Theoretical Computer Science Regular Languages

Jonas Hübotter

Outline I

Overview
Automata
Deterministic Finite Automaton (DFA)
Nondeterministic Finite Automaton (NFA)
NFA \rightarrow DFA (determinization)
ϵ-NFA
ϵ-NFA \rightarrow NFA
Product-Construction
Minimal Automaton
Interlude: Equivalence Relations
Quotient Automaton
Canonical Minimal Automaton
Theorem of Mihill-Nerode
Right-Linear Grammar (RLG)
DFA \rightarrow RLG
RLG \rightarrow NFA

Outline II

Regular Expressions
Definition
Interlude: Structural Induction
Regex $\rightarrow \epsilon$-NFA (Kleene)
DFA/NFA \rightarrow Regex (Kleene)
Arden's Lemma

Closure Properties

Pumping Lemma

Overview

Representations of regular languages

- Right-Linear Grammar (RLG)
- Deterministic Finite Automaton (DFA)
- Nondeterministic Finite Automaton (NFA)
- ϵ-NFA
- Regular Expression (Regex)

DFA

Definition 1
A deterministic finite automaton (DFA) $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ consists of

- a finite set of states Q;
- a (finite) alphabet Σ;
- a total transition function $\delta: Q \times \Sigma \rightarrow Q$;
- an initial state $q_{0} \in Q$; and
- a set of terminal (accepting) states $F \subseteq Q$.

DFA

Definition 2
The induced transition function $\hat{\delta}$ of a DFA M is defined by

$$
\begin{aligned}
\hat{\delta}(q, \epsilon) & =q \\
\hat{\delta}(q, a w) & =\hat{\delta}(\delta(q, a), w), a \in \Sigma, w \in \Sigma^{*} .
\end{aligned}
$$

The language accepted by M is $L(M)=\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, w\right) \in F\right\}$.

Definition 3
A nondeterministic finite automaton (NFA) $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ consists of

- Q, Σ, q_{0}, F as defined for DFAs; and
- a (partial) transition function $\delta: Q \times \Sigma \rightarrow 2^{Q}$.

NFA

Definition 4
The induced transition function $\hat{\bar{\delta}}$ of a NFA N is defined analogously to $\hat{\delta}$ where

$$
\bar{\delta}: 2^{Q} \times \Sigma \rightarrow 2^{Q},(S, a) \mapsto \bigcup_{q \in S} \delta(q, a)
$$

The language accepted by N is $L(N)=\left\{w \in \Sigma^{*} \mid \hat{\bar{\delta}}\left(\left\{q_{0}\right\}, w\right) \cap F \neq \emptyset\right\}$.

NFA \rightarrow DFA (determinization)

Idea
Interpret every reachable subset $S \subseteq 2^{Q}$ in the NFA N as its own state in the new DFA M.
Every state S of M where $S \cap F_{N} \neq \emptyset$ is an accepting state of M.

Worst-case exponential growth!

ϵ-NFA

Definition 5
An ϵ-NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is an NFA with a special symbol $\epsilon \neg \in \Sigma$ where

$$
\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{Q} .
$$

ϵ-transitions can be executed at any time without reading a symbol.

ϵ-NFA \rightarrow NFA

Idea
Given ϵ-NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ construct NFA $N^{\prime}=\left(Q, \Sigma, \delta^{\prime}, q_{0}, F^{\prime}\right)$ where

$$
\delta^{\prime}: Q \times \Sigma \rightarrow 2^{Q}:(q, a) \mapsto \bigcup_{i, j \geq 0} \hat{\delta}\left(\{q\}, \epsilon^{i} a \epsilon^{j}\right) ;
$$

if $\epsilon \in L(N)$ then $F^{\prime}=F \cup\left\{q_{0}\right\}$ else $F^{\prime}=F$.

Product-Construction

Idea
Given DFAs $M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ the product automaton is $M=\left(Q_{1} \times Q_{2}, \Sigma, \delta,\left(s_{1}, s_{2}\right), F_{1} \times F_{2}\right)$ where

$$
\begin{aligned}
\delta & :\left(Q_{1} \times Q_{2}\right) \times \Sigma \rightarrow Q_{1} \times Q_{2} \\
& :\left(\left(q_{1}, q_{2}\right), a\right) \mapsto\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
\end{aligned}
$$

For the product automaton $L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$ holds.

Minimal Automaton

For any regular language L there exists a DFA D of minimal size such that $L(D)=L$.

Algorithm $\left(\mathcal{O}\left(|Q|^{2}\right)\right.$ for constant $\left.|\Sigma|\right)$

1. remove unreachable states from q_{0}
2. determine equivalent states
3. merge equivalent states

Equivalent States

Definition 6

States $p, q \in Q$ are

- equivalent if $\forall w \in \Sigma^{*} . \hat{\delta}(p, w) \in F \Longleftrightarrow \hat{\delta}(q, w) \in F$;
- distinguishable if they are not equivalent.

