Theoretical Computer Science List of Problems

Jonas Hübotter

Outline

Undecidable problems

NP-complete problems

Undecidable problems

Special Halting Problem

$$
K=\left\{w \in\{0,1\}^{*} \mid M_{w}[w] \downarrow\right\}
$$

Undecidable problems

Special Halting Problem
$K=\left\{w \in\{0,1\}^{*} \mid M_{w}[w] \downarrow\right\}$
General Halting Problem
$H=\left\{w \# x \mid w, x \in\{0,1\}^{*} \wedge M_{w}[x] \downarrow\right\}$

Undecidable problems

Special Halting Problem
$K=\left\{w \in\{0,1\}^{*} \mid M_{w}[w] \downarrow\right\}$
General Halting Problem
$H=\left\{w \# x \mid w, x \in\{0,1\}^{*} \wedge M_{w}[x] \downarrow\right\}$
Halting Problem on an empty tape
$H_{0}=\left\{w \in\{0,1\}^{*} \mid M_{w}[\epsilon] \downarrow\right\}$

Undecidable problems

Special Halting Problem
$K=\left\{w \in\{0,1\}^{*} \mid M_{w}[w] \downarrow\right\}$
General Halting Problem
$H=\left\{w \# x \mid w, x \in\{0,1\}^{*} \wedge M_{w}[x] \downarrow\right\}$
Halting Problem on an empty tape
$H_{0}=\left\{w \in\{0,1\}^{*} \mid M_{w}[\epsilon] \downarrow\right\}$
Post's Correspondence Problem (PCP)
given: finite sequence $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ where $x_{i}, y_{i} \in \Sigma^{+}$ problem: is there a sequence of indices $i_{1}, \ldots, i_{n} \in[k], n>0$ such that $x_{i_{1}} \ldots x_{i_{n}}=y_{i_{1}} \ldots y_{i_{n}}$?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- $L\left(G_{1}\right)=L\left(G_{2}\right)$?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- G ambiguous?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- G ambiguous?
- G regular?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- G ambiguous?
- G regular?
- G deterministic?

Undecidable problems

CFG problems
Let G, G_{1}, G_{2} be CFGs.

- $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?
- $\left|L\left(G_{1}\right) \cap L\left(G_{2}\right)\right|=\infty$?
- $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- G ambiguous?
- G regular?
- G deterministic?
- for some regular expression $\alpha, L(G)=L(\alpha)$?

NP-complete problems

SAT
given: propositional formula F problem: is F satisfiable?+-

NP-complete problems

SAT
given: propositional formula F problem: is F satisfiable?+-

CNF-SAT
given: propositional formula F in $k C N F$ for $k \geq 3$ problem: is F satisfiable?

NP-complete problems

SAT
given: propositional formula F problem: is F satisfiable?+-

CNF-SAT
given: propositional formula F in $k C N F$ for $k \geq 3$ problem: is F satisfiable?

NONEQUIVALENCE
given: two propositional formulas F_{1}, F_{2}
problem: is there an assignment \mathcal{A} such that $\mathcal{A}\left(F_{1}\right) \neq \mathcal{A}\left(F_{2}\right)$?

NP-complete problems

HAMILTON

given: undirected graph G
problem: does G have a Hamiltonian circuit (i.e. a circuit visiting every vertex exactly once)?

NP-complete problems

HAMILTON

given: undirected graph G
problem: does G have a Hamiltonian circuit (i.e. a circuit visiting every vertex exactly once)?

TRAVELLING SALESMAN (TSP)
given: matrix $\left(M_{i j}\right)_{1 \leq i, j \leq n}$ of distances, $k \in \mathbb{N}$
problem: is there a roundtrip (Hamiltonian circuit) of length $\leq k$?

NP-complete problems

COL
given: undirected graph $G, k \geq 3$
problem: is there a vertex coloring with k colors such that no two adjacent vertices are assigned the same color?

NP-complete problems

COL

given: undirected graph $G, k \geq 3$
problem: is there a vertex coloring with k colors such that no two adjacent vertices are assigned the same color?

SETCOVER
given: $T_{1}, \ldots, T_{n} \subseteq M$ with M finite, $k \in \mathbb{N}$ problem: is there $i_{1}, \ldots, i_{n} \in[k]$ with $M=T_{i_{1}} \cup \cdots \cup T_{i_{n}}$?

NP-complete problems

COL

given: undirected graph $G, k \geq 3$
problem: is there a vertex coloring with k colors such that no two adjacent vertices are assigned the same color?

SETCOVER
given: $T_{1}, \ldots, T_{n} \subseteq M$ with M finite, $k \in \mathbb{N}$ problem: is there $i_{1}, \ldots, i_{n} \in[k]$ with $M=T_{i_{1}} \cup \cdots \cup T_{i_{n}}$?

CLIQUE

given: undirected graph $G, k \in \mathbb{N}$
problem: does G have a clique of at least size k ?

NP-complete problems

KNAPSACK
given: $a_{1}, \ldots, a_{n}, b \in \mathbb{N}$
problem: is there $R \subseteq[n]$ with $\sum_{i \in R} a_{i}=b$?

NP-complete problems

KNAPSACK
given: $a_{1}, \ldots, a_{n}, b \in \mathbb{N}$
problem: is there $R \subseteq[n]$ with $\sum_{i \in R} a_{i}=b$?

PARTITION

given: $a_{1}, \ldots, a_{n} \in \mathbb{N}$
problem: is there $I \subseteq[n]$ with $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$?

NP-complete problems

KNAPSACK
given: $a_{1}, \ldots, a_{n}, b \in \mathbb{N}$
problem: is there $R \subseteq[n]$ with $\sum_{i \in R} a_{i}=b$?

PARTITION

given: $a_{1}, \ldots, a_{n} \in \mathbb{N}$
problem: is there $I \subseteq[n]$ with $\sum_{i \in I} a_{i}=\sum_{i \notin I} a_{i}$?

BINPACKING

given: can size $b \in \mathbb{N}$, \# of cans $k \in \mathbb{N}$, objects $a_{1}, \ldots, a_{n} \in \mathbb{N}$ problem: can each object be assigned to a can without any can overflowing?

