

Given the derivation of α_n from α_1 , G produces α_n if $\alpha_1 = S$ and $\alpha_n \in \Sigma^*$. The language of G L(G) is the set of all words produced by G.

Definition 7

Definition 7

A grammar G is of

• Type 0 always;

Definition 7

- Type 0 always;
- Type 1 (context-sensitive) $\forall \alpha \rightarrow \beta \in P \setminus \{S \rightarrow \epsilon\}$. $|\alpha| \le |\beta|$;

Definition 7

- Type 0 always;
- Type 1 (context-sensitive) $\forall \alpha \rightarrow \beta \in P \setminus \{S \rightarrow \epsilon\}$. $|\alpha| \le |\beta|$;
- Type 2 (context-free) if of type 1 and $\forall \alpha \rightarrow \beta \in P. \ \alpha \in V$;

Definition 7

- Type 0 always;
- Type 1 (context-sensitive) $\forall \alpha \rightarrow \beta \in P \setminus \{S \rightarrow \epsilon\}$. $|\alpha| \le |\beta|$;
- Type 2 (context-free) if of type 1 and $\forall \alpha \rightarrow \beta \in P. \ \alpha \in V$;
- Type 3 (right-linear) if of type 2 and $\forall \alpha \rightarrow \beta \in P \setminus \{S \rightarrow \epsilon\}. \ \beta \in \Sigma \cup \Sigma V.$

Word problem

Word Problem

```
given: a grammar G, a word w \in \Sigma^* problem: w \in L(G)?
```

Word problem

Word Problem

```
given: a grammar G, a word w \in \Sigma^* problem: w \in L(G)?
```

Automata are used to solve the word problem. Depending on the type of the grammar different automata are used. For example, (Non-)Deterministic Finite Automata are used for right-linear grammars (regular languages) while Pushdown Automata are used for context-free grammars.