Algorithm for finding equivalent states
Idea: mark distinguishable states step-by-step.

1. mark all pairs $p, q \in Q$ if $p \in F$ and $q \in Q \backslash F$
2. while \exists unmarked $\{p, q\}$ and $\exists a \in$

Σ, if $\{\delta(p, a), \delta(q, a)\}$ is marked, mark $\{p, q\}$

Interlude: Equivalence Relations

Definition 7

A relation $\sim \subseteq A \times A$ is an equivalence relation if

- $\forall a \in A$. $a \sim a$. (reflexivity)
- $\forall a, b \in A$. $a \sim b \Longrightarrow b \sim a$. (symmetry) and
- $\forall a, b, c \in A . a \sim b \wedge b \sim c \Longrightarrow a \sim c$. (transitivity)
$[a]_{\sim}=\{b \mid a \sim b\}$ is called the equivalence class of a under \sim.
The set of equivalence classes $A / \sim=\left\{[a]_{\sim} \mid a \in A\right\}$ is called the quotient set of \sim.

Quotient Automaton

Observation: the equivalence of states defines an equivalence relation.

We say $p \equiv_{M} q$ iff p and q are equivalent states in M.

Definition 8
The collapsed automaton relative to \equiv_{M} is called quotient automaton.

$$
M / \equiv_{M}=\left(Q / \equiv_{M}, \Sigma, \delta^{\prime},\left[q_{0}\right]_{\equiv_{M}}, F / \equiv_{M}\right)
$$

with $\delta^{\prime}\left([p]_{\equiv_{M}}, a\right)=[\delta(p, a)]_{\equiv_{M}}$ for $p \in Q, a \in \Sigma$.

Canonical Minimal Automaton

Definition 9
The canonical minimal automaton M_{L} is a unique minimal automaton for any regular language L.

$$
M_{L}=\left(\Sigma^{*} / \equiv L, \Sigma, \delta_{L},[\epsilon]_{\equiv L}, F_{L}\right)
$$

with

$$
\begin{aligned}
\delta_{L}\left([w]_{\equiv_{L}}, a\right) & =[w a]_{\equiv_{L}} \\
F_{L} & =\left\{[w]_{\equiv_{L}} \mid w \in L\right\}
\end{aligned}
$$

It follows that $\hat{\delta}\left([\epsilon]_{\equiv L}, w\right)=[w]_{\equiv L}$ for $w \in \Sigma^{*}$, hence $L\left(M_{L}\right)=L$.

Theorem of Mihill-Nerode

Theorem 10 (Theorem of Mihill-Nerode)
$L \subseteq \Sigma^{*}$ is regular $\Longleftrightarrow \equiv_{L}$ has finitely many equivalence classes.

DFA \rightarrow RLG

Idea
Given DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ define RLG $G=\left(Q, \Sigma, P, q_{0}\right)$ with productions P :

- $\left(q_{1} \rightarrow a q_{2}\right) \in P$ iff $\delta\left(q_{1}, a\right)=q_{2} ;$
- $\left(q_{1} \rightarrow a\right) \in P$ iff $\delta\left(q_{1}, a\right) \in F$; and
- $\left(q_{0} \rightarrow \epsilon\right) \in P$ iff $q_{0} \in F$.

Then, $L(G)=L(M)$.

RLG \rightarrow NFA

Idea
Given RLG $G=(V, \Sigma, P, S)$ without the production $S \rightarrow \epsilon$, define the NFA $N=\left(V \cup\left\{q_{f}\right\}, \Sigma, \delta, S,\left\{q_{f}\right\}\right)$ with:

- $Y \in \delta(X, a)$ iff $(X \rightarrow a Y) \in P$; and
- $q_{f} \in \delta(X, a)$ iff $(X \rightarrow a) \in P$.

Then, $L(N)=L(G)$.

Regular Expressions

Syntax

- \emptyset is a regular expression;
- ϵ is a regular expression;
- $\forall a \in \Sigma, a$ is a regular expression; and
- given regular expressions α, β, the following are regular expressions:
- $\alpha \beta$ (concatenation);
- $\alpha \mid \beta$ (disjunction); and
- α^{*} (repetition).

Regular Expressions

Semantics

- $L(\emptyset)=\emptyset$;
- $L(\epsilon)=\{\epsilon\}$;
- $L(a)=\{a\}$;
- $L(\alpha \beta)=L(\alpha) L(\beta)$;
- $L(\alpha \mid \beta)=L(\alpha) \cup L(\beta)$; and
- $L\left(\alpha^{*}\right)=L(\alpha)^{*}$.

