Theoretical Computer Science List of Problems

Jonas Hübotter

Outline

Undecidable problems

NP-complete problems

Undecidable problems

Special Halting Problem

 $K = \{w \in \{0,1\}^* \mid M_w[w] \downarrow\}$

General Halting Problem

 $H = \{w \# x \mid w, x \in \{0,1\}^* \land M_w[x] \downarrow\}$

Halting Problem on an empty tape

 $H_0 = \{w \in \{0,1\}^* \mid M_w[\epsilon] \downarrow\}$

Post's Correspondence Problem (PCP)

given: finite sequence $(x_1, y_1), \ldots, (x_k, y_k)$ where $x_i, y_i \in \Sigma^+$ problem: is there a sequence of indices $i_1, \ldots, i_n \in [k], n > 0$ such that $x_{i_1} \ldots x_{i_n} = y_{i_1} \ldots y_{i_n}$?

Undecidable problems

CFG problems

Let G, G_1, G_2 be CFGs.

- $L(G_1) \cap L(G_2) = \emptyset$?
- $|L(G_1) \cap L(G_2)| = \infty$?
- *L*(*G*₁) ∩ *L*(*G*₂) context-free?
- $L(G_1) \subseteq L(G_2)$?
- $L(G_1) = L(G_2)?$
- G ambiguous?
- G regular?
- G deterministic?
- for some regular expression α , $L(G) = L(\alpha)$?

SAT

given: propositional formula *F* problem: is *F* satisfiable?+-

CNF-SAT

given: propositional formula F in kCNF for $k \ge 3$ problem: is F satisfiable?

NONEQUIVALENCE

given: two propositional formulas F_1, F_2 problem: is there an assignment \mathcal{A} such that $\mathcal{A}(F_1) \neq \mathcal{A}(F_2)$?

HAMILTON

given: undirected graph G problem: does G have a Hamiltonian circuit (i.e. a circuit visiting every vertex exactly once)?

TRAVELLING SALESMAN (TSP)

given: matrix $(M_{ij})_{1 \le i,j \le n}$ of distances, $k \in \mathbb{N}$ problem: is there a roundtrip (Hamiltonian circuit) of length $\le k$?

COL

given: undirected graph G, $k \ge 3$ problem: is there a vertex coloring with k colors such that no two adjacent vertices are assigned the same color?

SETCOVER

given: $T_1, \ldots, T_n \subseteq M$ with M finite, $k \in \mathbb{N}$ problem: is there $i_1, \ldots, i_n \in [k]$ with $M = T_{i_1} \cup \cdots \cup T_{i_n}$?

CLIQUE

given: undirected graph G, $k \in \mathbb{N}$ problem: does G have a clique of at least size k?

KNAPSACK

given: $a_1, \ldots, a_n, b \in \mathbb{N}$ problem: is there $R \subseteq [n]$ with $\sum_{i \in R} a_i = b$?

PARTITION

given:
$$a_1,\ldots,a_n\in\mathbb{N}$$

problem: is there $I\subseteq [n]$ with $\sum_{i\in I}a_i=\sum_{i
ot\in I}a_i$?

BINPACKING

given: can size $b \in \mathbb{N}$, # of cans $k \in \mathbb{N}$, objects $a_1, \ldots, a_n \in \mathbb{N}$ problem: can each object be assigned to a can without any can overflowing?