Theoretical Computer Science List of Problems

Jonas Hübotter

Outline

Undecidable problems

NP-complete problems

Special Halting Problem

$$K = \{w \in \{0,1\}^* \mid M_w[w] \downarrow\}$$

Special Halting Problem

$$K = \{w \in \{0,1\}^* \mid M_w[w] \downarrow \}$$

General Halting Problem

$$H = \{ w \# x \mid w, x \in \{0,1\}^* \land M_w[x] \downarrow \}$$

Special Halting Problem

$$K = \{ w \in \{0,1\}^* \mid M_w[w] \downarrow \}$$

General Halting Problem

$$H = \{ w \# x \mid w, x \in \{0, 1\}^* \land M_w[x] \downarrow \}$$

Halting Problem on an empty tape

$$H_0 = \{w \in \{0,1\}^* \mid M_w[\epsilon] \downarrow \}$$

Special Halting Problem

$$K = \{ w \in \{0,1\}^* \mid M_w[w] \downarrow \}$$

General Halting Problem

$$H = \{ w \# x \mid w, x \in \{0, 1\}^* \land M_w[x] \downarrow \}$$

Halting Problem on an empty tape

$$H_0 = \{ w \in \{0,1\}^* \mid M_w[\epsilon] \downarrow \}$$

Post's Correspondence Problem (PCP)

```
given: finite sequence (x_1, y_1), \ldots, (x_k, y_k) where x_i, y_i \in \Sigma^+ problem: is there a sequence of indices i_1, \ldots, i_n \in [k], n > 0 such that x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}?
```

CFG problems

Let G, G_1 , G_2 be CFGs.

• $L(G_1) \cap L(G_2) = \emptyset$?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- $L(G_1) \cap L(G_2)$ context-free?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- $L(G_1) \cap L(G_2)$ context-free?
- $L(G_1) \subseteq L(G_2)$?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- $L(G_1) \cap L(G_2)$ context-free?
- $L(G_1) \subseteq L(G_2)$?
- $L(G_1) = L(G_2)$?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- $L(G_1) \cap L(G_2)$ context-free?
- $L(G_1) \subseteq L(G_2)$?
- $L(G_1) = L(G_2)$?
- G ambiguous?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- $L(G_1) \cap L(G_2)$ context-free?
- $L(G_1) \subseteq L(G_2)$?
- $L(G_1) = L(G_2)$?
- G ambiguous?
- G regular?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- $L(G_1) \cap L(G_2)$ context-free?
- $L(G_1) \subseteq L(G_2)$?
- $L(G_1) = L(G_2)$?
- *G* ambiguous?
- G regular?
- *G* deterministic?

CFG problems

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- $L(G_1) \cap L(G_2)$ context-free?
- $L(G_1) \subseteq L(G_2)$?
- $L(G_1) = L(G_2)$?
- *G* ambiguous?
- G regular?
- G deterministic?
- for some regular expression α , $L(G) = L(\alpha)$?

SAT

given: propositional formula F problem: is F satisfiable?+-

SAT

given: propositional formula *F* problem: is *F* satisfiable?+-

CNF-SAT

given: propositional formula F in $k\mathsf{CNF}$ for $k\geq 3$

problem: is F satisfiable?

SAT

given: propositional formula F problem: is F satisfiable?+-

CNF-SAT

given: propositional formula F in $k\mathsf{CNF}$ for $k\geq 3$

problem: is F satisfiable?

NONEQUIVALENCE

given: two propositional formulas F_1, F_2

problem: is there an assignment \mathcal{A} such that $\mathcal{A}(F_1) \neq \mathcal{A}(F_2)$?

HAMILTON

given: undirected graph G

problem: does G have a Hamiltonian circuit (i.e. a circuit visiting

every vertex exactly once)?

HAMILTON

given: undirected graph G

problem: does G have a Hamiltonian circuit (i.e. a circuit visiting

every vertex exactly once)?

TRAVELLING SALESMAN (TSP)

given: matrix $(M_{ij})_{1 \le i,j \le n}$ of distances, $k \in \mathbb{N}$

problem: is there a roundtrip (Hamiltonian circuit) of length $\leq k$?

COL

given: undirected graph G, $k \ge 3$ problem: is there a vertex coloring with k colors such that no two

adjacent vertices are assigned the same color?

COL

given: undirected graph G, $k \geq 3$ problem: is there a vertex coloring with k colors such that no two adjacent vertices are assigned the same color?

SETCOVER

given: $T_1, \ldots, T_n \subseteq M$ with M finite, $k \in \mathbb{N}$ problem: is there $i_1, \ldots, i_n \in [k]$ with $M = T_{i_1} \cup \cdots \cup T_{i_n}$?

COL

given: undirected graph G, $k \geq 3$ problem: is there a vertex coloring with k colors such that no two adjacent vertices are assigned the same color?

SETCOVER

given: $T_1, \ldots, T_n \subseteq M$ with M finite, $k \in \mathbb{N}$

problem: is there $i_1, \ldots, i_n \in [k]$ with $M = T_{i_1} \cup \cdots \cup T_{i_n}$?

CLIQUE

given: undirected graph G, $k \in \mathbb{N}$

problem: does G have a clique of at least size k?

KNAPSACK

given: $a_1, \ldots, a_n, b \in \mathbb{N}$

problem: is there $R \subseteq [n]$ with $\sum_{i \in R} a_i = b$?

KNAPSACK

given: $a_1, \ldots, a_n, b \in \mathbb{N}$

problem: is there $R \subseteq [n]$ with $\sum_{i \in R} a_i = b$?

PARTITION

given: $a_1, \ldots, a_n \in \mathbb{N}$

problem: is there $I \subseteq [n]$ with $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

KNAPSACK

given: $a_1, \ldots, a_n, b \in \mathbb{N}$

problem: is there $R \subseteq [n]$ with $\sum_{i \in R} a_i = b$?

PARTITION

given: $a_1, \ldots, a_n \in \mathbb{N}$

problem: is there $I \subseteq [n]$ with $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?

BINPACKING

given: can size $b \in \mathbb{N}$, # of cans $k \in \mathbb{N}$, objects $a_1, \ldots, a_n \in \mathbb{N}$ problem: can each object be assigned to a can without any can

overflowing?