Interlude: Structural Induction

To prove a statement P for an object γ that is defined inductively, we use structural induction.

Let γ be defined by base cases $\alpha_{1}, \ldots, \alpha_{k}$ and inductive cases $\beta_{1}, \ldots, \beta_{l}$ with assumptions $a_{i 1}, \ldots, a_{i m_{i}}$ for $i \in\{1, \ldots, /\}$.

To prove P for all γ, prove:

- $P\left(\alpha_{i}\right)$ for $i \in\{1, \ldots, k\}$; and
- $P\left(a_{i 1}\right) \wedge \cdots \wedge P\left(a_{i m_{i}}\right) \Longrightarrow P\left(\beta_{i}\right)$ for $i \in\{1, \ldots, /\}$.

Regex $\rightarrow \epsilon$-NFA (Kleene)
\emptyset

ϵ

a

$\alpha \beta$

Regex $\rightarrow \epsilon$-NFA (Kleene)

DFA/NFA \rightarrow Regex (Kleene)

Given $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ with $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ define

$$
R_{i j}^{k}=\left\{w \in \Sigma^{*} \mid \text { input } w \text { transitions from } q_{i} \text { to } q_{j}\right.
$$

and all states in between have an index $\leq k\}$.
Idea: for all $i, j \in[n]$ and $k \in[n]_{0}$
a regex $\alpha_{i j}^{k}$ can be constructed with $L\left(\alpha_{i j}^{k}\right)=R_{i j}^{k}$.

DFA/NFA \rightarrow Regex (Kleene)

Induction over k.

- $k=0$: Let

$$
\begin{aligned}
& R_{i j}^{0}= \begin{cases}\left\{a \in \Sigma \mid \delta\left(q_{i}, a\right)=q_{j}\right\} & i \neq j \\
\left\{a \in \Sigma \mid \delta\left(q_{i}, a\right)=q_{j}\right\} \cup\{\epsilon\} & i=j\end{cases} \\
& \alpha_{i j}^{0}= \begin{cases}a_{1}|\cdots| a_{l} & i \neq j \\
a_{1}|\cdots| a_{l} \mid \epsilon & i=j\end{cases}
\end{aligned}
$$

where $\left\{a_{1}, \ldots, a_{l}\right\}=\left\{a \in \Sigma \mid \delta\left(q_{i}, a\right)=q_{j}\right\}$.

- $k \Longrightarrow k+1$:

$$
\begin{aligned}
R_{i j}^{k+1} & =R_{i j}^{k} \cup R_{i(k+1)}^{k}\left(R_{(k+1)(k+1)}^{k}\right)^{*} R_{(k+1) j}^{k} \\
\alpha_{i j}^{k+1} & =a_{i j}^{k} \mid a_{i(k+1)}^{k}\left(a_{(k+1)(k+1)}^{k}\right)^{*} a_{(k+1) j}^{k} .
\end{aligned}
$$

New paths using q_{k+1} in terms of the already built subpaths. We now have, $L(M)=L\left(\alpha_{1 i_{1}}^{n}|\cdots| \alpha_{1 i_{r}}^{n}\right)$ where $\left\{q_{i_{1}}, \ldots, q_{i_{r}}\right\}=F$.

Arden's Lemma

Theorem 11 (Arden's Lemma for regular languages)
Let A, B, X be regular languages and $\epsilon \notin A$, then:

$$
X=A X \cup B \Longrightarrow X=A^{*} B
$$

Theorem 12 (Arden's Lemma for regular expressions)
Let α, β, X be regular expressions and $\epsilon \notin L(\alpha)$, then:

$$
X=\alpha X \mid \beta \Longrightarrow X=\alpha^{*} \beta
$$

Closure Properties

Theorem 13
Given the regular languages R, R_{1}, R_{2}, then the following are also regular languages:

- $R_{1} R_{2}$;
- $R_{1} \cup R_{2}$;
- R^{*};
- \bar{R};
- $R_{1} \cap R_{2}$; and
- $R_{1} \backslash R_{2}$.

Pumping Lemma

Lemma 14 (Pumping Lemma for regular languages)
Let $R \subseteq \Sigma^{*}$ be regular. Then there exists some $n>0$ such that every $z \in R$ with $|z| \geq n$ can be decomposed into $z=u v w$ such that

- $v \neq \epsilon$;
- $|u v| \leq n$; and
- $\forall i \geq 0 . u v^{i} w \in R$.

A necessary condition for regular languages.

Pumping Lemma

Example 15 (proof structure)
Assume L is regular.
Let $n>0$ be a Pumping Lemma number.
Choose $z \in L$ with $|z| \geq n$.
Define $z=u v w$ with $v \neq \epsilon$ and $|u v| \leq n$.
Then, $\forall i \geq 0 . u v^{i} w \in L$.
Now, use the last statement to find a contradiction.

